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Abstract. The redundancy problem concerns here a serial planar redundant 
manipulator with four degrees of freedom. More precisely, the end-effector of this 
redundant manipulator must achieve the imposed task of following the contour of a 
curve (e.g., the contour of a circle), while fulfilling two other performance criteria: 
obstacle avoidance and minimization of a cost function, i.e., a weighted sum of all 
joint displacements. Numerically, this is a nonlinear optimization problem with 
nonlinear constraints. Based on Bellman’s principle of optimality, the global 
optimization is divided into a sequence of local optimizations. These local, sequential 
optimizations are performed using two search methods, i.e., genetic algorithm and 
direct search. The influence of the initial joint configuration on the cost function 
minimization is analyzed, in order to find the optimal initial joint configuration. 

Key words: serial planar manipulator, redundancy resolution, initial configuration, 
nonlinear optimization, genetic algorithm, direct search. 

1. INTRODUCTION 

Kinematic redundancy means that the robotic manipulator or other 
polyarticulated system has more joints than necessary for performing the end-
effector task. The extra degrees of freedom (DOF) can be used to optimize 
additional performance criteria, while performing the main end-effector task. These 
performance criteria can be defined in terms of the kinematic or dynamic 
parameters and can be related to the different aspects of performance [1]. The 
purpose is to improve the overall performance of robots in a large variety of tasks. 

Nature, in its perfection, provides us with numerous examples of redundancy, 
e.g., the snake and the human body (composed of several redundant parts like arms 
and legs). Robotics is often inspired by the nature; it tries to reproduce as much as 
possible the technical solutions provided by the nature. For example, the snake-like 
robotic arm, called also the serpentine robot, is conceived as a hyper-redundant 
robot which can be used for bridge inspection [2, 3]. Humanoid robots are also 
composed of several redundant parts: the arms, the legs, a 3-DOF articulated spine 
[4], etc. 
                                                           

* Institute of Solid Mechanics of the Romanian Academy, Ctin Mille 15, 010141 Bucharest,  
E-mail: dumitri04@yahoo.com 

 
Rev. Roum. Sci. Techn. − Méc. Appl., Tome 55, Nº 3, P. 195–210, Bucarest, 2010 



196 Dan N. Dumitriu, Cornel Secară 2 

In what concerns redundant manipulators for manufacturing and industry, one 
can distinguish parallel manipulators (e.g., planar 2-DOF redundant parallel 
manipulator [5]) and serial ones, such as the 4-DOF planar SCARA type 
manipulator considered as case study in this paper [6–8]. 

As already mentioned, for redundant manipulators the mapping from the task 
coordinates to the joint coordinates is not unique. The extra DOF supposed by 
redundancy can be used to fulfill and to optimize additional performance criteria: 
obstacle avoidance, cost function minimization, etc. Due to their extra DOF, 
redundant manipulators are able to ensure obstacle avoidance, while non-redundant 
manipulators cannot avoid possible collisions with workspace obstacles [9–10]. As 
for the cost function to be minimized, it is considered in this paper as the weighted 
sum of all joint displacements, so it is a kinematic cost function. 

By introducing the additional criteria (obstacle avoidance and cost function 
minimization), the redundancy problem takes the form of a non-linear optimization 
problem with nonlinear constraints. This redundancy problem can be solved either 
using methods based on inverse kinematics (e.g., the Gradient Projection Method  
and Extended Jacobian Method [9–11]), or using search methods for solving the 
direct kinematics (i.e., the direct geometric model with obstacle avoidance and 
kinematic cost function minimization). This second possibility of redundancy 
resolution is studied here: the problem formulated as direct kinematics with 
obstacle avoidance and kinematic cost function minimization is solved using search 
methods, more precisely genetic algorithm (GA) and direct search (DS). The 
influence of the initial joint configuration on the cost function minimization is 
studied as well, in order to find the optimal initial joint configuration. 

2. REDUNDANCY RESOLUTION BASED ON DIRECT KINEMATICS 

The redundancy resolution proposed in this paper is based on direct 
kinematics, more precisely on the direct geometric model, i.e., the direct relation 
(1), at time it  ( p0i N= ÷ ), between the end-effector configuration vector 

( ) T
1 2( ) [ ( )   ( )  . . .   ( )]i

i i i m it x t x t x t= =x x  and the joint coordinates vector 
( ) T

1 2( ) [ ( )   ( )  . . .  ( )]i
i i i n it t t t= = θ θ θθ θ : 

     ( )( ) ( )i if=x θ , (1) 

where Np is the number of imposed end-effector postures on the curve contour to 
be followed, n is the number of DOF and m is the workspace dimension, with 
n m>  in the case of redundancy. 

