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Abstract. The management and combination of uncertain, imprecise, fuzzy and even 
paradoxical or highly conflicting sources of information has always been, and still 
remains today, of primal importance for the development of reliable modern 
information systems involving artificial reasoning. In this introduction, we present a 
survey of our recent theory of plausible and paradoxical reasoning, known as Dezert-
Smarandache Theory (DSmT), developed for dealing with imprecise, uncertain and 
conflicting sources of information. We focus our presentation on the foundations of 
DSmT and on its most important rules of combination, rather than on browsing 
specific applications of DSmT available in literature. Several simple examples are 
given throughout this presentation to show the efficiency and the generality of this 
new theory.  
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1. INTRODUCTION 

The management and combination of uncertain, imprecise, fuzzy and even 
paradoxical or highly conflicting sources of information has always been, and still 
remains today, of primal importance for the development of reliable modern 
information systems involving artificial reasoning. The combination (fusion) of 
information arises in many fields of applications nowadays (especially in defense, 
medicine, finance, geo-science, economy, etc). When several sensors, observers or 
experts have to be combined together to solve a problem, or if one wants to update 
our current estimation of solutions for a given problem with some new information 
available, we need powerful and solid mathematical tools for the fusion, specially 
when the information one has to deal with is imprecise and uncertain. In this 
chapter, we present a survey of our recent theory of plausible and paradoxical 
reasoning, known as Dezert-Smarandache Theory (DSmT) in the literature, 
developed for dealing with imprecise, uncertain and conflicting sources of 
information. Recent publications have shown the interest and the ability of DSmT 
to solve problems where other approaches fail, especially when conflict between 
sources becomes high. We focus this presentation rather on the foundations of 
DSmT, and on the main important rules of combination, than on browsing specific 
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applications of DSmT available in literature. Successful applications of DSmT in 
target tracking, satellite surveillance, situation analysis, robotics, medicine, 
biometrics, etc, can be found in Parts II of [29, 33, 35] and on the world wide web 
[36]. Several simple examples are given in this paper to show the efficiency and 
the generality of DSmT. 

2. FOUNDATIONS of DSmT 

The development of DSmT (Dezert-Smarandache Theory of plausible and 
paradoxical reasoning [6, 29]) arises from the necessity to overcome the inherent 
limitations of DST (Dempster-Shafer Theory [22]) which are closely related with 
the acceptance of Shafer's model for the fusion problem under consideration (i.e. 
the frame of discernment Θ  is implicitly defined as a finite set of exhaustive and 
exclusive hypotheses iθ , ni ,1,= …  since the masses of belief are defined only on 
the power set of Θ  – see section 0 for details), the third middle excluded principle 
(i.e. the existence of the complement for any elements/propositions belonging to 
the power set of Θ ), and the acceptance of Dempster's rule of combination 
(involving normalization) as the framework for the combination of independent 
sources of evidence. Discussions on limitations of DST and presentation of some 
alternative rules to Dempster's rule of combination can be found in [9, 13, 15–17, 
19, 21, 29, 38, 46, 49, 50, 53–56] and therefore they will be not reported in details 
in this introduction. We argue that these three fundamental conditions of DST can 
be removed and another new mathematical approach for combination of evidence 
is possible. This is the purpose of DSmT. 

The basis of DSmT is the refutation of the principle of the third excluded 
middle and Shafer's model, since for a wide class of fusion problems the intrinsic 
nature of hypotheses can be only vague and imprecise in such a way that precise 
refinement is just impossible to obtain in reality so that the exclusive elements iθ  
cannot be properly identified and precisely separated. Many problems involving 
fuzzy continuous and relative concepts described in natural language and having no 
absolute interpretation like tallness/smallness, pleasure/pain, cold/hot, Sorites 
paradoxes, etc, enter in this category. DSmT starts with the notion of free DSm 
model, denoted )(ΘfM , and considers Θ  only as a frame of exhaustive elements 

iθ , ni ,1,= …  which can potentially overlap. This model is free because no other 
assumption is done on the hypotheses, but the weak exhaustivity constraint which 
can always be satisfied according the closure principle explained in [29]. No other 
constraint is involved in the free DSm model. When the free DSm model holds, the 
commutative and associative classical DSm rule of combination, denoted DSmC, 
corresponding to the conjunctive consensus defined on the free Dedekind's lattice 
is performed. 

