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MATHEMATICAL STUDY OF THE PLANAR OSCILLATIONS 
OF A HEAVY, ALMOST HOMOGENEOUS, INCOMPRESSIBLE, 

INVISCID LIQUID PARTIALLY FILLING A CONTAINER* 

P. CAPODANNO1, D. VIVONA2 

In this paper, the authors, after showing that the problem of the small oscillations of a 
heavy heterogeneous liquid, which fills partially a container, is not a classical 
problem with discrete spectrum, study in details the two-dimensional problem in the 
particular case where the density of the liquid in the equilibrium position can be 
approximated by a linear function of the height of the particle, which differs very 
little from a constant, in the fluid domain. Then, the fluid is called “almost 
homogeneous in the fluid domain”. They prove that, in this case, the spectrum is real 
and decomposed in two parts: an essential spectrum which fills a bounded interval 
and a point spectrum formed by a sequence of eigenvalues tending to infinity, by 
means of the methods of the functional analysis. Finally, they explicit the spectrum in 
the particular case of a rectangular container. 

1. INTRODUCTION 

The problem of the small oscillations of a homogeneous, incompressible, 
inviscid liquid in a container, taking into account the gravity or under zero gravity, 
has been dealt with in very many works, which are analyzed in the books by 
Moiseyev and Rumiantev [9], Myshkis et al. [10], Kopacheskii et al. [5]. The case of 
a container containing two immiscible, incompressible liquids has been studied in the 
book by Kopachevskii et al. [5], where is also treated the problem of a finite number 
of liquids, and by Capodanno [2] who considers also the case of viscous liquids. 

But it seems that, since the old papers by Rayleigh [11] and Love [7], which 
are summarized in the classical book by Lamb [6, pp.378–380], the case of the 
heterogeneous liquid has not interested much the scientists. 

In the paper (Capodanno [1]), the author has studied, in the two- dimensional 
case, the oscillations of a liquid whose density is an increasing function of the 
depth and which fills completely or partially an arbitrary container. He has proved 
that, because of the non-compactness of the operator of the problem, this one was 
not a standard vibration problem (Sanchez Hubert and Sanchez Palencia[13]) [i.e. a 
problem such that the eigenvalues are real and positive and form an increasing 
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sequence which tends to infinity and the associated eigenfunctions form an 
orthogonal basis in a suitable Hilbert space] and he has studied in details the case 
of a rectangular container, in particular for the Rayleigh exponential law of density. 
But he could not study the spectrum of the problem in the general case. 

Though it is theoretical, this paper has interested companies, which make 
software in fluids mechanics. 

In a following paper (Capodanno, [3]), the same author has studied in details 
the case of a container closed by an elastic cover. 

In this work, the authors, restricting themselves, like Rayleigh and Love, to 
the two-dimensional problem, consider the case where the density of the liquid in 
the equilibrium position is approximately a decreasing linear function of the height 
of the particle, which differs very little from a constant in the domain occupied by 
the liquid: the liquid is called “almost homogeneous in the domain”. 

It is possible to use an approximated equation, analogous to the Boussinesq 
equation of the theory of convective fluid motion (Kopachevskii et al.. [5, pp. 268–
269]. By using the method of the orthogonal projection, the authors obtain the 
operatorial equation of motion in a suitable Hilbert space and prove that the 
spectrum of the problem is real and decomposed in two parts: an essential spectrum 
which fills a bounded interval and a point spectrum formed by a sequence of 
eigenvalues, which tends to infinity. Finally, they explicit the spectrum in the 
particular case of a rectangular container. 

2. EQUATION OF THE PLANAR MOTION OF AN HETEROGENEOUS  
LIQUID IN A CONTAINER 

The axis 2Ox  is directed vertically upwards; the axis 1Ox  is horizontal and 
contains the free line in its equilibrium position (Fig.1). 

 
Fig. 1 – Liquid in a container. 
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We denote by 
*
( , )u x t

G
 the small displacement of the particle of the liquid, 

which occupies the position 1 2( , )x x x  at the instant t with respect to its position in 

the equilibrium configuration at the instant = 0t , by * ( , )x tρ  and *( , )p x t  the 
density and the pressure at the point x at the instant t. 

1) The equation of the motion are 
* ** * * 2*2

2*

= ,
in = ,

div = 0,

u p gx uu
tu

  −∇ − ∂  Ω  ∂  

G GG G��
��G

�

ρ ρ
 

where g is the constant acceleration due to gravity and Ω the domain occupied by 
the liquid. 

The equation of continuity is 
* *

div( ) = 0 ;u
t

∂
+

∂

G
�ρ ρ  

taking into account of the equation 
*

div = 0,u
G
�  we have 

* * *= .u
t

∂
− ⋅∇

∂

G
�ρ ρ

 
Let ε be a small parameter which characterizes the smallness of the 

oscillations; we set 
* 1

0( , ) = ( ) ( , ) ,x t x x t+ +…ρ ρ ε ρ  
* 1

0( , ) = ( ) ( , ) ,p x t p x p x t+ +…ε  
* 1( , ) = ( , ) ,u x t u x t +
G G …ε  

where 0 ( )xρ  and 0 ( )p x  are the density and the pressure in the equilibrium 
position. 

We have 

0 0 2( ) = 0 ;p x gx−∇ −
Gρ  

then, 0p  and 0ρ  are functions of 2x  only and we have 

0 2
0 2

2

d ( ) = ( ) .
d

p x x g
x

−ρ  



 P. Capodano, D. Vivona 4 76 

We will assume that, at the equilibrium position, the density is an increasing 
function of the height, i.e 

'0 2
0

2

d ( ) = < 0.
d

x
x

ρ ρ  

We have, at the first order in ε 
1

div = 0 ;u
G
�  

integrating from = 0t  to t, we obtain 
1

div = 0 .u
G

 

In the same way, the linearized equation of continuity, the linearized Euler's 
equation and the kinematic condition on the wall take the form: 

1 1
2 0 2( , ) = ( , ) ( ),x t u x t x′−ρ ρ  

1 1 1
0 2= ,u p g x−∇ −
G G��ρ ρ  

1 = 0u n⋅G G
 on S, 

where nG  is the unit normal vector on the wall. 
The equation of the free line can be written in the form 

1
2 2 1= ( ,0, ) .x u x t +…ε  

We must have * = ap p  on the free line, 0= (0)ap p  being the constant 
atmospheric pressure, i.e. 