The redundancy resolution based on the direct geometric model (1) consists 
of minimizing a kinematic cost function expressed as the sum of all joint 
displacements during the motion, while imposing two nonlinear constraints to be 
fulfilled: the end-effector task of following the contour of a curve and the obstacle 
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avoidance. This nonlinear optimization problem with nonlinear constraints can be 
formulated as follows: 

• Minimize the global cost function J expressed as the weighted sum of all 
joint displacements required for accomplishing the end-effector task 
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while 
• imposing the end-effector task 

( )( )
d pd ,   1ii i N− ≤ ε = ÷x x , (3) 

• ensuring the obstacle avoidance 

( )( )
0 p CCPmin ,   1 ,   1 ,   1i

kld d i N k N l≥ = ÷ = ÷ = ÷N0. (4) 

In relation (2), wj ( 1j n= ÷ ) are weighting coefficients. In this paper we have 
considered 1,  1jw j n= = ÷ , i.e., all n joint angular displacements count as much in 

the overall cost function J. In relations (2)–(4), ( )iθ  is the joint coordinates vector 
corresponding to the real end-effector i-th posture ( )ix  at time ti , while ( )

d
ix  is the 

desired end-effector i-th posture on the curve contour to be followed, with εd the 
admissible error between real ( )ix  and desired ( )

d
ix  end-effector postures. With 

respect to the obstacle avoidance constraint (4), the minimum of the ( )i
kld  distances 

must be greater than a desired d0 distance imposed by the user. The ( )i
kld  distances 

are calculated between the k-th Configuration Control Point (CCP) and the l-th 
obstacle, where NCCP is the number of the CCP and NO is the number of obstacles. 
The CCP are imposed by the user on the manipulator structure. 

3. SEQUENTIAL OPTIMIZATION STRATEGY 

The redundancy problem of minimizing the global cost function (2), subject 
to constraints (3) and (4), represents a global nonlinear optimization problem. It is 
global in the sense that the minimization process concerns J, i.e., the overall sum of 
the joint displacements for all Np imposed end-effector postures. But this global 
optimization, concerning all Np imposed end-effector postures, is almost 
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impossible to realize by using search methods. In fact, for each imposed end-
effector posture there are n optimization variables (the number of DOF), and let us 
consider that each optimization variable is searched among searchN  possible values 
(e.g., search 20N =  is quite reasonable). Thus, a search method will have to find the 

minimum of J among p
search

n NN ⋅  possibilities. The case study in this paper 
concerns a redundant manipulator with 4n =  DOF.  If only p 10N =  end-effector 
postures would have been imposed (in fact this paper’s case study considers 

p 120N = , so much bigger), then a number of p 4 10 40 52
search 20 20 10n NN ⋅ ⋅= = ≈  

computations of J would have to be performed, which is far too much for 
nowadays Central Processing Units (CPUs). In fact, the most modern parallel CPU 
can hardly attend 1210 IPS (Instructions Per Second), which is not even comparable 
with the global direct search need of 5210≈ IPS. 

Faced with this situation, the solution is to replace the global minimization 
with a sequence of Np local minimizations 

H

( )i
NJ , p0 1i N= ÷ − . More precisely, at 

each time ti corresponding to i-th imposed end-effector posture, the following local 
cost function 

H

( )i
NJ  has to be minimized: 
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where NH stands for the “horizon” of the local optimization, indicating how many 
steps forward will be considered in the local cost function to minimize. Of course, 
the upper summation H 1i N+ −  in (5) must not exceed Np, so it would be more 
correct to use H pmin( 1, )i N N+ −  as upper summation index in (5), instead of  

H 1i N+ − . 
Let us exemplify for H 1,2,3N = : 
• if a 1-step forward local optimization is considered, i.e., the “horizon” 

H 1N = , then the following local cost function ( )
1

iJ  will be minimized at each 
time ti: 

1

( ) ( 1) ( )
11 ,...,

1
( ) ( )

n
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i i i

j j i j iw w
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J w t t+
+

=

= − = θ − θ∑θ θ ,  p0 1i N= ÷ − ; (6) 



