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STABILITY OF PERIODIC SOLUTION  
FOR QUASI-LINEAR CONTROLLED SYSTEMS 

MIHAI  POPESCU, ALEXANDRU DUMITRACHE* 

The present study regards the class of controlled quasi-linear systems. It is presumed 
that the use of controls as linear combination of state variables will determine zero 
eigenvalues for the characteristic equation of the linearized system. An analysis 
method for the periodica solution stability valid for the autonomous system obtained 
by control substitution. 

1. INTRODUCTION 

The analysis of a class of dynamic phenomena leads to mathematical models 
represented by controlled differential systems. The major interest in the command 
systems is for the controllable ones. The construction of a control, given by a linear 
from of state variables, might modify the eigenvalues of the linearized system [2]. 
When all the eingenvalues have negative real part, the controlled system has an 
asymptotic stable trivial solution. A critical stability case occurs when some of the 
eigenvalues are zero and the other have the negative real part. An equivalent 
system, for which we have to determine the stability solution is obtained by a series 
of succesive transformations. The transformed system is a quasi-linear system with 
non-homogeneous state variables. Its stability conditions of the periodical 
solutions, or the orbital stability, will be analized. 

2. QUASI-LINEAR CONTROLLED SYSTEM 

We will consider the controlled quasi-linear system: 

 ( )
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d
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m

m

z Az bu z
t =

= + +∑ , (1) 

where A, b are constant matrices, z is the state n-dimension vector, ( )mz  are 
homogenous froms of variable u is command r-dimension vector. The coefficient 

( )mz  of are time-independent. 
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Under the assumption that the linearized sistem (1) can be controlled, a 
control with the from: 

 zcu *=  (2) 

is constructed so that the matrix ( )*bca +  has not eigenvalues with positive real part. 
This means that the instability occurs for the trivial solution 0=z  system (1). 

Presuming that for a certain vector c the k eigenvalues are zero while the 
other n-k eigenvalues have negative real part. This represents one of the critical 
stability cases. 

An answer regarding the trivial solution stability for such a system might be 
provided by the transformation of the non-linear system (1) for the control (2) in an 
autonomous system related to state variables. 

The study of periodical stability of such a system requires the development of 
a mathematical model regarding the existence conditions of the orbital stability. 

Employing a control with the from, system (1) becomes  
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where ( )m
sX  are homogeneous m-rank forms with the variables Nk zzxx ,...,,,..., 11  

and coefficients time-independent. These series (4) converge for ksxs ,...,1, =  

and Niyi ,...,1, =  sufficient small. The eigenvalues of the matrix { }ijpP =  have 
negative real part. 

We consider the second group of equations of the systems (3) written as: 

 ( ) 0, =+ zxZPz  (5) 

for: 

 0...,0... 2121 ======== Nk zzzxxx  (6) 

so that the functional determinant related to Nzz ,....,1  does not vanish for sx and 
0=iy . 
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Using the implicit functions theorem, it follows that the equations (5) can be 
solved with respect to Nzz ,...,1  and will admit a solution of the from: 

 ( )1,..., , 1,...., ,i i kz u x x i N= =  (7) 

with ( )ki xxu ,...,1  holomorphic functions of variables kxx ,...,1 , vanishing for 
0=sx . 
Taking into account (7), the functions ( )( )xuxX s ,  are holomorphic 

functions of the variables kxx ,...,1 . 
We will assume in the sX  non-singular case defined for certain 0s . 
Performing the exchange of function:  
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and replacing into (3), yields 

 
( ) ( ) ( )( )( )

1 1
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d d
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t x t= =

∂
+ = + + +

∂∑ ∑  (9) 

taking into account that ( ) ( )Njxu j ,...,1=  are roots of the equation (5), we have: 
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1
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j

p u x Z x u x
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so that the system (9) becomes 

 
( )

( )
1

d , ,
dt
d , ,
d

s
s

N
i

iij j
j

x X x z

z p z Z x z
t =

=

= +∑
 (11) 

where: 
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Putting 0=z  in ( )zxX s ,  and ( )zxZ i ,  we get: 
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It will noticed the condition 1+≥ αβ  must be satisfied. The solution 
stability study for the system (11) is equivalent with the solution stability analysis 
for the system: 

 ( )d 1,...,
d

s
s

x X x s k
t
= = , (14) 

where ( )xX s  is a homogeneous form. 