1 1 1
0 2 1 1 2 1 0[ ( ,0, ) ] [ , ( ,0, ) , ] = (0),p u x t p x u x t t p+ + + +… … …ε ε ε  

and therefore, at the first order in ε: 
1 1

1 0 2 1( ,0, ) = (0) ( ,0, ).p x t g u x tρ  
Suppressing the upper index 1 in the preceding equations, we obtain the 

equations of the small oscillations of the liquid (Capodanno, 1993): 

0 2 2( ) = ( , ) ,x u p x t g x−∇ −
G G��ρ ρ  (1)

div = 0,uG  (2)

'
2 0 2( , ) = ( , ) ( ),x t u x t x−ρ ρ  (3)
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in Ω 

= 0u n⋅G G      on S, (4)

1 0 2 1( ,0, ) = (0) ( ,0, ).p x t g u x tρ  
(5)

Eliminating ( , )x tρ  between the equation (1) and (3), we have 

'
0 2 0 2 2( ) = (0) ( , )x u p g u x t x−∇ +

G G��ρ ρ   in Ω. (6)

2) Let us look for the variational formulation of the problem. Taking the 
scalar product of the equation (6) and the vector wG  and integrating on Ω, we have 

'
0 2 0 2 2 2( ) d = d ( ) d .x u w p w x g u w

Ω Ω Ω
⋅ Ω − ∇ ⋅ Ω+ Ω∫ ∫ ∫
G G G��ρ ρ  

Taking wG  such that div = 0wG  and = 0w n⋅G G
 on S  we have 

2d = [div( ) div ] d = d = d
S

p w p w p w p w n S p w
Ω Ω +Γ Γ
∇ ⋅ Ω − Ω ⋅ Γ∫ ∫ ∫ ∫

G G G G G
 

and, therefore, using (5) 

0 2 2d = (0) d .p w g u w
Ω Γ
∇ ⋅ Ω Γ∫ ∫

G ρ  

Then, we obtain the variational equation 

0 2 0 2 2 2 0 2| 2|( ) d ( ) d (0) d = 0x u w x g u w g u wΓ ΓΩ Ω Γ
′⋅ Ω − Ω+ Γ∫ ∫ ∫

G G��ρ ρ ρ  

for every wG  “admissible”. 
Looking for solutions in the form i( , ) = e ( )tu x t U x

GG ω , we must find ( )U x
G

 
and a positive real number 2ω  such that 

2
0 2 0 2 2 2 0 2| 2|( ) d = ( ) d (0) dx U w x g U w g U wΓ ΓΩ Ω Γ

′⋅ Ω − Ω+ Γ∫ ∫ ∫
G Gω ρ ρ ρ  

for every wG  “admissible”. 
Let us consider the case of the completely filled container. 
Since div = 0U

G
, div = 0wG , we can write 

2 2

1 1

= ; = .
x x

U w

x x

∂ ∂   
   ∂ ∂   
   ∂ ∂
− −   ∂ ∂   

JG JG
ψ ϕ

ψ ϕ
 

Ψ is the stream-function which we can take equal to zero on the boundary ∂Ω  of Ω. 
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Then, we introduce the space V formed by the function 1
0 ( )H∈ Ωψ  

equipped with the scalar product 

0 2( , ) = ( ) d ;V x
Ω

∇ ⋅∇ Ω∫ψ ϕ ρ ψ ϕ  

the associated norm is obviously equivalent to the classical norm of 1
0 ( )H Ω . 

We have the problem: to find ( )x V∈ψ  and a positive real number 2ω  such 
that 

2
0 2

1 1

( , ) = ( ) d .V x g V
x xΩ

∂ ∂
− Ω ∀ ∈

∂ ∂∫
ψ ϕω ψ ϕ ρ ϕ  

Since the bilinear form 

0 2
1 1

( , ) = ( ) da x g
x xΩ

∂ ∂
− Ω

∂ ∂∫
ψ ϕψ ϕ ρ  

is obviously continuous on V V× , there exists a bounded linear operator A from V 
into V such that 

( , ) = ( , ) ,Va A V∀ ∈ψ ϕ ψ ϕ ϕ  
so that we must study the spectral problem 

2= , .A V∈ψ ω ψ ψ  
A is bounded and symmetrical. It is positive definite; indeed, we have 

( , ) 0,VA ≥ψ φ  zero for 
1

= 0
x
∂
∂
ψ

 a.e. 

It can be shown that from this equality and the condition | = 0,∂Ωψ  we can 

deduce = 0ψ  a.e (Miklin, 1970, p.31). 
Therefore, the spectrum of A is real and lies in the interval [0, || ||]A . But, A 

is not compact and its spectrum is not discrete. 
In the case of a partially filled container, appears an integral on the free line Γ 

and the problem is more complicated. 
The problem of the small oscillations of a heavy heterogeneous liquid in a 

container is not a classical vibration problem with discrete spectrum. It seems 
difficult to study the spectrum in the general case; but (Capodanno, 1993), it is 
possible to explicit it in the particular case of a rectangular container. 

In order to study the general case of an arbitrary container, we restrict 
ourselves to a “simplified” problem. 
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3. EQUATIONS OF MOTION OF AN ALMOST HOMOGENEOUS LIQUID 

 
Fig. 2 – Small oscillations of liquid in the container. 

We denote by h−  ( > 0h ) the ordinate of the lowest point on the wall S  of 
the container (Fig.2). In Ω  we have 2| |x h≤ . 

Let us suppose that the density of the liquid in the equilibrium position can 
be written in the form 

0 2 2( ) = ( ) ,x f xρ β  

with (0) > 0, (0) < 0f f ′  , β  being a positive constant such as hβ  is sufficently 

small, so that 2( )hβ , 3( )hβ , "  , are negligible with respect to .hβ  
Since 2| |x h≤β β  in Ω , we have 

0 2 2( ) = (0) (0) ....x f x f ′+ +ρ β  

Then the liquid is called almost homogeneous in Ω . 
Changing the notation, we shall write 

0 2 2( ) = (1 ) ( ).x x o h− +ρ ρ β β  

In the following, we replace, in the equation (6), 0 2( )xρ  by the positive 

constant ρ  and '
0 2( )xρ  by the negative constant −ρβ . 

Then, we obtain the approximated equation, analogous to the Boussinesq 
equation of the theory of the convective fluid motion (Kopachevkii et al.,1989, 
pp.268-269): 

2 2
1= in .u p gu x− ∇ − Ω

G G�� β
ρ

 (7)
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The equation of the small oscillations of a heavy almost homogeneous 
incompressible inviscid liquid in the container are (7),(2),(4),(5). 

By virtue of the incompressibility of the liquid, we must have 2| d = 0u ΓΓ
Γ∫  

and hence | d = 0pΓΓ
Γ∫ . But p  is indeterminate to the constant of an additive 

function of time; the condition gives this function. 

4. OPERATORIAL EQUATION OF THE PROBLEM 

1) We are going to use the method of the orthogonal projection. We introduce 
the following spaces (Kopachevkii et al.,(1989), p.106): 

2 2 2
0 ( ) = { ( ) = [ ( ] ;div = 0, = 0nJ u L L u uΩ ∈ Ω Ω

G G  in 1/2 ( )},H − ∂Ω  
1

|( ) = { = ; ( ); d = 0},G u p p H pΓΓ
Ω ∇ ∈ Ω Γ∫

G  
2

0, ( ) = { ( ); div = 0, = 0s nJ u L u uΩ ∈ Ω
G G  in 1/2

00[ ( )] },H S ′  
1

, ( ) = { = ; ( ); = 0; = 0h s nG u p p H p uΩ ∇ ∈ Ω ∆
G  in 1/2

00 |[ ( )] ; d = 0},H S pΓΓ
′ Γ∫  

1
0, |( ) = { = ; ( ); = 0},G u p p H pΓ ΓΩ ∇ ∈ Ω

G  

equipped with the classical norm of 2 ( )L Ω , the space (Dautray Lions, 1988, Vol.4, 
pp.1223–1224) 