Depending on the intrinsic nature of the elements of the fusion problem under 
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consideration, it can however happen that the free model does not fit the reality 
because some subsets of Θ  can contain elements known to be truly exclusive but 
also truly non existing at all at a given time (specially when working on dynamic 
fusion problem where the frame Θ  varies with time with the revision of the 
knowledge available). These integrity constraints are then explicitly and formally 
introduced into the free DSm model )(ΘfM  in order to adapt it properly to fit as 
close as possible with the reality and permit to construct a hybrid DSm model 

)(ΘM  on which the combination will be efficiently performed. Shafer's model, 
denoted )(0 ΘM , corresponds to a very specific hybrid DSm model including all 
possible exclusivity constraints. DST has been developed for working only with 

)(0 ΘM  while DSmT has been developed for working with any kind of hybrid 
model (including Shafer's model and the free DSm model), to manage as efficiently 
and precisely as possible imprecise, uncertain and potentially highly conflicting 
sources of evidence while keeping in mind the possible dynamicity of the 
information fusion problematic. The foundations of DSmT are therefore totally 
different from those of all existing approaches managing uncertainties, 
imprecisions and conflicts. DSmT provides a new interesting way to attack the 
information fusion problematic with a general framework in order to cover a wide 
variety of problems.  

DSmT refutes also the idea that sources of evidence provide their beliefs with 
the same absolute interpretation of elements of the same frame Θ  and the conflict 
between sources arises not only because of the possible unreliability of sources, but 
also because of possible different and relative interpretation of Θ , e.g. what is 
considered as good for somebody can be considered as bad for somebody else. 
There is some unavoidable subjectivity in the belief assignments provided by the 
sources of evidence, otherwise it would mean that all bodies of evidence have a 
same objective and universal interpretation (or measure) of the phenomena under 
consideration, which unfortunately rarely occurs in reality, but when basic belief 
assignments (bba's) are based on some objective probabilities transformations. But 
in this last case, probability theory can handle properly and efficiently the 
information, and DST, as well as DSmT, becomes useless. If we now get out of the 
probabilistic background argumentation for the construction of bba, we claim that 
in most of cases, the sources of evidence provide their beliefs about elements of the 
frame of the fusion problem only based on their own limited knowledge and 
experience without reference to the (inaccessible) absolute truth of the space of 
possibilities. 

2.1. THE POWER SET, HYPER-POWER SET AND SUPER-POWER SET 

In DSmT, we take very care about the model associated with the set Θ  of 
hypotheses where the solution of the problem is assumed to belong to. In 
particular, the three main sets (power set, hyper-power set and super-power set) can 
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be used depending on their ability to fit adequately with the nature of hypotheses. 
In the following, we assume that },,{= 1 nθθ …Θ  is a finite set (called frame) of n  
exhaustive elements3. If },,{= 1 nθθ …Θ  is a priori not closed (Θ  is said to be an 
open world/frame), one can always include in it a closure element, say 1+nθ  in such 
away that we can work with a new closed world/frame },,,{ 11 +nn θθθ … . So 
without loss of generality, we will always assume that we work in a closed world 
by considering the frame Θ  as a finite set of exhaustive elements. Before 
introducing the power set, the hyper-power set and the super-power set it is 
necessary to recall that subsets are regarded as propositions in Dempster-Shafer 
Theory (see Chapter 2 of [22]) and we adopt the same approach in DSmT. 

• Subsets as propositions: Glenn Shafer in pages 35–37 of [22] considers 
the subsets as propositions in the case we are concerned with the true value 
of some quantity θ  taking its possible values in Θ . Then the propositions 

)(APθ  of interest are those of the form4:  