5 The influence of the initial joint configuration on the redundancy resolution 199 

• if a 2-steps forward local optimization is considered, i.e., the “horizon” 

H 2N = , then the following local cost function ( )
2
iJ  will be minimized at each time 

ti, p0 2i N= ÷ − : 
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• if a 3-steps forward local optimization is considered, i.e., the “horizon” 

H 3N = , then the following local cost function ( )
3
iJ  will be minimized at each time 

ti, p0 3i N= ÷ − : 
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In this paper, only a 1-step forward local optimization is considered 
(“horizon” H 1N = ), using the local cost function ( )

1
iJ  given by (6), at each time ti , 

p0 1i N= ÷ − . Of course, the minimization of ( )
1

iJ  given by (6) is performed by 
imposing the end-effector task and by ensuring obstacle avoidance, i.e., constraints 
(3) and (4) must be fulfilled at time 1it + , p1 1i N+ = ÷ : 

( 1)( 1)
dd

ii ++ − ≤ εx x   (constraint imposing the end-effector task), (7) 

( )( 1)
0 CCP 0min ,   1 ,   1i

kld d k N l N+ ≥ = ÷ = ÷  (for obstacle avoidance). (8) 

This sequential optimization strategy is iterative; the joint configuration computed 
in the previous step represents the current point around which the search method 
will be performed again, iteratively. 

Without proving it rigorously, let us explain why a sequential optimization 
strategy can provide a result quite close to the result of the global optimization. Our 
proof relies on the principle of optimality introduced by Richard Bellman as 
axiomatic basis for the dynamic programming [12]. According to Bellman's 
principle of optimality, an optimal “strategy” can only be constituted of optimal 
actions, implying that, for every initial state and initial action, the next actions must 
represent optimal actions in relation to the intermediary state that results from the 
first action [12, 13]. By “strategy” one understands here a certain succession of 
actions from the initial to the final state. This axiomatic principle of optimality of 
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Bellman appears almost as a truism. In fact, if an optimal strategy includes a non-
optimal action, it seems possible to replace this non-optimal action with the 
optimal one, thus apparently improving the strategy. However, this replacement 
could affect the performance of neighboring actions, and finally the new strategy 
could turn out to be worse. Nevertheless, numerous numerical tests have proved the 
practical efficiency of Bellman’s principle of optimality. 

Of course, a successful global optimization will always be better than a 
sequential one, but has the drawback of requiring unaffordable computational 
resources/time when using search methods. 

The proposed sequential optimization strategy is summarized in Fig. 1. 
Remark that an optimal initial joint configuration, found as indicated in §6, is used. 
The sequential optimization consists of optimizing each action in strict relation 
with the previous one and with the perspective of the actions to be taken from now 
on (a HN = 1-step “horizon” is considered), i.e., minimizing ( )

1
iJ  given by (6) 

under constraints (7)–(8) and starting from θi issued from the previous 
minimization under constraints of ( 1)

1
iJ − . 

 

 
Fig. 1 – Proposed sequential optimization strategy, based on search methods. 
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4. SEARCH METHODS: GENETIC ALGORITHM AND DIRECT SEARCH 

The sequential minimization of the kinematic cost function (6), under 
nonlinear constraints (7) and (8), is performed here using search methods. Several 
search methods are available in the literature: genetic algorithms [6–7, 14–18], 
direct search [1, 8, 19], neural networks [18], fuzzy techniques [20], etc. In this 
paper, only a genetic algorithm and direct search were used. 

Among the evolutionary algorithms, the genetic algorithms (GAs) represent 
one of the most popular and efficient probabilistic search methods for cost function 
minimization, with or without constraints (additional nonlinear constraints may 
always be specified). GAs are able to find the global optimum in complex spaces, 
based on the mechanisms of natural genetics and natural selection, characteristic to 
biological structures. They start with an initial population of candidate solutions 
and then iteratively evolve towards better problem solutions, by survival of the 
fittest among string structures obtained by applying genetic operators like mutation 
and crossover [21–24]. As the other search methods, GAs need no previous 
experience on the problem and use only cost function information, without 
requiring any information about the gradient of the cost function. 