1 2( , ) = { ( ); ( )},H v H v L∆ Ω ∈ Ω ∆ ∈ Ω  

equipped with the norm 

1/2
( , ) 1 2

2 2|| || = {|| || || || } ,( ) ( )H H L
v v v∆ Ω + ∆Ω Ω  

(it is well-know that 
v
n
∂
∂

 makes sense as element of 1/2 ( )H − ∂Ω ), and the space 

1 1 1/2
, 00 |= { ( ) ; = 0 ; in [ ( )] ; d = 0},h S

pH p H p H S p
n ΓΓ

∂ ′∈ Ω ∆ Γ
∂ ∫  

equipped with Dirichlet's norm ( 2 1/2| | d )p
Ω
∇ Ω∫ , equivalent in this space to the 

norm of 1( )H Ω  and ( , )H ∆ Ω . The space 1/2
00[ ( )]H S ′  is defined in (Dautray et 

Lions, Vol.4, p.1241). 
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We recall the orthogonal decomposition (Kopachevskii et al. 1989), p.106 : 
2

0( ) = ( ) ( )L J GΩ Ω ⊕ Ω     ;      2
0, 0,( ) = ( ) ( ),SL J G ΓΩ Ω ⊕ Ω  

0, 0 ,( ) = ( ) ( )S h SJ J GΩ Ω ⊕ Ω    ;    , 0,( ) = ( ) ( ).h SG G G ΓΩ Ω ⊕ Ω  

From first and the fourth decompositions, we have 
2

0 , 0,( ) = ( ) ( ) ( ).h SL J G G ΓΩ Ω ⊕ Ω ⊕ Ω  

We can suppose 2 ( )u L∈ Ω
G

 and 1( )p H∈ Ω . Since div = 0uG  and = 0nu  
on S , we take 0, ( )Su J∈ Ω

G
; on the other hand, we have ( )p G∇ ∈ Ω . 

By virtue of the preceding decompositions, we are looking for uG  and ∇Φ  in 
the form (Kopachevskii et al. 1989, pp.200-204) : 

=u v +∇ΦG G
, with 0 ,( ), ( ),h Sv J G∈ Ω ∇Φ∈ Ω

G
 

=p K∇ ∇ +∇ϕ , with , 0,( ), ( ).h SG K G Γ∇ ∈ Ω ∇ ∈ Ωϕ  

Writing the equation of the motion in the form  
2 2

2 22 2
2

1 1( ) =v K g v x
t t x

 ∂ ∂ ∂Φ
+ ∇Φ − ∇ − ∇ − + ∂ ∂ ∂ 

G Gϕ β
ρ ρ

 

and calling 0 , ,SP P PΓ  the orthogonal projections of 2 ( )L Ω  onto 

0 , 0,( ), ( ), ( )h SJ G G ΓΩ Ω Ω , we obtain 

2

0 2 22
2

= ,v g P v x
t x

  ∂ ∂Φ
− +  ∂ ∂  

G Gβ  (8)

2

2 22
2

1( ) = ,SgP v x
t x

  ∂ ∂Φ
∇Φ − ∇ − +  ∂ ∂  

Gϕ β
ρ

 (9)

2 2
2

10 = .K gP v x
xΓ

  ∂Φ
− ∇ − +  ∂  

Gβ
ρ

 (10)

In the following, we will see that |Γϕ  depends on 
|n Γ

∂Φ
∂

, so that, if Φ  is 

known, it is possible to calculate |Γϕ . But, since 1
, ( )h SH∈ Ωϕ , we have: = 0∇Φ  

in Ω , = 0
n

∂
∂
ϕ

 on S , | d = 0ΓΓ
Γ∫ ϕ ; if |Γϕ  is known, ϕ  is solution of Zaremba's 
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problem and hence, is determined. Therefore, if Φ  is known, it is possible to 
calculate ϕ . 

Then, we need only the first two equations, the third gives K∇ . 

Since, 2 2( )SP v xG  and 2
2

( )SP x
x
∂Φ
∂

G
 belong to , ( )h SG Ω , we can set 

2 2 2
2

( ) = , ( ) = ,S SP v x P x
x
∂Φ

∇ ∇Ψ
∂

G Gψ  

where ψ  and Ψ , like ϕ  and Φ , belong to 1
, ( )h SH Ω . 

Then, from the equation (9), we can deduce the first integral 
2

2 = ( ) ( ) in .g C t
t

∂ Φ
− +Ψ + Ω

∂
β ψ  

Integrating on Γ , we have ( ) = 0C t  and finally 

2

2 = ( ) in .g
t

∂ Φ
− +Ψ Ω

∂
β ψ  (11)

Let us transform the dynamic condition on the free line  

| 2| |= = .np g u g uΓ Γ Γρ ρ  

From =p K∇ ∇ +∇ϕ , we deduce = ( )p K f t+ +ϕ  and, after integration 
on Γ , ( ) = 0f t , i.e. 

= inp K+ Ωϕ  

and therefore 

| |= .pΓ Γϕ  

On the other hand, we have =n nu v
n

∂Φ
+
∂

 and since 0 ( )v J∈ Ω
G

: 

| = |nu
nΓ Γ

∂Φ
∂

 

so that the dynamic condition on the free line can be written 

| = | ;g
nΓ Γ

∂Φ
∂

ϕ ρ  

therefore, |Γϕ  depends on | .
n Γ

∂Φ
∂
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Let us write the first integral (11) on Γ  
2

|
|2 = | ( ) .g g

t n
Γ

Γ Γ

∂ Φ ∂Φ
− − +Ψ

∂ ∂
β ψ  (12)

Since 1
, ( )h SHΦ∈ Ω , if |ΓΦ  is knowm, Φ  is determined as solution of 

Zaremba's problem and we can calculate ϕ . 
Consequently, we may take vG  and |ΓΦ  as unknown functions and the 

equations of the problem are (8) and (12). 
2) We are going to transform these equations into an operatorial equation in a 

suitable Hilbert space. 
Let us introduce the spaces 

1 (
|( ) = { ) ; d = 0} ,H u H uΓ ΓΓ

Ω ∈ Ω Γ∫  

equipped with Dirichlet's norm, and  

i 2 2( ) = { ( ) ; d = 0}.L f L f
Γ

Γ ∈ Γ Γ∫  

We denote by Γγ  the restriction to Γ  of the trace operator on δΩ ; we write  

1
|= , ( ) .HΓ Γ ΓΦ Φ Φ∈ Ωγ  

It is well-known that Γγ  is bounded and compact from 1 ( )HΓ Ω  into i
2
( )L Γ , 

that its range is 

i1/2 1/2( ) = { ( ) ; d = 0}.H f H f
Γ

Γ ∈ Γ Γ∫  

It can be proved (Kopachevskii et al., 1989, p.45) that the orthogonal 
complement of the kernel 1

0, ( )H Γ Ω  of Γγ  in 1 ( )HΓ Ω  is the space 1
0, ( )SH Ω  and 

that Γγ  is an isometry from 1
, ( )h SH Γ  onto i

1/2
( )H Ω . 

