
 

NON-LINEAR ATTENUATION EFFECTS  
ON SOILS DYNAMIC RESPONSE EVALUATION* 

Dinu BRATOSIN1 

The object of this paper is to estimate the structural attenuation in geological site 
materials with the aid of the non-linear magnification functions maximum values 
decreasing. Using a non-linear one-degree-of-freedom model (NKV model) with 
material functions in terms of the strain levels, by numerical non-linear simulation one 
put into evidence the attenuation capacity of the site geological materials neglected by 
linear calculus.  

1. INTRODUCTION 

The strong dependence of the soils dynamic properties on strain or stress 
level produced by external loads is very well known. In the previous author's 
papers [1], [2], [3] this nonlinear behaviour was modeled assuming that the 
geological materials are nonlinear viscoelastic materials. This model describes the 
nonlinearity by the dependence of the material mechanical parameters: shear 
modulus G and damping ratio D in terms of shear strain invariant γ: ( )γ= GG , 

( )γ= DD , or in terms of displacements x: ( )G G x= , ( )D D x=  or  twisting 

angle θ: ( )θ= GG , ( )θ= DD . 
It is experimental observed that when the external loads are increasing the 

rigidity is reduced, due to the dynamic degradation effect [6], and the material 
damping increases. Thereby, ( )G G= θ is an increasing function and ( )D D= θ is 
decreasing function. These contradictory material evolutions have contradictory 
effects on dynamic structural response, which can be, amplify or diminish with 
respect to loading inputs. 

Due to these two dynamic functions – one for material strength modeling and 
the other including material damping – this model can be regarded as an extension 
in the non-linear domain for the non-viscous linear Kelvin-Voigt model [10], and 
for this reason, in the next, we will use as denomination – the nonlinear Kelvin-
Voigt model (NKV model). Using this NKV model, in a previous papers [4], [5] 
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was presented some aspects concerning non-linear response of the site materials 
and differences between non-linear and linear evaluations.  

In this paper, some numerical simulations using the NKV model will perform 
in order to evaluate, qualitative and quantitative, the ratio between dynamic imput 
and dynamic response for some site materials as cohesive soils (clay, marl), 
cohesionless soils (sand, gravel) and rocks (limestone and gritstone).  

As can see in the next, the non-linear calculus proves that the dynamic 
response is decreasing while imput level is increasing, thus all the geological site 
materials have obvious attenuation capability which can be smaller or larger in 
terms of their strength and damping properties.   

2. SOME NON-LINEAR MATERIAL FUNCTIONS 

In order to exemplify the non-linear behaviour of the usual site materials, in 
Figs. 2.1, 2.2 and 2.3 some non-linear material functions obtained from resonant 
column test performed upon clay, marl, sand, gravel, limestone and gritstone 
sample are given. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.1 – Dynamic functions for cohesive soils.
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3. NON-LINEAR KELVIN-VOIGT MODEL 

In linear dynamics, a usual description of a solid single-degree-of-freedom 
behaviour is given by the Kelvin-Voigt model consisting of a spring (with a 
stiffness k) and a dashpot (with a viscosity c) connected in parallel. The governing 
equation of this system for torsional harmonic vibrations (usually resonant column 
system excitation) is: 

                 0 0 sinJ c k M tθ + ⋅θ + ⋅θ = ⋅ ω , (3.1) 

where θ is the system displacement (rotation, in this case), J0 is the moment of 
inertia of the vibrator, M0 are the excitation amplitude and ω the pulsation of the 
harmonic external impute. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.1 – NKV model. 

 0 sinM M t= ω  

 c = c(θ)  k = k(θ)

  m ; J

Fig. 2.2 – Dynamic functions for cohesionless soils. 

Fig. 2.3 – Dynamic functions for rocks. 
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Using the same method that describes the nonlinearity by strain dependence 
of the material parameters, we assume that the damper viscosity c and the spring 
stiffness k are functions in terms of rotation θ:  
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where ω0 is the system undamped natural pulsation, Ip = πφ4/32 is the polar 
moment of the specimen, (φ, h) are the diameter and height of the cylindrical 
specimen and ( )nD θ , ( )nG θ  are  the normalized forms of the damping function 

( )D θ  and modulus function ( )G θ  in terms of theirs initial values 0D  and 0G .  
Thus, the most expected form of the governing equation for the non-linear 

behaviour of this single-degree-of-freedom system is: 

             ( ) ( )0 0 sinJ c k M tθ + θ ⋅θ + θ ⋅θ = ⋅ ω , (3.3) 

with the analogue model from Fig. 3.1. 
By using the change of variable t0ω=τ  and by introducing a new "time" 

function ( ) ( ) ( )0/ ωτθ=θ=τϕ t  [4], one obtains from eq. (3.3) a dimensionless 
form of the non-linear equation of motion: 

