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DYNAMICS OF A THREE-DEGREES-OF-FREEDOM SPATIAL 
PARALLEL MANIPULATOR 

ŞTEFAN STAICU*, YU-WEN LI, XIN-JUN LIU, JINSONG WANG, LI-PING WANG** 

Recursive matrix relations for the kinematics and dynamics of a spatial parallel 
manipulator, which has two translation degrees of freedom and one rotational degree 
of freedom, are established in this paper. Supposing that the position and the motion 
of the mobile platform are known, an inverse dynamic formulation is presented. 
Finally, some matrix relations and graphs for the forces of the three actuators are 
determined. Comparison of simulation results in ADAMS with the formulation by 
MATLAB program shows the validity of the new matrix approach. 

LIST OF SYMBOLS 

1, −kka  – orthogonal relative transformation matrix 

1, −kkϕ  – relative rotation angle of kT rigid body 

1, −kkω  – relative angular velocity of kT  

0kω  – absolute angular velocity of kT  

1,
~

−kkω  – skew symmetric matrix associated to the angular velocity 1, −kkω  

1, −kkε  – relative angular acceleration of kT  

0
~

kε  – absolute angular acceleration of kT  
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~

−kkε  – skew symmetric matrix associated to the angular acceleration 1, −kkε  
A
kkr 1, −  – relative position vector of the centre kA of joint  

A
kkv 1, −  – relative velocity of the centre kA   

, 1
A

k kγ − −    relative acceleration of the centre kA  

 km −      mass of kT rigid body 

ˆ
kJ −        symmetric matrix of tensor of inertia of kT about the link-frame k k k kA x y z  

1, −qqm  – torque of the actuator 1qT −  
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1. INTRODUCTION 

Parallel manipulators are closed-loop mechanisms presenting very good 
performances in terms of accuracy, rigidity and stability to manipulate large loads. 
These mechanisms generally compose two platforms, which are connected by joints 
and legs acting in parallel. One of them is attached to the fixed reference base. The 
other one can have arbitrary motion in its workspace. Several mobile legs or limbs, 
made up as serial robots, connect a movable platform to the fixed frame. Typically, 
the number of actuators is equal to the number of degrees of freedom. 

Compared with commonly known serial robots, parallel manipulators have 
some special characteristics: greater structural rigidity, potentially higher precision, 
stabile functioning, larger capacity and suitable position of the actuating systems. 
There has been great amount of research on the application of parallel 
manipulators, such as machine tools [23] and industrial robots [2]. 

In the last few years the parallel manipulators with less DOF have attracted 
the researchers and some of them have been used in the structure design of robotic 
manipulators. Parallel mechanisms can be found in many technical applications in 
which it is desired to orient a rigid body in space of high speed. Accuracy and 
precision in the execution of the task are essential since the robot is intended to 
operate on fragile objects; any errors in the positioning of the tool could lead to 
expensive damage. Recently, many efforts have been devoted to the kinematics and 
dynamic analysis of fully parallel manipulators.  

Many companies have developed them as high precision machine tools. The 
most known application is the aircraft simulator with six degrees of freedom, 
which is in fact the Stewart-Gough platform. A lot of works have focused on the 
dynamics of this parallel manipulator ([4, 8, 14, 22, 26, 27]). Geng [6] developed 
Lagrange’s equations of motion under some simplifying assumptions regarding the 
geometry and inertia distribution of the manipulator. Dasgupta and Mruthyunjaya 
[4] used the Newton-Euler approach to develop closed-form dynamic equations of 
Stewart platform, considering all dynamic and gravity effects as well as viscous 
friction at joints. They observed that the application of the Newton-Euler method is 
more economical in the case of parallel or hybrid manipulators than in serial robots. 
Pierrot and Company [15] presented a new family of parallel robots with 4–DOF. 
The parallel manipulator Star [7] and the parallel Delta robot ([1, 21, 24, 25, 30]) 
equipped with three engines, which have a parallel setting, train on the end-effector 
in a three degrees of freedom general translation motion. 

In the present paper, a new matrix approach is adopted to derive the inverse 
dynamic equations of a spatial parallel manipulator [10], which has two translation 
degrees of freedom and one rotational degree of freedom (Fig. 1). 
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2. GEOMETRIC MODEL OF THE MANIPULATOR 

The spatial mechanism consists of three kinematical closed chains, including 
three variable length limbs (Fig. 1). The motion of the platform is accomplished by 
the slide of three sliders of mass 1m on the guide-ways. 

 
Fig. 1– Spatial parallel manipulator. 

