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OPTIMISATION PROCEDURE FOR PARAMETER 
IDENTIFICATION 

IN INELASTIC MATERIAL INDENTATION TESTING* 

DAN DUMITRIU1, GASTON RAUCHS2, VETURIA CHIROIU1 

The indentation of an inelastic material isotropic half-space with a spherical tip 
indenter is simulated using an in-house finite element code written in Fortran. In order 
to identify seven unknown material parameters (E and ν for elasticity; σy,0, R, β, Hkin 
and Hnl for plasticity), the simulation results must match as good as possible the 
experimental load-penetration curve obtained when indenting the inelastic material. 
This material parameter identification is performed using an optimisation procedure, 
i.e., one has to minimize the difference between the experimental curve and the 
simulated one. The optimisation procedure used here starts by applying a Gauss-
Newton method, then continues using a Levenberg-Marquardt method. Using this 
optimisation procedure, the material parameter identification was successfully 
achieved for the considered indentation case study. 

1. INTRODUCTION 

This paper deals with the parameter identification in indentation testing of 
inelastic materials. It is an inverse engineering problem very relevant to industry, 
the purpose being to determine one or more inelastic material parameters that 
would lead to the most accurate agreement between experimental data and 
indentation simulation results. Since indentation modelling involves non-uniform 
stress fields to be analysed and non-linear material behaviour, there is no straight-
forward analytical solution for material parameter identification associated to 
indentation testing. So, numerical approaches – finite element modelling in this 
case – must be used for obtaining the fields of the state variables corresponding to 
the indentation test. 

Suppose one has to determine the unknown parameters of a new inelastic 
material. Using a nanoindenter, experimental load-penetration curves are available 
for the new, unknown material. Based on this experimental data, the purpose is to 
identify the unknown material parameters: Young’s modulus E and Poisson’s ratio 
ν (elasticity parameters), respectively the initial uniaxial yield stress σ y,0, the non-
linear isotropic hardening parameters R and β and the non-linear kinematic 
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hardening parameters Hkin si Hnl (plasticity parameters). In what concerns the 
simulation of the indentation, an in-house FEM code for finite elasto-plastic strains 
called SPPRc is used. This software implements the stress update equations and 
models the contact between the spherical tip indenter and the unknown inelastic 
material [1]. The stress update equations are formulated based on the constitutive 
equations for hypo-elastic material behaviour and considering associative plasticity 
with isotropic J2-flow theory. Using SPPRc software and initializing the seven 
unknown parameters with initial guesses in the range between some lower and 
upper bounds, an optimisation procedure is launched in order to minimize the 
objective function, i.e., the difference or gap between the experimental load-
penetration curve and the simulated one. 

So, by means of the optimization procedure, the material parameters are 
updated until the minimization of the objective function is achieved. Several 
approaches are available for this optimization procedure, from classical gradient-
based numerical optimization to modern neural networks approach. Gradient-based 
numerical optimization methods [5] were preferred here, knowing that neural 
networks need a big amount of objective function evaluations and here the 
computational time for one evaluation is not negligible. Ponthot and Kleinermann 
[2] proposed to solve parameter identification inverse problems using a cascade 
optimization methodology, i.e., a robust and efficient sequence of gradient-based 
optimization methods. The optimization procedure proposed here is a sequence of 
two gradient-based optimization methods, i.e., the Gauss-Newton method and the 
Levenberg-Marquardt method. The gradient of the objective function, i.e., the 
vector of the objective function derivatives with respect to the unknown 
parameters, is computed in a sensitivity analysis, using the direct differentiation 
method to calculate the derivatives of the state variables with respect to the 
material parameters. This direct differentiation method calculates directly the 
derivatives, through an incremental linear update scheme during the incremental 
solution of the direct deformation problem [1]. The computational effort is thus 
considerably reduced, compared with the numerical calculation of the derivatives 
by finite differences. 

