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The paper is an analysis of the dynamic response of an oscillating system, considering 
the modifications of the stiffness and damping characteristics, due to the vibration – 
generated damages. The study is focused on the difference in the system behavior, 
function of the way the system is initially situated relative to the harmonic input from 
the spectral point of view: above resonance, at resonance or below resonance. 
Experimental and simulation results are presented for simplified mechanical models of 
systems with stiffness degradation. As a convenient measure of the effect of duration 
and severity of the system vibration, the total energy dissipated through hysteresis is 
considered.  It is shown that the most damaging situation occurs when the forcing 
frequency is slightly less than the system natural frequency. In this case, in a very short 
time interval from the start of the input action, the system displays a severe vibration 
output, which can lead to structural deterioration. 

1. INTRODUCTION 

The acceptance of plastic hinges occurrence in a building according to the 
seismic design standards [1–3] leads to a degradation of the structural restoring 
force and to an increase of the structural damping. The first effect could be 
beneficial if the natural vibration periods of the building are longer than those of 
the main spectral components of the ground motion. In this case, by structural 
stiffness degradation the building is “pulled” from the resonance regime resulting 
in a reduction of seismic response. On the other hand, if the main spectral 
components of the seismic ground motion are longer than the building natural 
periods, then the structure could be “dragged” to resonance with a significant 
increase of the seismic response, which can result in important building damages or 
even in collapse. The increase of the building structural damping capacity due to 
the occurrence of plastic hinges is beneficial in both cases as more of the kinetic 
energy injected to the building by the seismic action is consumed as the structure 
experiences repeated stress reversals. However, this increase of structural damping 
is not so important such as to reduce dramatically the vibration amplification 
within the resonance range [4]. 
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The aim of this paper is to illustrate the change in dynamic behavior of 
structures associated with system degradation. Simple mechanical models with 
harmonic inputs are used for both experimental and analytical approach of this 
problem. 

2. ANALYTICAL MODEL 

Although an multiple-storey building is envisaged, the model adopted 
(Fig. 1) employs only one mass, the aim being to approximate the vibration of the 
building in the range of its lowest mode. Only lateral motion is considered, the 
building being treated as a shear structure. 

 
 
 

Fig. 1 – Schematic of mechanical system. 

The sprung mass, M , is connected to the system base by an element of Kelvin-
Voigt type, generating a hysteretic force, ( )F t , given by 

     ( ) ( ) ( )F t kx t cx t= + , (1) 

where ( ) ( ) ( )0x t y t x t= −  is the relative displacement between the top level and 
the system base. Degradation of the restoring force gradually increases as the 
structure experiences repeated stress reversals. The degradation due to the 
occurrence of plastic hinges, leads to a certain increase of energy dissipation by the 
internal damping mechanism. The viscous damping force term in (1) is view as an 
equivalent damping of the internal energy dissipation. 

The parameters in any hysteretic model must become time dependent, if these 
de gradation effects are to be accounted for. The degradation mechanism can be 
modeled by allowing the parameters k  and c  to vary as functions of the response 
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duration and severity [5, 6]. As a convenient measure of the combined effect of 
duration and severity is the total energy dissipated through hysteresis over the time 
interval[ ]0, t . Taking into account that in the considered hysteretic model the 
energy dissipation is of viscous type, a simplified model of degradation can be 
expressed by the following functional relationships for the instantaneous values of 
the system damping and stiffness coefficients 

                ( ) ( )2 2
0 0

0 0

(1 d ), (1 d ),
t t

c t c a x t k t k b x t= + = −∫ ∫  (2) 

where 0c  and 0k  are the initial values of the undamaged structure and a , b  are 
non-negative parameters. 