3. ORBITAL STABILITY 

We are considering the autonoumous system (14) written in vector from: 

 ( )d
d
x X x
t
= . (15) 

We presume that this system admits the periodical solution ( )tux =  with the 
periodω . Based on the unicity theorem we have ( )( ) 0≠tuX  for all t. 

Denoting 

 ( ) ( )( )
( )( )

,
X u t

X t
X u t

=  (16) 

if X is verifying the local Lipschitz condition, the curve ( )tXx =  does not cover 

the entire unit sphere, thus there exists a unit vector le  so that ( ) 0≠+ letX  for 
each t. 

An orthogonal and normalized system of vectors neee ,...,, 21  will be 

constructed starting from the constant vector le .  
Because: 
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it follows that 1cos ≤iθ  using the equality of Cauchy-Buniakowschi and also 
that: 

 ( ) 1cos , cos cos 1.iX e = θ ≠ + π ≠ −  (18) 

Under there the vectors 

 ( )Xee v
vv +

+
−= 1

1cos1
cos

θ
θ

ξ  (19) 

can be constructed. 
The vectors vξ  are periodical functions with the period ω  and have the same 

regularity property as ( )tX . 

It is to easy demonstrat that the vectors ( )( )ntX ξξξ ,...,,, 32  represents an 
orthogonal normalizes system, thus:  

 
( )
( )

v

v

, 0 2,..., ,

, , 2,..., .

X v n

v v nµ

ξ

ξ ξ δ µ µ

= =

= =
 (20) 

It follows that an orthogonal and normalizes vectors system on (the unitary 
vector of the tangent to the curve) consisting from period ω  periodical vectors 
with the same regularity property as was attached to the periodical solution. 

With this orthogonal and normalized system we perform the variable change 
given by the relation: 

 ( ) ( ) ,x u S yθ θ= +  (21) 

where: 

 

( ) ( ) ( ) ( )( ) ( )( )
( )

( ) ( ) ( ) ( )( )

2 3

T1 2 1

T1 2

, ,..., 1,.., ; 1,..., 1,
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n
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−

= = = = −
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 (22) 

Developing the transformation (21), it follows that: 
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thus: 
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Taking into account (24) follows: 
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But we have: 

 ( ) ( )[ ]( ) ( )[ ] ( ) ( )[ ]( ) ( )[ ] 0,det,det ≠== θθθθθθ uXuXSuXuXS . (26) 

In order to obtain the relation (26) we used ( ) ( )[ ]( ) 1, =θθ uXS  because 

system Xn ,,...,1 ξξ  is orthogonal and normalized. 
Thus 0≠∆  requires that the transformation (21) unvariable. 
By this change of variables the curve ( )tux =  becames ty == θ,0 . With 

the new variables, system (15) will be written as: 

 
( ) ( ) ( ) ( ) ( )d dd d d d

d d d d d d
u θ S θx θ θ yy S θ X u θ S θ y

t θ t θ t t
 = + + = +   (27) 

or 

 ( ) ( ) ( ) ( ) ( )dd d d .
d d d d

S θθ θ yX u θ y S θ X u θ S θ y
t t θ t

   + + = +     (28) 

Multiplying (28) with ( )[ ]θuX *  and taking into account the othogonality of 
the columns of ( )θS  and *X  it follows that: 
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( ) ( ) ( )
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d .
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d
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θ
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 (29) 

Taking into account: 
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by multiplying of relation (28) with *
µξ  we get 

 ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )
*

* *

2 *

d d
dd d

d

X u X u S yy SX u S y y
St

X u X u y

µ

µ µ

θ θ θ
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θ θ
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θ

   +    = + − 
   +   

.(31) 

Thus, with the transformation (21), system (15) becames 
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( )

d , ,
d
d , ,
d

y Y θ y
t
θ θ y
t

=

= Θ
 (32) 

where the expressions of ( )y,θΘ  and ( )yY ,θ  are given by (29) and, respectively, 
(31) with the property that: 

 

( ) ( ) ( )

( )
( ) ( )

( )

*

*

2

, 0,

, 1.