2. THE MATERIAL BEHAVIOUR: CONSTITUTIVE AND STRESS UPDATE EQUATIONS 

Associative plasticity with isotropic J2-flow theory is considered [1]. Plastic 
yielding is governed by the yield function f : 

: ( yf K= − −P σ α)     
0   for elastic material behavior,
0   for plastic material behavior,
0   excluded,

f
f
f

<
 =
 >

 (1)
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where yK  is the yield limit, α the back-stress, an internal variable, σ is the Cauchy 
stress and P is the deviatoric projection operator 

 1
3

S= − ⊗P I I I , 

where IS is the fourth-order symmetric identity tensor. The variation of the yield 
limit yK  is described through isotropic hardening, with [1]: 

 { },02 [1 exp( )]3
y y RK s= σ + − −β

β
, (3) 

where s is the plastic arc length, ,0yσ  is the initial uniaxial yield stress, and R and β 
are the non-linear isotropic hardening parameters. For kinematic hardening, the 
Armstrong-Frederick law with the non-linear kinematic hardening parameters Hkin 
and Hnl is considered: 

 p
kin nl

2
3H H s= −α ε α . (4) 

The hypo-elastic material behaviour is described using Hooke’s law, relating 
the Cauchy stress σ to the elastic strains elε  through the Lamé constants G and λ: 

 el el(2 ) : :SG= + λ ⊗ =σ I I I ε C ε , (5) 

where C is the corresponding fourth-order tensor. 
Based on the constitutive equations above, the stress update equations can 

now be formulated. The state variables at the beginning of an increment are 
characterized by a superscript ‘0’, whereas those at the end of the increment are 
characterized by a superscript ‘1’, and the mid-step configurations are characterized 
by a superscript ‘1/ 2’. In the finite strain case, rigid body rotation is accounted for to 
preserve material objectivity, henceforth a corotational formulation is used in order 
to transform all tensor-valued state variables into the same rotation-neutralized 
coordinate frame. 

In this rotation-neutralized coordinate frame, the classical update scheme of the 
plastic arc length s, of the plastic strain pε , of the stress σ and of the back-stress α is [1]: 

 1 0 2
3s s g= + ∆ , (6) 

 p,1 p,0 1ˆˆ ˆ g= + ∆ε ε N , (7) 

 1 21 0 1ˆˆ ˆ ˆ: 2G g= + ∆ − ∆σ σ C ε N , (8) 

 kin1 0 1
nl nl

nl

ˆˆ ˆexp( ) [1 exp( )] HH g H g
H

= − ∆ + − − ∆α α N , (9) 



46 Dan Dumitriu, Gaston Rauchs, Veturia Chiroiu 4 

 

with the total strain increment 1 2ˆ∆ε  calculated according to the midpoint-rule, and 
the normalized tensor N̂  defined by: 

 
1 1 1 1 1 1

1
1 1 1

ˆ ˆˆ ˆˆ ˆ: ( : (ˆ
ˆ ˆˆ: ( yK

− −
= =

−

P σ P σN
P σ

α ) α )

α )
. (10) 

The plastic consistency parameter g∆  is obtained from the equation expressing the 
yield function (1) for plastic material behaviour: 

 

0 1 2 0
nl

kin
nl

nl

ˆ ˆˆ: 2 : exp( ) 2

– [1 exp( )] 0.y

f G H g G g

H H g K
H

= + ∆ − − ∆ − ∆ −

− − ∆ − =

P Pσ ε α
 (11) 

A local Newton-Raphson scheme is used to determine g∆  from (11). 

3. UNIAXIAL INDENTATION TEST 

The uniaxial indentation test consists in pushing a hard indenter vertically 
into the plane surface of the material specimen (Fig. 1a). A nanoindenter can 
record the load P and the penetration htip of the indenter tip into the surface, where 
the penetration htip is the total displacement of the specimen contact surface at the 
vertical line of symmetry. The spherical tip of the indenter has hypo-elastic 
material behaviour, with Young’s modulus tip 1016 GPaE =  and Poisson’s ratio 

tip 0.07ν = . 

 
a) 

 
b) 

Fig. 1 – a) Scheme of the uniaxial indentation test;  
b) axisymmetric finite element model of the indentation test [1]. 
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In this inelastic material indentation problem, the parameter identification 
concerns seven unknown material parameters: Young’s modulus E and Poisson’s 
ratio ν (elasticity parameters), respectively the initial uniaxial yield stress σ y,0, the 
non-linear isotropic hardening parameters R and β and the non-linear kinematic 
hardening parameters Hkin si Hnl (plasticity parameters). In fact, the linear 
hardening parameters R and Hkin have been replaced with the following parameters, 
which both have the physical meaning of a stress: 

            kin*
kin

nl

HH
H

=    and   * RR =
β

. (12)

The axisymmetric finite element model for spherical indenter tip and material 
specimen is shown in Fig. 1b, where 112 bi-quadratic elements were used to model 
half of the material specimen and 47 bi-quadratic elements were used to model half 
of the spherical tip indenter. The simulations are performed using SPPRc which 
implements the stress update equations (6)–(9) for this axisymmetric finite element 
model, considering finite elasto-plastic strains. 