On the other hand, the embedding from i
1/2

( )H Γ  into i
2
( )L Γ  is, classically, 

dense and compact. 
The adjoint T  of Γγ  is defined by  

i1/2 ' 1
,1( , ) = , ( ( )) , ( ) ,( ) h SH

T v v H v HΓ
Γ

〈 〉 ∀ ∈ Γ ∀ ∈ ΩΩψ ψ γ ψ  

where i
1/2 '( ( ))H Γ  is the antiduality of i

1/2
( )H Γ  and ,〈⋅ ⋅〉  is the antidualicty 
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between i
1/2 '( ( ))H Γ  and i

1/2
( ).H Γ  T  is, classically, an isometry from i

1/2 '( ( ))H Γ  
onto 1

, ( ).h SH Ω  

We can interpret i1/21 '( ( ))T H− Φ∈ Γ  , 1
, ( )h SHΦ∈ Ω , as the normal 

derivative |
n Γ

∂Φ
∂

. 

Indeed, setting 1 1
,= , ( )h ST u u H− ∈ Ωψ  in the preceding equation, we have  

1 1
,d = , , ( ) .h Su v T u u v H−

ΓΩ
∇ ⋅∇ Ω 〈 〉 ∀ ∈ Ω∫ γ  

Since 1
, ( )h SH Ω  is a subspace of ( , )H ∆ Ω , we can applied the generalized 

Green formula (Dautray, Lions, 1988, Vol.4, p.1224)  

1/2 1/2, = d d( ), ( )H

u v u v u vHn − Ω Ω

∂
〈 〉 ∆ ⋅ Ω+ ∇ ⋅∇ Ω∂Ω ∂Ω∂ ∫ ∫  

1( , ), ( ).u H v H∀ ∈ ∆ Ω ∀ ∈ Ω  

For 1
,h Su H∈ , we have then  

1/2 1/2d = , ,( ), ( )H

uu v v Hn −Ω

∂
∇ ⋅∇ Ω 〈 〉 ∂Ω ∂Ω∂∫  

so that  

1
| 1/2 1/2, = , .( ), ( )H

uT u v Hn
−

Γ ∂Ω −

∂
〈 〉 〈 〉 ∂Ω ∂Ω∂

γ  

Taking into account of = 0u
n
∂
∂

 on S , we may consider 1T u−  as the normal 

derivative 
|

.u
n Γ

∂
∂

 

We are using also the following well-known result (Sanchez Hubert and 
Sanchez Palencia, 1989). 

The operator =C TΓγ  is an isometry from i
1/2 '( ( ))H Γ  onto i

1/2
( ).H Γ  Its 

restriction to i
2
( )L Γ  is bounded, self- adjoint, definite positive and compact. 1/2C  

is an isometry from i
1/2 '( ( ))H Γ  onto i

2
( )L Γ  and 1/2C−  is an isometry from 

i1/2
( )H Γ  onto i

2
( ).L Γ  
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Because of the interpretation of 1T − , we have  

|
|

= .C
nΓ

Γ

∂Φ Φ  ∂ 
 

Let us introduce in the equations (8) and (12) the function  

1/2 1/2 2
|

|

= = ( )C C L
n

−
Γ

Γ

∂Φ  Φ ∈ Γ ∂ 
�η  

instead of .Φ  
The equation (12), after applying the operator 1/2C− , takes the form 

2
1 1/2 1/2

| |2

d = ( ).
d

g C g C C
t

− − −
Γ Γ− − + Ψ

η η β ψ  (13)

Let us consider the equation (8), i.e. 
2

0 2 2 0 22
2

d = ( ) .
d

v g P v x g P x
t x

 ∂Φ
− −  ∂ 

G G Gβ β  

We may put  

0 2 2 11( ) = ,g P v x A vG Gβ  

where 11A  is a linear operator from 0 ( )J Ω  into 0 ( ).J Ω  
Since Φ  defined linearly on η , we may put  

0 2 12
2

= ,g P x A
x

 ∂Φ
 ∂ 

Gβ η  

where 12A  is a linear operator from i
2
( )L Γ  into 0 ( ).J Ω  

Then the equation (8) takes the form 
2

11 122

d = .
d

v A v A
t

−
G G η  (14)

In the same way, since 2 2= ( )SP v x∇
Gψ , we can put  

1/2
| 21= ,g C A v−
Γ

Gβ ψ  

where 21A  is a linear operator from 0 ( )J Ω  into i
2
( )L Γ . 
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Since 2
2

= SP x
x

 ∂Φ
∇  ∂ 

Gψ  depends linearly on η , we may put  

1/2
| 22= ,g C A v−
Γ

Gβ ψ  

where 22A  is a linear operator from i
2
( )L Γ  into i

2
( ).L Γ  

Then the equation (13) takes the form 
2

1
21 222

d = .
d

g C A v A
t

−− − −
Gη η η  (15)

Let us put  

i 2

0= = ( ) ( ) ,
v

y H J L 
∈ Ω ⊕ Γ 

 

G

η
 

H  being equipped with the scalar product  

� �
2 2( , ) = ( , ) ( , ) ,( ) ( )H L L

y y v v +Ω Γ�

G GGG � η η  

and 

11 12
1

21 22

0 0
= , = ,

0
A A

A B
A A g C−

   
   

  
 

we obtain finally the operatorial equation of the problem 
2

2

d ( ) = 0 ,
d

y A B y
t

+ +      .y H∈  (16)

5. PROPERTIES OF THE OPERATORS OF THE PROBLEM 

1) Study of the operator 11A . In this study , we denote by ( , )⋅ ⋅  and || ||⋅  the 

scalar product and the norm of 2 ( )L Ω  or 0 ( )J Ω . 
a) 11A  is symmetrical. Indeed, for every pair 0, ( )u v J∈ Ω

G G
, we have 

11( , )A u vG G = 0 2 2 2 2 2 2( ) d = ( ) d = dg P u x v g u x v g u v
Ω Ω Ω

⋅ Ω ⋅ Ω ⋅ Ω∫ ∫ ∫
G GG Gβ β β  

and 

11 11 2 2( , ) = ( , ) = d .u A v A v u g u v
Ω

⋅ Ω∫
G G G G β  
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Therefore, we obtain 

11 11( , ) = ( , ) .A u v u A vG G G G
 

b) 11A  is bounded. We have 

11 0 2 2 2 2|| ||= || ( ) || || || ,A u g P u x g u x≤
G G Gβ β  

and consequently 

11|| || || || .A u g u≤
G Gβ  

c) The spectrum 11( )Aσ  of 11A  is the closed intervall [0, ].gβ  Indeed, we 
have at first: 

2
11 2( , ) = | | d 0 .A u u g u

Ω
Ω ≥∫

G G β  

Let us consider the ratio 

2
211

2 2

| | d( , ) = .
|| || | | d

uA u u g
u u

Ω

Ω

Ω

Ω
∫
∫

G G
G Gβ  

Its inf is obviously zero and its sup, i.e. 11|| ||A  is g≤ β . 