Θ.bset A of is in a suθofvaluetrueTheAP       )( ∆θ  

Any proposition )(APθ  is thus in one-to-one correspondence with the 

subset A  of Θ . Such correspondence is very useful since it translates the 
logical notions of conjunction ∧ , disjunction ∨ , implication ⇒  and 
negation ¬  into the set-theoretic notions of intersection ∩ , union ∪ , 
inclusion ⊂  and complementation (.)c . Indeed, if )(APθ  and )(BPθ  are 

two propositions corresponding to subsets A  and B  of Θ , then the 
conjunction )()( BPAP θθ ∧  corresponds to the intersection BA∩  and 

the disjunction )()( BPAP θθ ∨  corresponds to the union BA∪ . A  is a 

subset of B  if and only if )()( BPAP θθ ⇒  and A  is the set-theoretic 

complement of B  with respect to Θ  (written )(= BcA Θ ) if and only if 

)(=)( BPAP θθ ¬ . In other words, the following equivalences are then 
used between the operations on the subsets and on the propositions 
(Table 1).  

                                                 
3 We do not assume here that elements iθ  are necessary exclusive, unless specified. There is no 

restriction on iθ  but the exhaustivity. 
4 We use the symbol  ∆ to mean equals by definition; the right-hand side of the equation is the 

definition of the left-hand side. 
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Table  1 

Correspondence between operations on subsets and on propositions 

Operations Subsets Propositions 
Intersection/conjunction BA∩  )()( BPAP θθ ∧  

Union/disjunction BA∪  )()( BPAP θθ ∨  

Inclusion/implication BA⊂  )()( BPAP θθ ⇒  

Complementation/negation )(= BcA Θ  )(=)( BPAP θθ ¬  

  
• Canonical form of a proposition: In DSmT we consider all 

propositions/sets in a canonical form. We take the disjunctive normal form, 
which is a disjunction of conjunctions, and it is unique in Boolean algebra 
and simplest. For example, )(= CBABAX ∪∪∩∩  it is not in a 
canonical form, but we simplify the formula and BAX ∩=  is in a 
canonical form.  

• The power set: ),( 2 ∪Θ∆Θ   
 Aside Dempster's rule of combination, the power set is one of the corner 

stones of Dempster-Shafer Theory (DST) since the basic belief assignments to 
combine are defined on the power set of the frame Θ . In mathematics, given a set 
Θ , the power set of Θ , written Θ2 , is the set of all subsets of Θ . In 
ZermeloĐFraenkel set theory with the axiom of choice (ZFC), the existence of the 
power set of any set is postulated by the axiom of power set. In other words, Θ  
generates the power set Θ2  with the ∪  (union) operator only. 

 More precisely, the power set Θ2  is defined as the set of all composite 
propositions/subsets built from elements of Θ  with ∪  operator such that:   

1.  Θ∈∅ 2,,, 1 nθθ … .  

2.  If Θ∈2, BA , then Θ∈∪ 2BA .  
3.  No other elements belong to Θ2 , except those obtained by using rules 1 

and 2.  
• The hyper-power set: ),,( ∩∪Θ∆ΘD   
One of the cornerstones of DSmT is the free Dedekind's lattice [3] denoted as 

hyper-power set in DSmT framework. Let },,{= 1 nθθ …Θ  be a finite set (called 

frame) of n  exhaustive elements. The hyper-power set ΘD  is defined as the set of 
all composite propositions/subsets built from elements of Θ  with ∪  and ∩  
operators such that:   

1.  Θ∈∅ Dnθθ ,,, 1 … . 

2.  If Θ∈DBA, , then Θ∈∩ DBA  and Θ∈∪ DBA . 
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3. No other elements belong to ΘD , except those obtained by using rules 1 or 2. 
 
Therefore by convention, we write ),,(= ∩∪ΘΘD  which means that Θ  

generates ΘD  under operators ∪  and ∩ . The dual (obtained by switching ∪  and 
∩  in expressions) of ΘD  is itself. There are elements in ΘD  which are self-dual 
(dual to themselves), for example 8α  for the case when 3=n  in the following 

example. The cardinality of ΘD  is majored by 
n22  when the cardinality of Θ  

equals n , i.e. n|=|Θ . The generation of hyper-power set ΘD  is closely related 
with the famous Dedekind's problem [2, 3] on enumerating the set of isotone 
Boolean functions. The generation of the hyper-power set is presented in [29]. 
Since for any given finite set Θ , |2||| ΘΘ ≥D  we call ΘD  the hyper-power set 
of Θ . 