A simple GA requires [21–24]: 
• a genetic representation of the potential problem solutions: the parameters 

of the optimization problem are coded as a finite-length string over some finite 
alphabet (e.g., binary alphabet). Such a string is called chromosome or individual. 
The elements of the chromosome are called genes (bits in the binary case). A 
population consists of a group of chromosomes; 

• a method for generating an initial population of solutions: random 
generation, or more elaborated method using previous experience so that either to 
reduce the search domain or to place the solution nearer to the optimum, etc; 

• the fitness function, gathering in our case the kinematic cost function (6) 
and the constraints (7) and (8) to be fulfilled. The fitness function determines the 
survival or elimination of a chromosome from the population. Through several 
repetitions, the evolution of the chromosomes leads to the domination of stronger 
ones; 

• the genetic operators: selection, elitism, crossover and mutation; 
• values for the parameters used by GA: population size, probabilities of 

applying the genetic operators, etc. 
As already mentioned, the applied genetic operators in each step are [21-24]: 

– Selection. The selection function chooses the best parents for the next 
generation, based on their fitness values. The usual selection functions are: 
roulette and tournament. The tournament function was used here: each 
parent is selected by choosing the best chromosome out of a randomly 
generated set of chromosomes. The tournament size parameter specifies the 
number of chromosomes from which only the best one is selected. 
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– Elitism. In order to preserve the best (optimum) chromosome of each 
generation for the next generation, the elitism operator is used. The goal is 
to keep the best chromosome of all previous generations in the current 
population and avoid the possibility of losing good chromosomes. The elite 
count parameter is a positive integer specifying how many chromosomes in 
the current generation are guaranteed to survive in the next generation. 

– Crossover. This genetic operator combines two parent chromosomes, so 
that to form a new child chromosome for the next generation. The most 
common method uses a single point crossover operator. This operator 
chooses a single breaking point, i.e., a random integer number between 1 
and the number of genes indicating the position of the gene where the 
crossover between the two parents is operated. At this breaking point, the 
two parent chromosomes are swapping segments of genes with same size 
and position. Two child chromosomes can be generated in this way: a first 
child with the first part of genes taken from the first parent and the second 
part of genes taken from the second parent, respectively a second child 
with the first part of genes taken from the second parent and the second 
part of genes taken from the first parent. 

– Mutation. The jump mutation function makes small random changes in the 
chromosomes of the population, thus providing genetic diversity. It 
operates on each bit (gene) of each chromosome and reverses the value of 
1 to 0 and conversely. The mutation probability operator indicates the 
probability that a jump mutation is operated on the current gene of a 
chromosome. 

The results provided in §6, corresponding to the case study presented in §5, 
have been obtained using the Matlab 7.6 GA toolbox [25], with the following 
values of the GA parameters/operators: 

– initial population: randomly generated; 
– population size: 50; 
– selection function: tournament; 
– tournament size: 4; 
– elite count: 5; 
– crossover: single point; 
– mutation probability: 0.03. 
For the case study in §5, by applying the GA at time ti , p0 1i N= ÷ − , the GA 

parameters to be found are the 4 joint coordinates 1 1( )it +θ , 2 1( )it +θ , 3 1( )it +θ  and 

4 1( )it +θ . Each of the 4 parameters to be found has been coded on 8 bits, so the 
permitted interval between the lower and the upper bounds for each parameter was 
divided into 82 256=  equal angular subintervals, leading to a total chromosome 
length of 9×8 = 72 bits. 

In most cases, the GA successfully converges towards the global minimum of 
the cost function (6) while the expressions of the nonlinear constraints (7) and (8) 
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are accomplished. But this convergence to the global minimum is not guaranteed. 
Thus, the GAs have generally two main disadvantages: 1) they do not necessarily 
find the exact global minimum; 2) convergence may be slow, requiring a large, 
unknown number of evaluations of the cost function, thus GAs cannot assure 
constant optimization response times [20–24]. 

These two disadvantages of GAs can be eliminated by simply using the direct 
search (DS) method. This basic method searches a set of points around the current 
point, looking for one where the value of the cost function is lower than the value 
at the current point. Of course, as for GAs, it does not require any information 
about the gradient of the cost function. The use of the DS method is appropriate 
only if the dimension of the problem is not too big, so that to avoid the exponential 
increase of the computational time (its main disadvantage) [1, 8, 19]. 

The Matlab 7.6 DS toolbox [25] was used here, with the following 
parameters: 

– poll method: pattern search algorithm; 
– polling order: consecutive; 
– initial mesh size = 1; 
– maximum mesh size: infinite; 
– mesh contractor factor = 0.5; 
– mesh expansion factor = 2; 
– mesh contraction factor = 0.5. 
The results provided by the two search methods, i.e., GA and DS, are 

compared in §6. 