The movable platform is an isosceles triangle 533 CBA , which is described by 

the sizes ,233 rBA =  25353 rCBCA == . It has the mass 3m  and the tensor of 

inertia 3Ĵ  (Fig. 2). This platform is connected to a fixed platform, which consists of 
a three guide-ways (2), (7) and (9), through the legs (1), (8) and (12). Parameter 
R denotes the size of the base platform, where RCBCARBA === 222222 ,2 . 
The legs (1) and (12), have identical chains, consisting of a constant link which is 
connected to a universal joint at the bottom end and a passive revolute joint at the 
other. These legs have also the length L , same mass 2m  and same tensor of 

inertia 2Ĵ . The revolute joint is then attached to an active slider, which is mounted on 
the guide-way (2) or (9). The third leg (8) consists of an active prismatic system, a 
revolute joint that is attached to a third slider, an intermediary mechanism with four 
revolute joints that connect a planar four-bar parallelogram. This classical 
mechanism is finally connected to the moving platform.  

Let )( 0000 TzyOx be a global frame, located at the centre of the side 22 BA with 
the 0Oz axis normal to the base platform and the 0Oy axis along 22 BA . The three-
degrees-of-freedom manipulator is moving with respect to this Cartesian referential. 



 Ştefan Staicu, Yu-Wen Li, Xin-Jun Liu, Jinsong Wang, Li-Ping Wang 4 114 

One of three active elements of the robot is the first body 1C  of the limb C , for 
example. This slider is mounted on the guide way (7) and effect a vertical translation 
with the displacement C

10λ . A local leg frame CCC zyxC 2222 is attached to a horizontal 

transmission bar with its origin at point 2C , the CzC 22  direction along the horizontal 
rotating axis of the revolute joint. This bar has a relative rotation with the angle C

21ϕ . 
Further on, two identical bars with length L , same mass 2m  and same tensor of 

inertia 2Ĵ , rotates about the CT2  frame with the angle CC
6232 ϕϕ = . The parallelogram 

of the leg C is closed by an element CT4 , which has the same dimensions with CT2 . 
The displacements CBA

101010 ,, λλλ  of the three actuators 111 ,, CBA  are 
considered as parameters, which give the position of the mechanism. But, in the 
inverse geometric problem, one can suppose that the coordinates PP zy 00 , of the 
point P and the rotational angleθ  of the platform, give the position of the mechanism. 

Pursuing the legs CBA ,, , one obtains the following passing matrices  
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Rotation condition of the platform is given by following identity  

 T
50 50cc a=  (3) 

and by the matrices 
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50

1 0 0 cos 0 sin
0 0 1 , 0 1 0
0 1 0 sin 0 cos

c a R
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where a is the rotation matrix around APy axis. From this relation, one obtains 
CC
2154 ϕϕθ −= . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 – Kinematical scheme of the upside-down mechanism. 

Considering that the platform moves for one second and the motion’s 
trajectory of the movable platform is given as  
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the displacements CBA
101010 ,, λλλ and the angles BA

2121 ,ϕϕ , CC
3221,ϕϕ are given by the 

following geometric constraint conditions 
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3. INVERSE KINEMATICAL ANALYSIS 

The geometry and the motion capability of spatial manipulator has been 
analysed by Liu [11]. For inverse kinematics, the velocities and accelerations 
formulae are derived now in matrix closed form. Because the leg (1) and (2) have 
one rotational degree of freedom about the AzA 22 and BzB 22 axis, the angular 
velocities and angular accelerations can be written 

 3212032120 , uu BBAA ϕωϕω == , 3212032120 , uu BBAA ϕεϕε == . (8) 

Velocities and accelerations of sliders 11, BA and joints 22 , BA can be 
obtained as 
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3101031010 , uvuv BBAA λλ == , BBAA vbvvav 102120102120 , ==  

 3101031010 , uu BBAA λγλγ == , BBAA ba 102120102120 , γγγγ == . (9) 

On the other hand, leg (8) has two rotational degrees of freedom. The kinematics 
of components of chain 5432 CCCC are characterised by the matrices ([18]): 
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which are associated to absolute angular velocities given by recurrence relations 
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Absolute angular accelerations C
k 0ε and accelerations C

k 0γ of joint kC can be 
deduced from the time derivative of equations (10), (11), (12):  
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Following matrix relations give the kinematical conditions of connectivity for the 
relative velocities: 
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The relations (14) give the Jacobian of the mechanism. This matrix is an 
essential element for the analysis of the robot workspace. Also, these relations offer 
a matrix closed-form for the velocities ,,,,, 2121101010

BACBA vvv ωω CCC
543221 ,, ωωω  of the 

parallel manipulator. 
Let us assume that the manipulator has a virtual motion determined by the 

velocities ,0,1 1010 == Av
c

Cv
c vv .010 =Bv

cv  Characteristic virtual velocities, expressed 
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as function of robot’s position are given by the connectivity conditions (14). Some 
other compatibility relations can be obtained if other two virtual movements are 
considered: ,110 =Av

av 0,0 1010 == Cv
a

Bv
a vv and ,110 =Bv

bv ,010 =Cv
bv .010 =Av

bv  

Again, the relative accelerations ,,,, 21101010
ACBA εγγγ CCCB

54322121 ,,, εεεε of the 
components of this robot are given by some new conditions of connectivity, which are 
obtained from the time derivative of (14) relations. The following relations results:  
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The relations (14) and (15) represent the inverse kinematical model of parallel 
manipulator. 
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Fig. 3 – Force 10
Af  of first actuator. 