Therefore, the spectrum 11( )Aσ  is contained in the interval 

11[0,|| ||] [0, ].A g⊆ β  
In order to prove that it is [0, ]gβ , we can apply the following Weyl's 

criterion (Reed and Simon (1970), p.273): 
Let A  be a bounded self-adjoint operator of a Hilbert space. λ  belongs to 

the spectrum ( )Aσ  of A , if and only if, there exists a sequence { }lθ  such that 

|| ||= 1lθ  and lim || ( ) ||= 0.l lA I→∞ −λ θ  
In order to prove that every λ  such that 0 < < gλ β  belongs to the 

spectrum 11( )Aσ  of 11A , we prove that, for every =
g
λµ
β

 such that 0 < < 1µ , 

there exists a sequence 0{ } ( )lu J∈ Ω
G

 verifying 

1|| ||
0 when .

|| ||

l l

l

Ku u
g l

u

−
→ →∞

G G

G
µ

β  
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Then, since 11( )Aσ  is closed, it is the closed interval [0, ]gβ  and, 

consequently, 11|| ||= .A gβ  

We notice that, since there is not a discrete spectrum, 11( )Aσ  conicides with 

the essential spectrum 11( )ess Aσ  of 11.A  

We must construct a suitable sequence { }.luG  With this aim in view, we 
adjoint a process used in (Kopachevskii, 1989, pp.193-196). 

( )q x  being an element of ( )D Ω , let us put 

1
2

2
1

=
= .

=

qu
x

u
qu

x

∂∆ 
 
 
 ∂∆

− 
 

G δ

δ

 

Obviously, 0 ( ).u J∈ Ω
G

 

We need to calculate 11 lA uG , and hence 0 2 2( )P u xG . Then, we introduce the 
auxiliary Neumann problem: 

2 2 2 2= div( ) in = ( ) on .u x u x n
n

∂
∆ Ω ⋅ ∂Ω

∂
G G Gϕϕ  

It is easy to see that 

2 2=w u x −∇
G G ϕ  

belongs to 0 ( )J Ω . Since ( )G∇ ∈ Ωϕ , we have 0 2 2= ( )w P u xG G
. Then, we can 

write  

0 2 2 2 2( ) = .P u x u x −∇
G G ϕ  

Consequently, we can calculate simply 0 2 2( )P u xG  and then 11A uG , if we 
know one solution of the auxiliary problem. 

Indeed, the auxiliary problem is 
2

1 2

= in ; = 0 on ,q
x x n
∂ ∆ ∂

∆ − Ω ∂Ω
∂ ∂ ∂

ϕϕ  

and we can take 
2

1 2

= .q
x x
∂

−
∂ ∂

ϕ  
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Then, we have 

11 2 2= ( ),A u g u x −∇
G Gβ ϕ  

i.e. 
3

2
1 2

11 3

2
1 2 1

1 = .

q
x x

A u
g q q

x x x

 ∂
 ∂ ∂ 
 ∂ ∂∆

−  ∂ ∂ ∂ 

G
β

 

In order to construct the sequence { }luG , we take  

2i( 1 )( ) = ( ) = e ( ) ,nx mx
nmq x q x x+ θ  

where ( ) ( )x D∈ Ωθ  is independent on n  and m  and is equal 1 in the circle 

0| |x x r− ≤  ( 0x ∈Ω ), whose the radius r  is so small that this circle C lies 
entirely in .Ω  

We consider the sequence 

2

1

=

mn

mn
mn

q
x

u
q
x

∂∆ 
 ∂ 
 ∂∆
− ∂ 

G
 

and we assume that n  and m  tend to infinity, the ratio 
m
n

 remaining constant. 

We obtain easily 

i( 22 2 2 21

1

)= ( ) ( )e ( ) ,nx mxmnq in n m x O n m
x

+∂∆
− + + +

∂
θ  

where 
2 2

2 2

( )O n m
n m

+
+

 contains only the derivatives of ( )xθ  and therefore, is 

uniformly bounded in Ω  and equal to zero in the circle 0| |x x r− ≤ . 

We calculate also 
2

mnq
x

∂∆
∂

 and we obtain finally 

2i(2 2 2 21 )= ( )e ( ) ( ) .nx mx
mn

im
u n m x O n m

in
+− 

+ + + 
 

G θ  
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In the same way, we have 

2i(2 2 2 21
11

1 )= ( )e ( ) ( ) .nx mx
mn

im
A u n m x O n m

ing
+− 

+ + + 
 

G θ
β

 

From the preceding results , we deduce 
2

2 2
11 2 2

1 = ( ),mn mn
nA u u O n m

g n m
− +

+
G G

β
 

and therefore 
2

2 2
11 2 2

1|| || ( ),mn mn
nA u u c n m

g n m
− ≤ +

+
G G

β
 

where c  is a positive constant. 
Now, let us study || || .mnuG  
We have, 

2 2 2 3 2 2 2 5/2| | = ( ) | | [( ) ] ,mnu n m O n m+ + +
G θ  

so that 
2 2 2 3

1| | ( )mnu c n m≤ +
G

      ( 1c  positive constant) 

and 
2 2 2 3

2|| || ( )mnu c n m≤ +
G

      ( 2 1=c c ⋅  meas.of ) .Ω  

On the other hand, in the circle 0| |x x r− ≤ , we have 2 2 2 3| | = ( )mnu n m+G
, 

since = 1θ  and 2 2( ) = 0.O n m+  Then, we have 

2 2 2 2 3
0| 0

|| || = | | d d = ( )|mn mn x x
u u c n mrΩ −

Ω ≥ Ω +≤∫ ∫
G G

      ( 2
0 = ).c rπ  

Finally, we can write,  
2 2 3 2 2 2 3

0 0( ) || || ( ) .mnc n m u c n m+ ≤ ≤ +
G

 

Let µ  such that 0 < < 1µ . For every > 0ε , no matter how small, a rational 

number 
m
n

 can be found such that 

2

22 2

1< = < .
1

n
n m m

n

+
+  +  

 

µ µ ε  
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Let us choose, = , = ,m lm n ln  where l  is an integer number which tends to 

infinity; we have 
2 2

2 2 2 2=n n
n m n m+ +

 and then, 

2

2 2< < .n
n m

+
+

µ µ ε  

From the inequality 
2 2

11 11 2 2 2 2

1 1|| || || || | | || ||mn mn mn mn mn
n nA u u A u u u

g g n m n m
− ≤ − + −

+ +
G G G G Gµ µ

β β
 

and the preceding result, we deduce 

11
0 2

2 2
0

1|| ||
1

||

mn mn

mn

c
A u u

c cg
u l cn m

−
≤ +

+

G G

G
µ

β ε  

and therefore 

11
2

0

1|| ||
2 ,

|| ||

mn mn

mn

A u u
cg

u c

−
≤

G G

G
µ

β ε  

for =m lm   ,  =n ln  and l  sufficiently great. 
The sequence ,{ }lm lnuG  satisfies the Weyl criterion, so that we have 

11 11( ) = [0, ] = ( ).essA g Aσ β σ  
2) Study of the operator A   
2a) A  is symmetrical. We have  

1 2 11 1 12 2 21 1 22 22 2( , ) = ( , ) ( , )( ) ( )H L L
Ay y A v A v A v A+ + +Ω Γ�

G G Gη η η  

and, therefore  

1/21
1 2 0 12 2 2 1| 1|2 2

2

1 ( , ) = ( [( ) ], )) ( ( )) .( ) ( )H L L
Ay y P v x v C

g x
−

Γ Γ

∂Φ
+ + +ΨΩ Γ∂ �

G G ψ
β

 