                 ( ) ( ) sinC K′′ ′ϕ + ϕ ⋅ϕ + ϕ ⋅ϕ = µ ⋅ υτ , (3.4) 

where the superscript accent denotes the time derivative with respect to τ, and: 
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 (3.5) 

For a given normalized amplitude µ and relative pulsation υ, the non-linear 
equation (3.4) can be numerically solved using a computer program based on the 
Newmark algorithm [11, 12] and a solution of the form ( )υµτϕ=ϕ ,;  can be 
obtained in the form: 

       ( ) ( ); , ; sin( )ϕ τ υ µ = µΦ υ µ υτ −ψ , (3.6)

where ( );Φ υ µ  is the non-linear magnification function. 

4. NON-LINEAR MAGNIFICATION FUNCTION 

From known harmonic excitations with ct.µ = , the non-linear magnification 
functions ( ),Φ υ µ can be obtained in terms of normalized pulsation υ only: 
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       ( ) ( ) ., ctµ=Φ υ µ = Φ υ  (4.1) 

 The non-linear magnification functions thus obtained can be used to evaluate 
the enlargement or reduction of the dynamic response. As usually, the 
magnification functions give a measure for "the magnification" of the dynamic 
response with respect to the static input. But, the same function can suggest a 
qualitative image for magnification or attenuation of the dynamic response 
provoked by a dynamic input.  
 In this paper, the magnification functions have been used to compare the 
magnification or attenuation of the dynamic response obtained by non-linear 
calculus with respect to the dynamic linear response. As one can see in the next, 
this comparison make apparently the non-linear softening effects due to the non-
linear mechanical characteristics of the materials from site soil deposits.  

These effects will be exposed with the aid of the numerical simulation results 
using the NKV model based by the single-degree-of freedom resonant column 
system. The excitation used in this simulation process is of harmonic type with the 
normalized amplitude values µ corresponding to the µ values give by peak ground 
acceleration observed during some earthquakes [7]. 
 The simulation results are given in Figs. 4.1, 4.2 and 4.3. As one can see 
from this figures, the peak amplitude of the non-linear magnification functions 
depends on the excitation amplitude µ and the resonance peaks occurs at different 
normalized pulsation υ situated before the excitation pulsation (usually soils have a  
softening nonlinearity type). Also, in these figures the dependence of the peak 
amplitude maxΦ  in terms of normalized pulsation υ: ( )max maxΦ =Φ υ  is given 
under "resonant curves" denomination. 
 One can remark from these results that all the geological site materials have 
obvious attenuation capability, which can be smaller or larger function of their 
strength and damping properties and in terms of loading dependence of these 
mechanical characteristics. 
 In order to compare the attenuation capability between the site materials 
which has been investigated (rocks, cohesionless soils and cohesive soils) and their 
loading dependence, the resonant curves can be converted in the form 

( )max maxΦ =Φ µ and then in the normalized form with respect to their linear 

values.. Such resonant curves in terms of normalized amplitude µ are shown 
together in Fig. 4.4. As expected, from this comparison results that the rock 
materials have reduced attenuation properties followed by cohesionless soils and 
cohesive soils with more attenuation behaviour. 



120 Dinu Bratosin 6 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.1 – Magnification functions for cohesive soils. 

Fig. 4.2 – Magnification functions for cohesionless soils. 

Fig. 4.3 – Magnification functions for rocks. 
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CONCLUDING REMARKS 

 The results illustrated in the above figures (Figs. 4.1, 4.2, 4.3 and 4.4) allow 
us to have the following remarks: 
• The non-linear magnification functions are proper tools for the qualitative 

description of the attenuation capacity of the geological materials.  
• The mechanical response of all site geological materials (soils and rocks) is 

amplified with respect to the same static loading but diminished with respect to 
the dynamic impute. 

• The non-linear calculus proves that the dynamic response is decreasing while 
loading level is increasing. 

• The resonance amplitudes of the non-linear magnification functions are inferior 
to the maximum amplitude of the corresponding linear magnification function, 
thus non-linear calculus put into evidence the attenuation capacity neglected by 
the linear calculus. 

• Whereas the linear calculus leads to the unique resonance value, the non-linear 
calculus leads to the multiple resonance values in terms of excitation 
amplitudes. 

• The resonance amplitude peaks of the soils and rocks are displaced towards 
low pulsations, which is a typical behaviour of the materials with softening 
stiffness.  

• By comparison with rock materials, the soils have small initial mechanical 
strength and undergo more degradation damages, but the structural dynamic 
attenuation is more obvious due to their internal damping capabilities (see 
Fig. 4.4). 

 
 
 
 
 
 
 
 
 
 

Fig. 4.4 – Resonant curves in normalized form.
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