The cardinality of hyper-power set ΘD  for 1≥n  follows the sequence of 
Dedekind's numbers [24], i.e. 1, 2, 5, 19, 167, 7580, 7828353, ... and analytical 
expression of Dedekind's numbers has been obtained recently by Tombak in [45] 
(see [29] for details on generation and ordering of ΘD ). Interesting investigations 
on the programming of the generation of hyper-power sets for engineering 
applications have been done in Chapter 15 of [33] and in [35]. 

Shafer's model of a frame: More generally, when all the elements of a given 
frame Θ  are known (or are assumed to be) truly exclusive, then the hyper-power 
set ΘD  reduces to the classical power set Θ2 . Therefore, working on power set Θ2  
as Glenn Shafer has proposed in his Mathematical Theory of Evidence [22]) is 
equivalent to work on hyper-power set ΘD  with the assumption that all elements 
of the frame are exclusive. This is what we call Shafer's model of the frame Θ , 
written )(0 ΘM , even if such model/assumption has not been clearly stated 
explicitly by Shafer himself in his milestone book. 

• The super-power set: (.)),,,( cS ∩∪Θ∆Θ   
The notion of super-power set has been introduced by Smarandache in the 

Chapter 8 of [33]. It corresponds actually to the theoretical construction of the 
power set of the minimal5 refined frame refΘ  of Θ . Θ  generates ΘS  under 
operators ∪ , ∩  and complementation (.)c . (.)),,,(= cS ∩∪ΘΘ  is a Boolean 
algebra with respect to the union, intersection and complementation. Therefore 
working with the super-power set is equivalent to work with a minimal theoretical 
refined frame refΘ  satisfying Shafer's model. More precisely, ΘS  is defined as the 
set of all composite propositions/subsets built from elements of Θ  with ∪ , ∩  

                                                 
5The minimality refers here to the cardinality of the refined frames. 
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and (.)c  operators such that:   
1.  Θ∈∅ Snθθ ,,, 1 … .  

2.  If Θ∈ SBA, , then Θ∈∩ SBA , Θ∈∪ SBA .  
3.  If Θ∈ SA , then Θ∈ SAc )( .  
4.  No other elements belong to ΘS , except those obtained by using rules 

1, 2 and 3.  
As reported in [30], a similar generalization has been previously used in 1993 

by Guan and Bell [12] for the Dempster-Shafer rule using propositions in 
sequential logic and reintroduced in 1994 by Paris in his book [18], page 4. 

A one-to-one correspondence between the elements of ΘS  and 
refΘ2  can be 

defined for any cardinality 2|| ≥Θ  of the frame Θ  and thus one can consider ΘS  

as the mathematical construction of the power set 
refΘ2  of the minimal refinement 

of the frame Θ . Of course, when Θ  already satisfies Shafer's model, the hyper-
power set and the super-power set coincide with the classical power set of Θ . It is 
worth to note that even if we have a mathematical tool to built the minimal refined 
frame satisfying Shafer's model, it doesn't mean necessary that one must work with 
this super-power set in general in real applications because most of the times the 
elements/granules of ΘS  have no clear physical meaning, not to mention the 
drastic increase of the complexity since one has ΘΘΘ ⊆⊆ SD2  and  

1||2|||| 2=2|=|<|<|2|=2| −ΘΘΘΘΘΘ
ref

SD  (1) 

Typically, we have Table 2. 
Table  2 

Cardinalities of Θ2 , ΘD  and ΘS   

n|=|Θ  n2|=2| Θ  || ΘD  122|=2|=|| −ΘΘ nrefS  

2 4 5 8=23  
3 8 19 128=27  
4 16 167 32768=215  
5 32 7580 312 = 2 147 483 648  

  
In summary, DSmT offers truly the possibility to build and to work on 

refined frames and to deal with the complement whenever necessary, but in most of 
applications either the frame Θ  is already built/chosen to satisfy Shafer's model or 
the refined granules have no clear physical meaning which finally prevent to be 
considered/assessed individually so that working on the hyper-power set is usually 
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sufficient for dealing with uncertain imprecise (quantitative or qualitative) and 
highly conflicting sources of evidences. Working with ΘS  is actually very similar 
to working with Θ2  in the sense that in both cases we work with classical power 
sets; the only difference is that when working with ΘS  we have implicitly 
switched from the original frame Θ  representation to a minimal refinement refΘ  
representation. Therefore, in the sequel we focus our discussions based mainly on 
hyper-power set rather than (super-) power set which has already been the basis for 
the development of DST. But as already mentioned, DSmT can easily deal with 
belief functions defined on Θ2  or ΘS  similarly as those defined on ΘD . 