In SPPRc, the contact modelling between the indenter tip and the material 
specimen is realized by inhibiting the geometrical interpenetration of the two 
bodies. This can be achieved by applying tractions over the contact area. The 
surface of the indenter is the master surface, whereas the nodes on the material 
specimen surface are the slave nodes. In simple contact formulations like penalty 
or augmented logarithmic barrier methods, the tractions to be applied on the 
contact boundary for inhibiting interpenetration are calculated from the local gap 
between slave nodes and their projection on the master segment. More details 
about the contact modelling can be found in [1]. 

The indentation test considered here is in fact a virtual indentation test, the 
purpose being mainly to validate the proposed material parameter identification 
optimization procedure. More precisely, a simulation of the indentation test is 
carried out with known material parameters, and the resulting load-penetration 
curve (see Fig. 2) is used as artificial experimental data, called also pseudo-
experimental data. The material parameters used to obtain the pseudo-experimental 
data are given in Table 1. The parameter identification optimization procedure is 
then started with a different set of material parameters, a virtual initial guess, and 
should ideally converge to the material parameters used to obtain the pseudo-
experimental data. 

Table 1 

Material parameters used in the artificial experiment 

 E [MPa] ν σ y,0 [MPa] *R  [MPa] β *
kinH  [MPa] Hnl 

Artificial experiment 200000 0.3 400 100 100 200 50 
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The artificial, pseudo-experimental load-penetration curve considered in this 
paper concerns only a single load-unload cycle (see Fig. 2). Of course, more 
complex cycles can be considered, e.g., load-unload-reload-load-unload cycle, also 
residual imprint mapping data can be taken into consideration. 
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Fig. 2 – Artificial, pseudo-experimental load-penetration curve for single load-unload cycle. 

4. PARAMETER IDENTIFICATION OPTO7MIZATION PROCEDURE 

Let x denote the vector of the seven material parameters to be identified: 

            T,0 * *
kin nl

yE R H H= ν σ β  x . (13)

The material parameter identification is performed using an optimization 
procedure, i.e., one has to minimize (bring to zero, if possible) the difference 
between the simulated curve and the pseudo-experimental one. Both load-
penetration curve and residual imprint mapping data are considered for comparing 
simulation with pseudo-experimental results. The objective function to be 
minimized is thus: 

{ }
*

2 2expsim sim sim 0 exp exp 0
tip tip

1 1

( ) ( ) [ ( ) ( )] [ ( ) ( )]
N N

k k l l

k l

h P h P u u u u
= =

 Ξ = − + − − − ∑ ∑ r r r r , (14)

with: 
– N – the number of points in which simulated and pseudo-experimental 

penetrations are compared; 



7 Optimisation procedure for parameter identification in inelastic material indentation testing 49 

 

– sim
tip ( )kh P – the simulated penetration of the indenter tip into the surface 

corresponding to the load kP  at time kt , using the material parameters 
computed at that stage of the optimization procedure; 

– exp
tip ( )kh P – pseudo-experimental penetration corresponding to load kP ; 

– *N – number of fixed radial locations lr  where simulated and pseudo-
experimental residual imprints are compared; 

– sim ( )lu r – the simulated total vertical displacement at the fixed radial 

location lr ; 
– sim 0( )u r – simulated total vertical displacement at the reference point 0r , 

e.g., the imprint centre; 
– exp ( )lu r – pseudo-experimental total vertical displacement at the fixed 

radial location lr ; 
– exp 0( )u r – pseudo-experimental total vertical displacement at the reference 

point 0r . 

The gradient of the objective function Ξ with respect to the variables vector x is: 

       

T

1 2 3 4 5 6 7

T

,0 * *
kin nl

y

x x x x x x x

E R H H

 ∂Ξ ∂Ξ ∂Ξ ∂Ξ ∂Ξ ∂Ξ ∂Ξ
∇Ξ = = ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 ∂Ξ ∂Ξ ∂Ξ ∂Ξ ∂Ξ ∂Ξ ∂Ξ
=  ∂ ∂ν ∂σ ∂ ∂β ∂ ∂ 

, (15)

where the derivative of the objective function Ξ with respect to the material 
parameter xi (i = 1,…,7) follows from (14): 