The variation of the degrading hysteretic loops ( )L L,F x N , for an imposed 
cyclic motion  

               ( )L L Lsinx t X t= ω , (3) 

applied over a time interval L L L2T N= π ω , where LN is the number of repeated 
loading cycles, is given by 

( ) ( ) ( )2 2 2 2
L L 0 L L L L L 0 L L L L, 1 1F x N c a N X X x k b N X x= + π ω − + + − π ω . (4) 

 In order to assess the values of degradation parameters a  and ,b  one has to 
make assumption of the  stiffness degradation and damping appreciation rates, 

( ) ( )k L 0 c L 0, and ,k T k c T cδ = δ =  when the structure experiences LN stress 
reversals produce by the cyclic loading (3): 

                 c k
2 2

L L L L L L

1 1,a b
N X N X
δ − − δ

= =
π ω π ω

. (5) 

 For harmonic excitation, the equation of motion of mass M is 

          2 2 2 2
0 0 0 0

0 0 0

2 (1 d ) (1 d ) (1 d )
t t t

x a x t b x t x b x t x x+ ς + ω − +ω − = −∫ ∫ ∫ , (6) 

where 2
0 0 0 0 02 ,c k M k Mς = ω =  and ( )0 0 sinx t X t= ω . 

 Introducing the dimensionless parameters 

( ) ( )

( ) ( ) ( ) ( )

0 2 2
0 0 0 0 0

0 0
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0 0 0 0 0
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x
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Φ

τ ω ω
τ = ω ξ τ = ν = α = ω β = ω

ω

τ ωω
ν = µ = ξ τ = ξ =

ω ω

 (7) 
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the dimensionless forms of equations (5) and (6) are 

            c k
2 2

L L L L L L

1 1, ,
N N
δ − − δ

α = β =
π ν µ π ν µ

 (9) 

          2 2 2
0

0 0 0

2 (1 d ) (1 d ) (1 d ) sint t t
τ τ τ

′′ ′ ′ ′ ′ξ + ς +α ξ −β ξ ξ + −β ξ ξ = − ντ∫ ∫ ∫ . (10) 

 The dimensionless form of the imposed relative cycle motion (3) is 

                       ( )L L Lsinξ τ = µ ν τ . (11) 

 Assuming that the cyclic loading (11) is applied with the same amplitude as 
the system input ( L 1µ = ) and the same frequency as the system natural undamped 
frequency ( L 1υ = ), yields 

                 c k

L L

1 1, .
N N

δ − − δ
α = β =

π π
 (12) 

 After completion of LN ′ loading cycles of this type, the system damping ratio 
and the natural undamped frequency become: 

                  ( )
L L

L L
N 0 c N k

L L

1 1 , 1 (1 )N N
N N′ ′

 ′ ′
ς = ς + δ − ν = − − δ 

 
, (13) 

and the resulting hysteretic loop is approximated  by 

          
( )

( )
L L L

2 2
L L N N L N L

L

, 2 1 ,

sin .

NΦ ′ ′ ′′ξ = ζ ν − ξ + ν ξ

ξ τ = τ
 (14) 

3. NUMERICAL METHOD 

For numerical solving of second order differential equations, portaying the 
motion of oscillating systems, an efficient method was proposed by Newmark [7]. 
In order to apply this method, equation (8) has to be written under the form  

             ( ), , sinf′′ ′ξ = ξ ξ τ − ντ . (13) 

The Newmark discrete time method in five steps was applied [8], in order to 
obtain the approximate solution of equation (13) with the initial conditions: 
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               0 0(0)    ;   (0)′ ′ξ = ξ ξ = ξ . (14) 

At initial time 0 0τ =  , the initial value of the acceleration ( ) 00′′ ′′ξ = ξ  is 
evaluated from 

             0 0 0( , ,0)f′′ ′ξ = ξ ξ . (15) 

The principle of the method consists in the approximation of the discrete 
values 1 1 1, ,n n n+ + +′ ′′ξ ξ ξ  by using the values obtained at moment n nτ = ∆τ . The steps 
of the method are: 

1. Initialization of 1n+′′ξ with an arbitrary value 1,n i+′′ξ . 

2. Evaluation of 1n+′ξ  from: 

           1 1,( )
2n n n n i+ +

∆τ′ ′ ′′ ′′ξ = ξ + ξ + ξ ⋅ . (16) 

3. Approximation of 1n+ξ  by: 

            ( )2

1 1,( )
4n n n n n it+ +

∆τ
′ ′′ ′′ξ = ξ + ξ ∆ + ξ + ξ ⋅ . (17) 

4. Introducing 1n+ξ and 1n+′ξ in (13), yields: 

             1, 1 1 1 1( , , ) sinn c n n n nf+ + + + +′′ ′ξ = ξ ξ τ − ντ . (18) 

5. The values 1,n c+′′ξ  and 1,n i+′′ξ  are compared.  If the difference is not 

sufficiently small, 1,n i+′′ξ  is replaced by 1,n c+′′ξ  and the algorithm is repeated from 
the step 2. Otherwise, a new iteration is initiated. Usually, for the initialization of 
the unknown acceleration value the preceding accepted value is used.      