The first scalar product can be written  

1
12 2 2

2

(( ), ) .( )L
v v

x
∂Φ

+ Ω∂
G
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Let us transform the second product scalar. We have 

1/2 1/2 1/2
2 1| 1| 1| 1|2 2( , ( )) = ( | , ( )) =( ) ( )L L

C C C
n

− −
Γ Γ Γ Γ Γ

∂Φ
+Ψ +ΨΓ Γ∂� �η ψ ψ  

1| 1| 1/2 ' 1/2(
| ,

( )) , ( )H Hn Γ Γ Γ

∂Φ
= 〈 + Ψ 〉

Γ Γ∂ � �ψ  

since 1/2C  is self-adjoint. Using the formula 

1 1
| ,2 1/2 ' 1/2(

( , ) = , , ( ) ,( ) ( )) , ( ) h SL H
u v T u v u v H

H
−

Γ∇ ∇ 〈 〉 ∀ ∈ ΩΩ Γ Γ� �  

we obtain 
1/2

2 1| 1| 2 1 12 2( , ( )) = ( , ( )) =( ) ( )L L
C−

Γ Γ+ Ψ ∇Φ ∇ +ΨΓ Ω� �η ψ ψ  

1 1
2 12 2 2 12 22 2

2 2

( , [( ) ]) = ( , ( ) ) .( ) ( )S L L
P v x v x

x x
∂Φ ∂Φ

= ∇Φ + ∇Φ +Ω Ω∂ ∂
G G

 

Finally, we find 

1
1 2 12 2 2 2 2

2

1 ( , ) = (( ) , ) =( )H L
Ay y v x v

g x
∂Φ

+ +∇Φ Ω∂
G G

β
 

1 2
12 22

2 2

( )( ) d ,v v
x xΩ

∂Φ ∂Φ
= + + Ω

∂ ∂∫  

from we deduce easily the symmetry of the operator A . 
2b) A  is bounded and || ||= .A gβ  Taking 1 2= =y y y , we have 

2

2 2
2

1 2( , ) = || || .( )H L
Ay y v d v

g xΩ

∂Φ
+ Ω ≤ +∇Φ Ω∂∫

G
β

 

Since, 1
,h SH∇Φ∈ , we have 

( )
( )

| '2 1/2 1/2

1/ 2 1/ 2 '1/2 1/2

2|| || = = | ,( ) ( ) , ( )

, ( ) , ( ).

L
d

n H H

C C H H

Γ Γ
Ω

−

∂Φ
∇Φ ∇Φ∇Φ Ω 〈 Φ 〉 =Ω ∂ Γ Γ

= Γ Γ

∫ � �

� �η η
 

Since 1/2C−  is self-adjoint, we can write 
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2 2 2
2 2|| || = ( , ) =|| || ,( ) ( ) ( )L

∇Φ Ω Γ Ωη η η  

so that 

2
2

2|| || =|| || .( ) HL
v y+∇Φ Ω
G

 

Consequently, we have  

|| || .A g≤ β  

But, from 

1/2
11 12 21 222 2

1/2
2 2

2 2(|| || || || )|| || ( ) ( )|| ||= = ,sup sup 2 2|| || (|| || || || )( ) ( )

LH

y H y HH
L

A v A A v AAyA
y v∈ ∈

+ + +Ω Γ

+Ω Γ

G Gη η

η
 

we deduce 

11 2

11
20

|| || ( )|| || =|| ||=sup
|| ||( ) ( )v

A v
A A g

v∈

Ω≥
Ω Ω

G

G

G β  

and finally 

|| ||= .A gβ  

2c) Study of the norms of the operators ijA . Writing the inequality 

21 ( , ) || || ,Ay y y y
g

≤ ∀ ∈
β

 

for = 0vG , we obtain 

2
22 2 2

1 2( , ) || || ( ),( ) ( )A
g

≤ ∀ ∈ ΓΓ Γη η η η
β

 

and then 

22|| || .A g≤ β  

By definition of || ||A , we obtain 

21 12|| || , || || .A g A g≤ ≤β β  
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Taking 1
1

0
=y
 
 
 η

 and 2
2 =

0
v

y
 
 
 

G
, we obtain, by virtue of the symmetry of 

A : 
2

12 1 2 1 21 2 1 2 02 2( , ) = ( , ) ( ), ( ),( ) ( )A v A v L v IL L ∀ ∈ Γ ∈ ΩΩ Γ
G G G�η η η  

so that 
*
12 12= .A A  

3) Study of the operator B . By virtue of the properties of C , 1C−  is an 
unbounded operator of 2 ( )L Γ� , self-adjoint, and strongly positive, so that B  is an 
unbounded operator of H , self-adjoint and not-negative. 

4) First remark on the operatorA = A B+ . Looking for solutions of the 
equation (16) in the form 

i( , ) = ( ) e ty x t y x ω  

and putting A = A B+ , we obtain 

2= ,Ay yω  

A being self-adjoint like A  and B , the spectrum of the problem is real. On the 
other hand, since 

1
2( , ) = ( , ) ( , ) ,( )y y Ay y gC−+ Γη η  

A is not negative, so that its spectrum lies on the real positive halfaxis and 2 = 0ω  
is an eigenvalue. 

6. THE POINT SPECTRUM 

Let us seek the eigenvalue 2ω  such that 2 > gω β . Setting 

2 1= < ,
g

−µ ω
β

 we write the equations (14), (15) in the form 

11 12( ) = ,I A v A−
Gµ µ η  (17)

1
21 22( ) = .A v A gC−+ +
Gµ µ η η  (18)
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Since 11 11|| ||= , ||A g I Aβ µ−  has a bounded inverse, which is holomorphic 

for 
1| |<
g

µ
β

 and we have for this inverse the Neumann series: 

i 1
11 11

=0
( ) = ( ) = .k k

k
R I A A

∞
−− ∑µ µ µ  

The equation (17) takes the form 

12= ( ) .v AG �µ µ η  

Substituting into the equation (18), we obtain the equation for η : 

i2 1
21 12 22( ) ( ) = .A R A A gC−+ +µ µ η µ η η  (19)

The bundle of operator i( )R µ  is obviously self-adjoint, so that, since 12A  and 

21A  are mutually adjoint, the bundle i
21 12( )A R Aµ  is self-adjoint. 

The operator 1
22=D A gC−+  has an inverse which is bounded, self- adjoint, 

positive definite and compact from ( )2L Γ�  into itself. Applying 1/2D−  to both 

sides of (16) and setting ' 1/2= Dη η , we obtain the equation 

1 2 ' 2( ) = [ ( )] = 0, ( )E I D L− ′− − Φ ∀ ∈ Γ�µ µ µ µ η η  (20)

where i1/2 1/2
21 12( ) = ( )D A R A− −Φ µ µ  is a bounded , self-adjoint bundle of 

operators. 
The bundle ( )E µ  is classical (Kopacevskii et al., 1989, p.81): 

– 1D−  is self-adjoint, compact from 2 ( )L Γ�  into itself; 
– ( )Φ µ  is an operatorial function which is self-adjoint and holomorphic for 

1| |< ;
g

µ
β

 

– 1(0) =E D−−  compact; (0) =E I′  strongly positive. 