Y θ y ξ θ X u θ

X u θ X u θ
θ y

X u θ

µ  = ≡ 
      Θ = ≡
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The system  

 
( ) ( )d 1 ,

d ,
y Y θ y
t θ y
=
Θ

 (34) 

is formed next. 

The function 
( )
( )y

yY
,
,

θ
θ

Θ
 is periodical in θ  with the period ω  and, for a 

sufficient low y, has the same regularity properties as X because ( ) 0, ≠Θ yθ . 

By Taylor – expanding ( ) ( )X u θ S θ y +   around 0=y  we get 

 ( ) ( ) ( )
( )

( ) ( )2d
.

d
X u θ

X u θ S θ y X u θ S θ y O y
x

     + = + +     (35) 

The variation of the matrix system is given by: 

 ( ) ( )[ ]
x

uXA
∂

∂
=

θθ . (36) 

By multiplying the expression (35) with ( )*X u θ   , it results 
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( ) ( ) ( ) ( ) ( ) ( ) ( )
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1
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where ( )yO  represents the terms converging to zero with y. 
 Similarly with (21), by Taylor expression will get: 
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thus 

 ( ) ( )yO
y

+=
Θ

1
,

1
θ

 (39) 

taking into account (30), (35), (36) and (39) the system (34) becomes 

 ( ) ( ) ( ) ( ) ( )* dd O
d d

S θy ξ θ A θ S θ y y
θ θ

µ

µ

 
= − + 

 
 (40) 

or 

 ( ) ( )d ,
d

y B θ y O y
θ
= +  (41) 

where the elements vbµ of the matrix B are given by: 

 ( ) ( ) ( )* d .
d

v
µv µ v

ξb θ ξ θ A θ ξ
θ

 = −  
 (42) 

The elements ( )θµvb  are periodical functions of period ω . 

Neglecting the term ( )yO , which is approaching zero with y, the normal 
variations system can be written: 

 ( )d .
d

y B θ y
θ
=  (43) 

The variations system corresponding to the periodical solution ( )θu  is: 
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 ( )d
d

v A v.θ
θ
=  (44) 

Taking into account the vector space of the variation system (44), there exists 
a base in the orthogonal normalized system, so that each element of the solution 
space can be written as linear combination of the basis vectors. 

Hence, it follows: 

 ( ) ( ) ( )[ ] ( ) ( )∑
=

+=
n

v
vpuXpv

2γ

θξθθθθ  (45) 

or 

 ( ) ( ) ( ) ( ) ( )
2

,
n

v
v

γ

v θ p θ X u θ p θ ξ θ
=

 = +  ∑  (46) 

where 

 ( ) ( )
( )

.
p θ

p θ
X u θ

=
  

 (47) 

By derivation of the expression (46) and taking into account: 
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( ) ( )

( )

( ) ( ) ( )

d
d

d u
,

d
x u θ

u θ
X u θ

θ
X θ X u θ

X u θ A θ X u θ
θ x

=

 =  

   ∂       = =   ∂

 (48) 

we finally obtain: 

 ( ) ( )
2 2

dd d .
d d d

n nv
v vv

v v
v v

ξp pX u θ ξ p p A θ ξ
θ θ θ= =

  + + =  ∑ ∑  (49) 

Multiplying the equation (49) with *ξ  we have: 

 ( ) ( ) ( ) ( )*

2 2

dd .
d d

n nµ
v v v

µ v µv
v v

ξ θp ξ A θ ξ θ p b θ p
θ θ= =

 
= − = 

 
∑ ∑  (50) 

Proposition 1. The normal components of the variations v, are verifying the 
normal variations system. 
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Proposition 2. ( )d
d

u X u θ
θ

 =    is a solution of the variation system (44). 