{ }
*

sim
tipexpsim

tip tip
1

sim sim 0
sim sim 0 exp exp 0

1

( )
2 ( ) ( )

[ ( ) ( )]2 [ ( ) ( )] [ ( ) ( )] .

kN
k k

i ik

N l
l l

il

h P
h P h P

x x

u uu u u u
x

=

=

∂∂Ξ  = − + ∂ ∂

∂ −
+ − − −

∂

∑

∑ r rr r r r

 (16)

As for the derivatives 
sim
tip ( )k

i

h P
x

∂

∂
 and 

sim sim 0[ ( ) ( )]l

i

u u
x

∂ −
∂

r r , they are computed 

from the derivatives of the state variables with respect to the material parameter xi . 
The direct differentiation method is used to perform this sensitivity analysis as 
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described in [1]. The elements Hij of the Hessian matrix H, i.e., the second order 

derivatives 
2

i jx x
∂ Ξ
∂ ∂

, can be deduced by deriving (16): 

*

sim sim 2 sim2
tip tip tipexpsim

tip tip
1

sim sim 0 sim sim 0

1

sim sim 0 exp

( ) ( ) ( )
2 ( ) ( )

[ ( ) ( )] [ ( ) ( )]2

( ( ) ( )) ( ( )

k k kN
k k

ij
i j i j i jk

N l l

i jl

l l

h P h P h P
H h P h P

x x x x x x

u u u u
x x

u u u u

=

=

 ∂ ∂ ∂∂ Ξ   = = + −  ∂ ∂ ∂ ∂ ∂ ∂  
∂ − ∂ −+ +

∂ ∂

+ − − −

∑

∑ r r r r

r r r
2 sim sim 0

exp 0 [ ( ) ( )]( )) .
l

i j

u u
x x

∂ −     ∂ ∂ 

r rr

 

(17)

The optimization procedure proposed in this paper is a sequence of two 
gradient-based optimization methods, i.e., the Gauss-Newton method and the 
Levenberg-Marquardt method. The optimization problem here is a minimization 
with simple bounds, i.e., the variables of the minimization problem are limited by 
constant lower and upper bounds. 

The Gauss-Newton optimization method is an iterative method based on the 
following recurrence relation [4]–[5]: 

           1 1[ ] ( )pp p p p+ −= −µ ∇Ξx x H , (18)

where p denotes here the iteration number and pµ  is the parameter of the line 
search algorithm performed inside the Gauss-Newton method to find the lowest 
value of the objective function Ξ along the search direction 1[ ] ( )p p− ∇ΞH . The 

Hessian matrix pH  given by (17) has to be positive definite in order to provide 
that the search direction is a descent direction [3], i.e, in order to converge towards 
a minimum of the objective function. 

As for the Levenberg-Marquardt optimization method [3]–[5], its recurrence 
relation is: 

1 T 1 T[( ) ] ( )p p p p p p p+ −= − + ξ Ξx x J J I J , (19)

where J is the Jacobian defined here as 

( )T
,0 * *

kin nl
yE R H H

 ∂Ξ ∂Ξ ∂Ξ ∂Ξ ∂Ξ ∂Ξ ∂Ξ
= = ∇Ξ ∂ ∂ν ∂σ ∂ ∂β ∂ ∂ 

J , (20)

and where the scalar pξ  is determined as follows: 
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         1510p −ξ =  

        DO  10p pξ = ⋅ ξ  
        UNTIL  matrix T[( ) ]p p p+ ξJ J I  becomes positive definite. 

(21)

The implementation in SPPRc software of the Gauss-Newton and Levenberg-
Marquardt methods was done by means of the respective subroutines provided by 
IMSL Fortran Math Library [4]. 

5. CONVERGENCE RESULTS 

The parameter identification optimization procedure proposed in §4 was 
applied to the virtual uniaxial indentation problem described in §3. The pseudo-
experimental load-penetration curve is the one shown previously in Fig. 2, where 
only a single load-unload cycle has been considered. The residual imprint mapping 
data taken into account in provided in Table 2, with the reference point located on 
the vertical symmetry axis, i.e., 0 0=r . 