5. CASE STUDY: 4-DOF PLANAR REDUNDANT MANIPULATOR 

The simulations were performed on a laboratory model of planar redundant 
manipulator, possessing 4n =  DOF, i.e., the joint coordinates 1( )itθ , 2 ( )itθ , 

3( )itθ  and 4 ( )itθ , p0i N= ÷ . The operational space dimension is 3m =  because 
the position and orientation of the end-effector are both taken into account. Thus, 
the degree of redundancy is 1n m− = . 

This laboratory manipulator can be modeled as shown in Fig. 2 [6]. It has the 
following geometric characteristics (i.e., the lengths of the four links): 

 
1 2 3 40.12m;  0.12m;  0.10m;  0.05m.l l l l= = = =  

 
The manipulator’s base is considered fixed, with coordinates 0 0x =  and 0 0y = . A 
further work will vary also this fixed position of the manipulator base in order to 
obtain a further, supplementary reduction of the kinematic cost function. 
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Fig. 2 – Model of the 4-DOF planar redundant manipulator. 

The task of this manipulator is to generate the references (positions and 
orientations) of the end-effector along the contour of a circle of radius r, whose 
surface is considered to be restrictive for all four elements of the manipulator 
structure. The contour of the circle to be followed is defined by the radius r of the 
restriction circle and the coordinates of its center, as follows: 

c c0.03m;  0.2m;  0.r x y= = =  

The end-effector references generation is a function of the sampling step of 
generation i, with p1i N= ÷ : 

( )
cd

( )
cd

( )
d

cos( );

sin( );

,

i

i

i

x x r i

y y r i

i

= + ⋅ ⋅ ∆α

= + ⋅ ⋅ ∆α

Σθ = −π + ⋅∆α

 

where ∆α is the angular step of generation. The angular step of generation 
considered here is 3∆α = ° . In this case, the number of steps (between two 
consecutive imposed end-effector postures) to entirely cover the circle is p =120N . 

The imposed positioning and orientation error of the end-effector, used in 
constraint (7) imposing the end-effector task, is ( )d = 0.001m   0.001m   0.1ε ° . 

At each time it , p1i N= ÷ , GA or DS is searching for the values 
( 1) ( 1) ( 1) ( 1)( 1) T
1 2 3 4[       ]i i i ii + + + ++ = θ θ θ θθ  of the joint coordinates vector at time 1it + , 

by minimizing the cost function ( )
1

iJ  given by (6) under nonlinear constraints (7) 
and (8). In practice, this search is performed only between some lower and upper 
bounds with respect to the previous ( )iθ , more precisely one searches: 
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( 1) ( ) ( );  i i i+  ∈ − ∆ + ∆ θ θ θ θ θ , 

where ( )i − ∆θ θ  defines the lower bound, while ( )i + ∆θ θ  defines the upper bound 
of the domain in which the solution of the nonlinear optimization with nonlinear 
constraints problem is searched using GA or DS. In this paper, it was considered a 
constant vector [4   7   8   4 ]∆ = ° ° ° °θ , for ∀ p1i N= ÷ , used to define the lower and 

upper bounds of the search method at time it . 
The end-effector coordinates (position and also orientation) are obtained from 

the direct geometric model (1), which in our case study is as follows: 

4 4
( ) ( )( ) ( )

1 2
1 1 1 1

( ) cos ;    ( ) sin
j j

i ii i
i j i jk k

j k j k
x t x l x t y l

= = = =

   
= = ⋅ θ = = ⋅ θ      

   
∑ ∑ ∑ ∑  – for position, 

4
( )( )

3
1

( ) ii
i j

j
x t

=

= Σθ = θ∑   – for orientation. 

Two CCP are considered in our case study (NCCP = 2), placed in the middle of 
second element and, respectively, in the middle of the third element of the 
manipulator. The desired distance imposed by the user is 0 0.015md =  (used in 
constraint (8) imposing the obstacle avoidance). 

6. RESULTS: INFLUENCE OF THE INITIAL JOINT CONFIGURATION 

The simulations were performed for the case study detailed in §5. Both GA 
and DS were used to minimize, at each time ti , p0 1i N= ÷ − , the kinematic cost 

function ( )
1

iJ  given by (6), under nonlinear constraints (7) and (8), imposing the 
end-effector task and respectively the obstacle avoidance. 