 Generic notation: In the sequel, we use the generic notation ΘG  for 
denoting the sets (power set, hyper-power set and super-power set) on which the 
belief functions are defined. 

The main distinctions between DSmT and DST are summarized by the 
following points:   

1. The refinement is not always (physically) possible, especially for elements 
from the frame of discernment whose frontiers are not clear, such as: colors, vague 
sets, unclear hypotheses, etc. in the frame of discernment; DST does not fit well for 
working in such cases, while DSmT does;  

2. Even in the case when the frame of discernment can be refined (i.e. the 
atomic elements of the frame have all a distinct physical meaning), it is still easier 
to use DSmT than DST since in DSmT framework the refinement is done 
automatically by the mathematical construction of the super-power set;  

3. DSmT offers better fusion rules, for example Proportional Conflict 
redistribution Rule # 5 (PCR5) – presented in the sequel – is better than Dempster's 
rule; hybrid DSm rule (DSmH) works for the dynamic fusion, while Dubois-Prade 
fusion rule does not (DSmH is an extension of Dubois-Prade rule);  

4. DSmT offers the best qualitative operators (when working with labels) 
giving the most accurate and coherent results;  

5. DSmT offers new interesting quantitative conditioning rules (BCRs) and 
qualitative conditioning rules (QBCRs), different from Shafer's conditioning rule 
(SCR). SCR can be seen simply as a combination of a prior mass of belief with the 
mass 1=)(Am  whenever A  is the conditioning event;  

6. DSmT proposes a new approach for working with imprecise quantitative 
or qualitative information and not limited to interval-valued belief structures as 
proposed generally in the literature [4, 5, 47].  

2.2. NOTION OF FREE AND HYBRID DSM MODELS 

Free DSm model: The elements iθ , ni ,1,= …  of Θ  constitute the finite 
set of hypotheses/concepts characterizing the fusion problem under consideration. 
When there is no constraint on the elements of the frame, we call this model the 
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free DSm model, written )(ΘfM . This free DSm model allows to deal directly 
with fuzzy concepts which depict a continuous and relative intrinsic nature and 
which cannot be precisely refined into finer disjoint information granules having an 
absolute interpretation because of the unreachable universal truth. In such case, the 
use of the hyper-power set ΘD  (without integrity constraints) is particularly well 
adapted for defining the belief functions one wants to combine. 

 Shafer's model: In some fusion problems involving discrete concepts, all 
the elements iθ , ni ,1,= …  of Θ  can be truly exclusive. In such case, all the 
exclusivity constraints on iθ , ni ,1,= …  have to be included in the previous 
model to characterize properly the true nature of the fusion problem and to fit it 
with the reality. By doing this, the hyper-power set ΘD  as well as the super-power 
set ΘS  reduce naturally to the classical power set Θ2  and this constitutes what we 
have called Shafer's model, denoted )(0 ΘM . Shafer's model corresponds actually 
to the most restricted hybrid DSm model. 

 Hybrid DSm models: Between the class of fusion problems corresponding 
to the free DSm model )(ΘfM  and the class of fusion problems corresponding to 
Shafer's model )(0 ΘM , there exists another wide class of hybrid fusion problems 
involving in Θ  both fuzzy continuous concepts and discrete hypotheses. In such 
(hybrid) class, some exclusivity constraints and possibly some non-existential 
constraints (especially when working on dynamic6 fusion) have to be taken into 
account. Each hybrid fusion problem of this class will then be characterized by a 
proper hybrid DSm model denoted )(ΘM  with )()( Θ≠Θ fMM  and 

)()( 0 Θ≠Θ MM .  
In any fusion problems, we consider as primordial at the very beginning and 

before combining information expressed as belief functions to define clearly the 
proper frame Θ  of the given problem and to choose explicitly its corresponding 
model one wants to work with. Once this is done, the second important point is to 
select the proper set Θ2 , ΘD  or ΘS  on which the belief functions will be defined. 
The third point concerns the choice of an efficient rule of combination of belief 
functions and finally the criteria adopted for decision-making. 