Therefore, there is a countable infinity of eigenvalues kµ  in the interval 
[0, ]gβ , which tend to zero as k →+∞ , so that the corresponding eigenvalues 

2
kω  of the problem tend to infinity as .k →+∞  
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The corresponding eigenelements '
kη  have not associated elements and form 

a Riesz basis* in a subspace of 2 ( )L Γ�  which has a finite defect (i.e. whose the 

orthogonal complement in 2 ( )L Γ�  has a finite dimension). 

The corresponding eigenfunctions = k
k

k

v
y

 
 
 

G

η
 of the problem 2=Ay yω  

are determined by 

i1/2 '
12= ; = ( ) .k k k k kD v R A− Gη η µ µ η  

If we assume that these eigenfunctions are normalized, we find easily 

2|| || 2 ,( )k kL
v g≤Ω
G β µ  

so that 0kv →
G

 as k →∞  and therefore 2|| || 1.( )k L
→Γη  

7. THE ESSENTIAL SPECTRUM 

Now, we suppose that 2 g≤ω β  and then 
1 .
g

≥µ
β

 

We are writing the equation (18) in the form 

21( ) =I A v− −
Gµ η µ . 

D is an unbounded, self-adjoint, strongly positive operator, with a compact inverse; 
let ( )Dλ  be its smallest eigenvalue. We have 

2 2
2(( ) , ) [ () 1] || || .( ) ( )L L

I− ≥ −Γ Γ� �µ η η µλ η  

We distinguish between two cases: 

1) 
1( ) >D
g

λ
β

. Then, since 
1
g

≥µ
β

, ( ) 1D −µλ  is strongly positive and 

compact and has a compact inverse. We can write 
1

21= ( ) .I A v−− −
Gη µ µ  

                       
* Let { }ke  an orthonormal basis of 2 ( )L Γ�  and Q  a bounded operator with bounded 

inverse. Then, { }kQe  is a basis of 2 ( )L Γ�  , called Riezs basis of 2 ( )L Γ� . 
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Substituing in the equation (17) and replacing µ  by 2−ω , we obtain 

2 2
0( ( ) ) = 0 , ( )M I v v− ∈ Ω

G Gω ω  

with 2 2 1
11 12 21( ) = ( ) .M A A I A−− −ω ω  

Let us study the bundle of operators 2( ).M ω  
If 2ω  is fixed real g≤ β , the operator 2 2 1

12 21( ) = ( )V A D I A−−ω ω  is self-

adjoint, and compact, because 12A  and 21A  are bounded and 2 1( )I −−ω  compact. 

Let 2ω  fixed, arbitrary in [0, ]gβ ; we consider the operator 

2 2
1 11 1( ) = ( ).M A V−ω ω  

Since 2
1( )V ω  is compact, we have, using a classic Weyl criterion 

(Kopachevskii et al., 1989, p.21): 
2
1 11 11[ ( )] = ( ) = ( ) = [0, ].ess essM A A gσ ω σ σ β  

Let us use another Weyl criterion: let 2
2ω  be a point of 2

1[ ( )]ess Mσ ω ; there 

exists a “Weyl sequence” { }nvG , which depends on 2
1ω  and 2

2ω  such that 

0nv →
G

 weakly; inf || ||> 0nvG ; 2 2
1 2( ( ) ) 0nM I v− →

Gω ω  in 0 ( ).I Ω  

Let us choose 2 2
1 2=ω ω ; the associated Weyl sequence { }nv

JJG
�  depends 

obviously on 2
1ω  only. 

Then, 2
1ω  belongs to the spectrum of the problem 

2 2
0( ( ) ) 0 , ( ).M I v v− → ∈ Ω

G Gω ω  

Indeed, 2
1ω  does not belong to the resolvent set of the operator 2

1( )M ω , so 

that 2 2
1 2( )M I−ω ω  has not a bounded inverse. Therefore, 2

1ω  does not belong to 

the resolvent set of the bundle 2 2( )M I−ω ω  and, therefore, belongs to the 
spectrum of this bundle. 

Since 2
1ω  is arbitrary in [0, ]gβ , every point of this interval belongs to the 

spectrum of the bundle 2 2( ) .M I−ω ω  Then, this spectrum is [0, ]gβ  and 
coincides with the essential spectrum of the problem 2=y yω . 

2) 
1( )D
g

λ
β

≤ . By virtue of the properties of ( )D , the spectral problem 
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2 2( ) = 0 , ( )D I L− ∈ Γ�ω η η  
is an eigenvalue classical problem: D  has a countable infinity of positive 
eigenvalues 2

kω , which tend to infinity as k →∞ . Then, there is at most finite 

number of 2
kω  in the interval [0, ]gβ . 

At the points 2 [0, ]g∈ω β  which are different from these 2
kω , 2D I−ω , 

and consequently D I−µ , has a compact inverse. So, for these 2ω  the results of 
the first case are valid. Such 2ω  belongs to the essential spectrum of A. Since the 
essential spectrum is closed, every point of [0, ]gβ  belongs to the essential 
spectrum of the problem. 

Finally, the spectrum of the problem is formed by the essential spectrum 
[0, ]gβ  and by a point spectrum which lies outside of this interval. 

It seems difficult to explicit the spectrum of the problem, in particular the 
essential spectrum, except for special forms of the container. 

8. THE CASE OF RECTANGULAR CONTAINER 

Let us assume that, at the equilibrium position, the liquid occupies the 
domain Ω : 10 < <x π , 2< < 0h x− , the free line being 2 = 0x , 10 < <x π  
(Fig.3). 

 

Fig. 3 – Rectangular container. 

From the equation of motion (7), eliminating p  and introducing the stream 

function 1 2( , , )x x tψ  defined by 1 2
2 1

= , =u u
x x
∂ ∂

−
∂ ∂
ψ ψ

, we obtain 

2 2

2 2( ) = 0 in .g
t x
∂ ∂

∆ + Ω
∂ ∂

ψψ β  (21)
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The kinematical conditions are 

1 1 2= 0 = 0 , = , = .for x x x h−ψ π  (22)

The dynamical condition on the free line is 

1 2 1( ,0, ) = ( ,0, ).p x t gu x tρ  

Differentiating with respect to 1x  and eliminating 
1

p
x
∂
∂

 we find 

2 2

22 2
2 1

( ) = for = 0.g x
t x x
∂ ∂ ∂
∂ ∂ ∂

ψ ψ
 (23)

Looking for solutions of the systems (21),(22),(23) in the form 
i

1 2 1 1 2 2( , , ) = ( ) ( ) e ,tx x t X x X x ωψ ⋅ ⋅  

we obtain 
2

1 2
2

1 2

= ,X X
X g X
′′ ′′

⋅
−

ω
β ω

 

( )
2

1 2
1 2

1 2

(0)(0) = = ( ) = 0 ; = .
(0)

X XX X X h
X g X

ωπ
′′ ′

− − ⋅  

We find easily 

1 1 1( ) = sin ( = 1,2, )X x nx n …  

and the problems 

2
2

2 22

2

2 2 22

= 0

( = 1,2, )

( ) = 0 ; (0) = (0).

gX n X

n
n gX h X X

 −′′+



 ′−


…

β ω
ω

ω

 (24)

We can distinguish two cases: 
1) 2 > gω β . We have 

2

2 2 2 2( ) = sh ( ) , = ,gX x n x h ω βλ λ
ω
−

+  

λ  being root of the equation 
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2th = ,
1

n nh λλ β
λ−

 (25)

which we can solve graphically, using the curves = thy n nhλ  and 2=
1

y
−
λβ
λ

. 