An optimization study was realized, involving the initial joint configuration. 
Since the manipulator has one degree of redundancy, one has to choose among a 
variety of initial configurations. Let us consider the initial first joint coordinate 

(0)
1 01 ( 0)tθ = θ =  as variable corresponding to one initial configuration or another. 

The goal of our optimization study is to find the optimal (0)
1,optθ  for which 

corresponds the lowest kinematic cost function ( )
1

iJ . This study concerning the 

influence of the initial joint configuration on 
p 1

( )
1

0

N
i

i
J J

−

=

= ∑  is performed using both 

GA and respectively DS. The initial first joint coordinate is varied between 25− °  
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and 50° ; for each (0)
1θ  in this interval, the corresponding initial configuration is 

shown in Fig. 3. 

 
Fig. 3 – Different initial configurations for different (0)

1 [ 25 ; 50 ]θ ∈ − ° ° , in x-y plane. 

So, the optimization study consists to find (0)
1,opt [ 25 ; 50 ]−θ ∈ ° °  minimizing 

p 1
( )
1

0

N
i

i
J J

−

=

= ∑ , under the nonlinear constraints imposing the end-effector task and 

respectively the obstacle avoidance. Fig. 4 shows the results of this optimization 
study above. 

 

 
Fig. 4 – Influence of the initial joint configuration on the total cost function J. 
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The two search methods, GA and DS, provide quite similar results: 
(0)
1,opt 32θ ≅ °  is the optimal initial first joint coordinate, for which a minimum 

min 13 radJ ≅  of the kinematic cost function is found. Since the average of the total 
cost function is 14 radJ ≅ , this means that by optimizing the initial joint 
configuration one obtains a reduction of the total cost function J of 

14 13 7%14
−≅ ≅ .  For this (0)

1,opt 32θ ≅ ° , the initial posture of the manipulator is 

given by the following initial joint coordinates vector: 

[ ]
[ ]

(0) 32  23.49  61.61  126.46

       0.5585 0.4177 1.0753 2.2071 rad.

− − −

− − −

= ° ° ° ° =

=

θ
 

Starting from this initial posture, the kinematic redundancy resolution using 
GA and DS is performed, considering at each time ti, p0 1i N= ÷ − , the 
minimization of the kinematic cost function (6), the achievement of the end-
effector task (7) and the obstacle avoidance (8). The kinematics of the manipulator 
is presented in Fig. 5, showing the evolutions of the joint coordinates 1( )itθ , 

2 ( )itθ , 3( )itθ  and 4 ( )itθ , p0i N= ÷ . One can remark that the results obtained 
using GA are similar with the ones obtained using DS. Fig. 6 presents the motion 
of the redundant manipulator, when achieving the end-effector task, with obstacle 
avoidance and kinematic cost function minimization ( min 13 radJ ≅  is obtained). 

 
Fig. 5 – Evolution of the joint coordinates for end-effector task achievement, with obstacle avoidance 

and kinematic cost function minimization. 
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Fig. 6 – Motion of the redundant manipulator in x-y plane, when achieving the end-effector task, with 

obstacle avoidance and kinematic cost function minimization. 

7. CONCLUSIONS 

The goal of the kinematic redundancy resolution is to accomplish the 
imposed end-effector task of following the contour of a curve, while ensuring 
obstacle avoidance and minimizing the sum of the joint displacements required for 
accomplishing the end-effector task. This is a nonlinear optimization problem with 
nonlinear constraints. 

This paper presents a sequential optimization strategy for kinematic 
redundancy resolution, using search methods, more precisely GA and respectively 
DS. The joint configuration computed in the previous step represents the current 
point around which the search method will be performed again, iteratively. Thus, 
the global optimization problem can be successfully decomposed into a sequence 
of local optimization sub-problems. 

The results obtained in this paper show insignificant differences between the 
two search methods tested, so we conclude that both GA and DS are satisfactory to 
solve the sequential optimization problem. 

The influence of the initial joint configuration on the total cost function is 
studied as well. This optimization study led to a reduction of 7%≅  of the total 
kinematic cost function. 

So far, the manipulator’s base is considered as fixed. Further work will vary 
also the position of the manipulator base, in order to obtain further reductions of 
the total kinematic cost function. The goal is to optimize as much as possible the 
redundant manipulation tasks. 
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