Proposition 3. The matrix K has also the monodromy matrix U and, thus, its 
eigenvalues are multipliers of the variations system. 

Proposition 4. The functions ( ) nvpv ,...,2=θµ  represents the terms of the 
fundamentals matrix for the normal variations system (43). 

Proposition 5. The normal variations system has the eigenvakues of 2K  as 
multipliers. There values are the eigenvalues of K without the multiplier l 
corresponding to the periodical solution ( )[ ]θuX . 

From the Proposition 3 and Proposition 5 it might be concluded: 
Proposition 6. The normal variation system multipliers are obtained from 

the system multipliers eli8minating the multiplier l. 
The notion of orbital stability is connected with the periodic stability. 
Let Γ  be the integral curve corresponding to system (1) in the phase space. 

The distance between the point x and Γ  is given by: 

( ), inf .
x

p x x z
∈Γ

Γ = −  

Definition 1. We shall state the periodical solution ( )tux = of the system 
(15) has the orbital stability if for each 0>ε there exists 0>δ  that if 
( ) δ<Γ,0xp then ( )( ) ε<Γ,, 0ttxp for each t, the results obtained in the previous 

developments are concluded by the following: 
Theorem. If ( )1−n  multipliers of the variation system, corresponding to the 

periodical solution ( )tux = , are inside the unit circle it follows that the periodical 
solution ( )tux =  is orbitaly stable. 

In the sense of the orbital stability, the statement of theorem is equivalent 
with: 

Admitting that ( )tx1  is an other solution of system (1) for which ( )01 tx  is 
sufficient close to curve ( )tux =  then, there exists c so that: 

 ( ) ( )1lim 0.
t

x t u t c
→∞

 + + =   (52) 

The demonstration of this theorem is not the subject of this study. 

5. CONCLUSIONS 

The research performed so far [1], has approached the critical cases problem 
using the Liapunov theory. Thus the construction of a Liapunov function is 
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providing an answer regarding the asymptotic stability or the instability of the 
trivial solution of the considered case, but it can not be stated whether the system is 
stable if asymptotic stability does not exist. 

In [4] the stability of the three dimensional halo periodic orbits is analysed. 
A group of theorems regarding differential equations with periodic coefficients is 
used to determine the stability motion for the motion. 

In this way we are leaded to the stability analysis of the periodical solution 
of the transformed system, which means the periodic solutions stability and, thus, 
the stability of the quasi-linear system trivial solution.  

Acknowledgements. This research is partially supported by the research grant CNCSIS 
80GR/2006. 

Received  2  May  2007 

REFERENCES 

1. I. MALKIN, Teoria ustoicivosti dvijenia, Moskova, 1952. 
2. V. ZOUBOV, Théorie de la commande, Edition Mir, Moscou, 1978. 
3. L. BERKOVITZ, Optimal Control Theory, Springer Verlag, New York, 1974. 
4. M. POPESCU, Stability of Motion on Three-dimensional Halo Orbits, Journal of Guidance, 

Control and Dinamics, 18, pp. 119–1126 (1995). 
5. M. POPESCU, Existence an orbital stability of periodic solutions for small parameters, Nonlinear 

Analysis, 33, pp. 773–784 (1998). 
6. M. POPESCU, Periodic solutions for nonlinear differential system of equations with small 

parameter, Nonlinear Analysis, 36, pp. 535–544 (2003). 
7. E. REITHMEIER, Periodic Solutions of Nonlinear Dynamical Solutions, Lecture Notes in 

Mathematics, 1483, Springer Verlag, New York, 1991. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