4. NUMERICAL RESULTS 

 To illustrate the dynamic behavior of the considered degrading system, 
suppose that after completion of L 45N =  loading cycles, given by (11) 
for L L 1µ = υ = , the stiffness coefficient decreases two times ( k 0.5δ = ) while the 
damping ratio increases 3 times ( c 3δ = ). For this case study, applying of relation 
(12) yields 0.014, 0.0035α = β = . 

The evolution of the degrading hysteretic loops versus the number of loading 
cycles is shown in Fig. 2, for the initial damping ratio 0 0.05ς = . 
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The decrease of hysteretic loop slope indicates the  stiffness degradation 
while the increase of their inner surface area show the appreciation of the damping 
capacity. 

 
Fig. 2 – Evolution of degrading hysteretic loops versus the number of cyclic loading. 

In order to study the dynamic behavior of the same degrading structure, 
excited by harmonic inputs with frequencies within the resonant range, the 
equation of motion (10) was numerically solved for: 

0.6, 0.75, 0.8, 0.9, 1.0, 1.1, 1.2,1.3 and 1.4.ν =  

The time histories of elative displacement ( )ξ τ , obtained for each of these inputs, 
are shown in Figs. 3–11. 
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 The above results show that the structural degradation can lead, only after a 
few cycles, to an important output magnification (despite of the associated increase 
of system damping capacity), if the input frequency is at most 25% lower than the 
initial natural frequency of the oscillating system. On the other hand, the effect of 
structural degradation could be benefic if the forcing frequency is equal or at most 
25% higher than the resonant frequency of the undamaged system. Outside this 
frequency range, the system degradation is not so important, due to the system 
filtering properties. 

5. EXPERIMENTAL  ANALYSIS 

 To illustrate the change of dynamic behavior of a structure, due to system 
degradation, an experiment was conducted on a simple mechanical structure. A 
cantilever beam from composite material with a concentrated mass on top was 
mounted vertically on an electro-dynamic shaker. From practical point of view, this 
experimental study is relevant only when the beam vibrates in the neighborhood of 
the first resonance vibration mode because in this case the dynamic structural 
output is strongly amplified by favored transfer of the kinetic energy from the base 
imposed motion to the structure and damaging shear forces can develop. The 
structural degradation was produced by gradually delaminating of the composite 
material, resulting in a decrease of bending stiffness and a corresponding increase 
of internal damping. The frequency of the first bending vibration mode, denoted 
by f , and the associated modal damping ratio (ς ) were obtained from the free 
vibration records.   

In Figs. 12–14 are presented the experimental results, showing the effect of 
structural degradation on the amplification factor r.m.sA  (defined as the ratio of the 

r.m.s values of the top and base acceleration). As one can observe, the value of the 
amplification factor became 2.3 times greater as the bending stiffness degradation 
was gradually increased. This important increase of r.m.sA  was obtained despite the 

fact that the damping ratio increased with 60%. During this test, the r.m.s value of 
the input acceleration and its fundamental frequency were maintained practically 
constant ( r.m.s. in0.064 , 2.78Hza g f= = ).  



9 Vibration amplification  in oscillating systems with degrading characteristics 83 
 

 

 

Fig. 12 – Forced (fin = 2.78Hz, Arms= 16.2) and free vibration of the undamaged beam (f = 2.83Hz, 
ζ = 0.0069). 

 

 

 
Fig.13 – Forced (fin = 2.78Hz, Arms= 20.1) and free vibration of the slightly damaged beam  

(f = 2.79Hz, ζ = 0.0073). 



84 Tudor Sireteanu, Nicolae Stoia 10 

 

 
Fig.14 – Forced (fin = 2.78Hz, Arms= 36.7) and free vibration of the moderately damaged beam  

(f = 2.64Hz, ζ = 0.012). 
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