Table 2 

Residual imprint mapping data 

index l 1 2 3 4 5 6 7 8 9 
lr  [µm] 0.125 0.250 0.375 0.500 0.625 0.750 0.875 1.000 1.125 
exp exp 0( ) ( )lu u−r r

[µm] 
0.003

5 
0.012

7 
0.027

9 
0.049

5 
0.077

5 
0.112

1 
0.153

6 
0.201

9 
0.246

2 
 
 
 
 

10 11 12 13 14 15 16 17 18 19 20 
1.250 1.375 1.500 1.625 1.750 1.875 2.000 2.125 2.250 2.375 2.500 
0.238

3 
0.231

4 
0.226

5 
0.223

1 
0.220

5 
0.218

5 
0.216

8 
0.215

6 
0.214

6 
0.213

8 
0.213

2 

Starting from various virtual initial guesses, the optimisation procedure 
proposed in §4 is supposed to converge to the material parameters used to obtain 
the pseudo-experimental data, i.e., the ones in Table 1. Two such convergence tests 
T1 and T2 were performed, Table 3 presenting the virtual initial guesses used in 
these two tests, as well as the lower and upper bounds of the seven parameters to 
be identified, plus the solution of the problem, i.e., the pseudo-experimental 
material parameters from Table 1. 
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Table 3 

 Different values for the material parameters:  
T1 and T2 initial guesses, upper and lower bounds, problem’s solution 

 E [MPa] ν σ y,0 [MPa] *R  [MPa] β *
kinH  [MPa] Hnl 

T1 initial guesses 100000 0.2 800 50 200 50 100 
T2 initial guesses 261110 0.34 667 46 523 398 74 

Artificial experiment 200000 0.3 400 100 100 200 50 
Lower bounds 30000 0.05 1 0 10 0 10 
Upper bounds 600000 0.49 1000 1000 1500 1000 1500 

The proposed optimisation procedure consists in a sequence of fours stages: 
• Gauss-Newton method (18) applied on variables E and σ y,0, the other 

variables being blocked on their initial guesses (called G-N1, maximum 8 
iterations allowed); 

• Gauss-Newton method (18) applied on all seven variables (called G-N2, 
maximum 10 iterations); 

• Levenberg-Marquardt method (19) applied on three variables (the variables 
located temporarily on the bounds, then the variables xi corresponding to 

the smallest 
ix

∂Ξ
∂

), the other four variables being blocked on their previous 

values (called L-M1, maximum 15 iterations allowed); 
• Levenberg-Marquardt method (19) applied on all seven variables (called 

L-M2, maximum 30 iterations allowed). 

Fig. 3a shows the convergence of the optimisation procedure for the first 
numerical test T1, where the objective function is minimized up to 

–12
min,T1 1.28 10Ξ = ⋅  µm2. Fig. 3b shows the convergence results for the second 

numerical test T2, where the objective function is minimized up to 
–9

min,T2 7.16 10Ξ = ⋅  µm2. Both figures show the reduction of 10log Ξ  with the 

number of iterations performed. The vertical dotted lines indicate the switches 
between the four stages of the optimisation procedure. 

The results are satisfactory, showing the reliability of the proposed four 
stages optimisation procedure, based on Gauss-Newton and Levenberg-Marquardt 
methods. The objective function is always decreasing for both tests presented, 
without diverging or blocking in undesired local minima. The objective function 
has been practically brought to zero, the material parameters obtained by this 
identification procedure matching almost perfectly the considered pseudo-
experimental material parameters. 
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Fig. 3 – Reduction of 10log Ξ  with the number of iterations for: a) first test T1; b) second test T2. 

6. CONCLUSIONS 

The framework of this work is the parameter identification related to inelastic 
material indentation testing. The goal of this inverse problem is to determine the 
unknown material parameters of a specimen, in order to reach some experimental 
data measured on that specimen. 

More precisely, the purpose of this paper was to propose a reliable variant of 
optimization procedure for this material parameter identification problem. Based 
on IMSL Fortran Math Library [4] subroutines, the optimization procedure was 
implemented in SPPRc, an in-house FEM software for finite elasto-plastic strains. 
The optimization procedure was divided in four stages, two stages based on Gauss-
Newton method, followed by two stages based on Levenberg-Marquardt method. 
The convergence results towards the desired global minimum were satisfactory. 
Further investigations, including additional load cycles of the indentation test, are 
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necessary in order to increase and guarantee the reliability of this parameter 
identification optimization procedure. 

Gradient-based optimization methods, such as Gauss-Newton and 
Levenberg-Marquardt methods, are local optimizers, bearing the necessity to 
supply an appropriate initial guess, in order to place the optimization problem 
closer to its searched global optimum. So, further work may provide a more 
elaborated initialization of the unknown material parameters, not just a simple 
guess. 
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