4. INVERSE DYNAMIC MODEL 

Although the parallel manipulators with less DOF have been investigated to 
some extent, works on their dynamics are relatively few. Because of existence of 
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multiple closed-loop chains, dynamic analysis of a parallel manipulator is quite 
complicated. 

The motion of the movable platform is controlled by three independent 
pneumatic systems that generate three forces 

 ,31010 uff AA = ,31010 uff BB = ,31010 uff CC =  (16) 

which train the sliders on the guide ways BA zBzA 1111 , , CCz1 . 
Let us consider that the motion of the platform is known. In these conditions, 

position, velocity and acceleration of each link and joint are fist determined. The 
force of inertia and the resultant moment of the forces of inertia of the kT body are 
determined with respect to kA joint’s centre. On the other hand, the characteristic 

vectors ** , kk mf evaluate the influence of the action of the weight gmk  and of other 
external and internal forces applied to the same element kT . Then the forces and the 
moments that are acting each rigid body are definitively determined. 
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Fig. 4 – Force 10
Bf  of second actuator. 

In the inverse dynamic problem, in the present paper, one applies the virtual 
powers method in order to establish some recursive matrix relations for the forces 
of the three actuators. 

As the virtual velocities method shows, the dynamic equilibrium condition of 
the mechanism is that the virtual power of the external, internal and inertia forces, 
which is developed during a general virtual displacement, must be null. Applying 
the fundamental equations of the parallel robots dynamics established in compact 
form by Stefan Staicu [16, 19], the following matrix relations give the forces 
exerted on the legs by the sliders along their directions: 
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The relations (17) and (18) represent the inverse dynamic model of the 3-DOF 
spatial parallel manipulator. 
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Fig. 5 – Force 10

Cf  of third actuator. 

As applications let us consider a manipulator which has the following 
characteristics: 
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1.0=r m, 25.0=R m,  4.0=L m, 
9751.01 =m kg, 9803.02 =m kg, =3m 1573.8  kg, 
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Assuming that there is not external force and moment acting on the movable 
platform, the actuator forces Af10 (Fig. 3), Bf10 (Fig. 4), Cf10 (Fig. 5) are shown by 
MATLAB code for one second of platform’s evolution. 

ADAMS is used to perform the kinematic and dynamic simulation for this 
manipulator. The kinematic and dynamic parameters of the legs, platform and sliders 
are the same as the numerical example. The revolute, universal and prismatic joints are 
defined to connect the rigid bodies according to geometric model. In ADAMS, the 
motion of a rigid body is driven by motion at a joint. Because the inverse kinematics 
can be presented in closed form, the motions at three prismatic joints between the 
sliders and the ground are defined and input according to relations (7), (8), (9). So the 
platform can move along the trajectory described as equations (5), (6). The simulation 
model in ADAMS is shown in Fig.6. 

 

Fig. 6 – Simulation model in ADAMS. 
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The simulation results of the actuator forces are also shown in Figs.3, 4, 5. It 
can be shown that the simulation results are very close to the mathematical results. 
Moreover, other kinematic and dynamic analysis, such as velocity, acceleration and 
kinetic energy, can also be output by ADAMS. However, it is difficult for ADAMS 
to give the inherent dynamic performance of the mechanism and to optimise the 
structure of the robot. The simulation results can also hardly be used in the real-
time control model. 

5. CONCLUSIONS 

Using the Newton-Euler classic method, which takes into account each of rigid 
bodies separate of the kinematical chains, a system of numerous equations of dynamic 
equilibrium for all moving body are written and must be solved. The solution of this 
system leads to all the forces and moments at the joints, including the actuator forces. 

Analytical calculi involved in the Lagrange formalism are too long and they 
have risk of making errors. Also, the time for numerical calculus grows with the 
number of bodies of the device.  

Within the inverse positional analysis some exact relations giving in real-time 
the position, velocity and acceleration of each element of a 3-DOF spatial parallel 
manipulator have been established in closed form in the present study.  

Based on virtual work principle, the new approach described above is far 
more efficient and establishes a direct recursive determination of the variation in 
real-time of the forces of the three actuators. In a context of control, the iterative 
matrix relations (17) and (18), given by this simulation dynamic model, can be 
transformed in a model for automatic command of the spatial manipulator. 

Comparison of simulation results by MATLAB program with the formulation 
in ADAMS procedure shows the validity of this new matrix model. 

Received 25 February 2007 
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