The roots of (25) form a sequence { }nλ , which is increasing and tends to 1. 
Therefore, the corresponding eigenvalues of the problem are 

2
2=

1n
n

g
−
βω
λ

 

and form a sequence which is increasing and tends to infinity. Writing (25) in the 
form 

2
22 e =

1
nhn n λ λβ

λ
−− +

−
…  

and seeking nλ  in the form = 1n n−λ α , 0n →α  as n →∞ , we find easily the 
asymptotic formulae: 

2; 1 , .
2 2n n n gn

n n
−

β βα λ ω∼ ∼ ∼  

2) 2 < gω β . We have 

2

2 2 2 2( ) = sin ( ) , = ,gX x n x h β ωλ λ
ω
−

+  

λ  being root of the equation 

2th = ,
1

n nh λλ β
λ+

 (26)

which we can again solve graphically. 
For every = 1,2,3,n …  we have roots ( = 1,2, )nm m …λ  which verify the 

inequalities 

(2 1)< < .nm
m m
nh nh

+π πλ  

So, we obtain a countable infinity of eigenvalues 
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2
2= ,

1nm
nm

g
+
βω
λ

 

which lies in the interval[0, ]gβ . 
From the inequalities, we deduce: if n  is fixed, 2lim = 0m nm→∞ω  ; if m  is 

fixed, 2lim =n nm g→∞ω β . 

We are going to prove that every point of [ ]0, gβ  is a limit-point of 
eigenvalues. 

Denoting such point by gαβ , 0 < < 1α  and setting 2

1=
1+

α
µ

, > 0µ , 

we prove that there is a sequence of nmλ  which tends to µ . 

For every integer N , no matter how great, there is a rational number N

N

p
q

 

such that 
10 < < .N

N

p
q h N

−
πµ  

Let Nk  be the smallest integer number such that >
2N

N

Nk
q h
π

; we set 

= N Nn k q , = N Nm k p . 
It is easy to see graphically that 

1< ,,
N N

kN N N N N N

k p
q k p k q N

−
πλ
π

 

so that 
2| |< .,kN N N Nq k p N

−λ µ  

The sequence { },kN N N Nq k pλ  tends to µ  as .N →∞  

Finally, every point of [0, ]gβ  is a limit-point of eigenvalues and another 
part of the spectrum is the closed interval [0, ]gβ . 

9. CONCLUSION 

We have proved that the spectrum of the small oscillations of an almost 
homogeneous heavy liquid in an open container is formed by an essential 
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spectrum, which fills a closed interval of the real axis and by a point spectrum, 
which lies outside this interval. 

We have explicited the spectrum in the case of a rectangular container: the point 
spectrum is formed by a countably infinity of eigenvalues 2

nω , strictly greater than 
gβ , which tend to infinity and an essential spectrum, which fills the closed interval 

[0, ],gβ  formed by a countable infinity of eigenvalues 2
nmω  and by their limit-points. 

Finally, let us make an interesting remark from the mechanical viewpoint. 
For the rectangular container, in a neighbrhood, no matter how small, of 

every point [0, ],g∈λ β  there are eigenvalues. Therefore, if the liquid is 

submitted to a sinusoidal perturbation with frequence λ , there is some kind of 
resonance. 

This remark is valid in the general case. 
Let us the equation 

2

2

d = e ,
d

i ty y f
t

ω+  

where ie tf ω  is a sinusoidale perturbation with frequence ω . Looking for solutions 
in the form i= e ty w ω , we obtain 

2( ) = .I w f−ω  

If A  is a self-adjoint, positive definite, compact operator, it has a discrete 
spectrum 1 2 , 0n n≥ ≥ ≥ ≥ →… …λ λ λ λ  as .n →∞  Let ( = 1,2, )ie i …  the 

corresponding orthonormal eigenfunctions. Putting = i ii
f f e∑  and seeking w  in 

the form = i ii
w w e∑  we obtain the classical equation 

2( ) = ( = 1,2, ).i i iw f i− …λ ω  

If 2ω  is equal to one iλ , we have the classical resonance phenomenon. 
The corresponding equation is verifies only if = 0if  and, iw  is arbitrary, 

different from zero. 
In our problem, if 2 () = [0, ],ess g∈ω σ β  there exists, by virtue of the Weyl 

criterion, a sequence { }iy ∈  such that 

2inf || || > 0 , ( ) = 0 in .i iy I y−ω  

We can say again that there is some kind of resonance. 

Received 27 January  2003 



31 Planar oscillations of a heavy, incompressible, inviscid liquid 103 

REFERENCES 

  1. CAPODANNO P., Un exemple simple de problème non standard de vibration: oscillations d'un 
liquide hétérogène pesant dans un container, Mechanics Research Communications, 20, 3, 
pp. 257–262, 1993. 

  2. CAPODANNO P., Étude mathématique des petites oscillations de deux liquides pesants non 
miscibles dans un container, Mechanics Research Communications, 23, 1, pp. 75–80, 1996. 

  3. CAPODANNO P., Petites oscillations d'une liquide hétérogène dans un container fermé par un 
convercle élastique. Bullettin de L'Académie Polonaise des Sciences Techniques, 
44, 4, pp. 374–356, 357–366, 1996. 

  4. DAUTRAY R., LIONS J.L., Analyse mathématique et calcul numérique, Vol.4, Paris, Masson, 
1988. 

  5. KOPACHEVSKII N.D., KREIN S.G., NGO ZUY CAN, Operator approach in linear problems 
of hydrodynamics. self-adjoint problem, Vol. I, Berlin, Springer-Verlag, 2001. 

  6. LAMB H., Hydrodynamics, Cambridge, University Press, 1932. 
  7. LOVE A.E.H., Wave-motion in an heterogeneous heavy liquid, Proceedings of London 

Mathematical Society, 22, pp. 307–316, 1891. 
  8. MIKHLIN S.G., Mathematical physics: an advanced course, Amsterdam, North Holland 

Publishing Company, 1970. 
  9. MOISEYEV N.N., RUMIANTSEV V.V., Dynamic stability of bodies containing fluid, Berlin, 

Springer-Verlag, 1968. 
10. MYSKHIS A.D., BABSKII V.G., KOPACHEVSKII N.D., SLOBOZHANIN L.A., TYUPTSOV 

A.D., Low gravity fluid mechanics, Berlin, Springer-Verlag, 1987. 
11. RAYLEIGH L., Investigation of the character of the equilibrium of an incompressible heavy 

liquid of variable density, Proceedings of London Mathematical Society, 14, pp.170–180, 
1883. 

12. REED M, SIMON B., Functional Analysis, New York, Academic Press, 1980. 
13. SANCHEZ HEBERT J., SANCHEZ PALENCIA E, Vibration and coupling of continuous 

system, Asymptotic methods, Berlin, Springer-Verlag, 1989. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