In the sequel, we focus our presentation mainly on hyper-power set ΘD  
(unless specified) since it is the most interesting new aspect of DSmT for readers 
already familiar with DST framework, but a fortiori we can work similarly on 

classical power set Θ2  if Shafer's model holds, and even on 
refΘ2  (the power set 

of the minimal refined frame) whenever one wants to use it and if possible. 
 Examples of models for a frame Θ :  

                                                 
6i.e. when the frame Θ  and/or the model M is changing with time. 
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•  Let's consider the 2D problem where },{= 21 θθΘ  with 
},,,,{= 212121 θθθθθθ ∪∩∅ΘD  and assume now that 1θ  and 2θ  are truly 

exclusive (i.e. Shafer's model 0M holds), then because ∅∩
0

21 =
M

θθ , one gets 

ΘΘ ≡∪∅∪∅∩∅ 2},,,{=},,,=,{= 21212121

0

21 θθθθθθθθθθ
M

D . 
 •  As another simple example of hybrid DSm model, let's consider the 3D 

case with the frame },,{= 321 θθθΘ  with the model fMM ≠  in which we force 

all possible conjunctions to be empty, but 21 θθ ∩ . This hybrid DSm model is then 
represented with the Venn diagram on Fig. 1 (where boundaries of intersection of 

1θ  and 2θ  are not precisely defined if 1θ  and 2θ  represent only fuzzy concepts 
like smallness and tallness by example).  

               
Fig. 1 – Venn diagram of a DSm hybrid model for a 3D frame. 

2.3. GENERALIZED BELIEF FUNCTIONS 

From a general frame Θ , we define a map [0,1]:(.) →ΘGm  associated to 
a given body of evidence B  as  

1=)(and0=)( Amm
GA
∑

Θ∈

∅ . (2) 

The quantity )(Am  is called the generalized basic belief assignment/mass 
(gbba) of A . 

 The generalized belief and plausibility functions are defined in almost the 
same manner as within DST, i.e.  

)(=)(Pl)(=)(Bel BmABmA

GB
AB

GB
AB

∑∑
Θ∈
∅≠∩

Θ∈
⊆

. 
(3) 
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We recall that ΘG  is the generic notation for the set on which the gbba is 
defined ( ΘG  can be Θ2 , ΘD  or even ΘS  depending on the model chosen for Θ ). 
These definitions are compatible with the definitions of the classical belief 
functions in DST framework when ΘΘ 2=G  for fusion problems where Shafer's 
model )(0 ΘM  holds. We still have )(Pl)(Bel, AAGA ≤∈∀ Θ . Note that when 
working with the free DSm model )(ΘfM , one has always 1=)(Pl A  

)=( ΘΘ∈∅≠∀ DGA  which is normal. 

2.4. THE CLASSIC DSM RULE OF COMBINATION 

When the free DSm model )(ΘfM  holds for the fusion problem under 
consideration, the classic DSm rule of combination ](.)[(.) 21)(

mmmm fM
⊕∆≡

Θ
 

of two independent7 sources of evidences 1B  and 2B  over the same frame Θ  with 
belief functions (.)Bel1  and (.)Bel2  associated with gbba (.)1m  and (.)2m  
corresponds to the conjunctive consensus of the sources. It is given by [29]:  

)()(=)()(, 21

=
,

)(
BmAmCmCmDC

CBA
DBA

fM ∑
∩

Θ∈
Θ

Θ ≡∈∀ . 
(4) 

Since ΘD  is closed under ∪  and ∩  set operators, this new rule of 
combination guarantees that (.)m  is a proper generalized belief assignment, i.e. 

[0,1]:(.) →ΘDm . This rule of combination is commutative and associative and 
can always be used for the fusion of sources involving fuzzy concepts when free 
DSm model holds for the problem under consideration. This rule has been 
extended for 2>s  sources in [29]. 

 According to Table 2, this classic DSm rule of combination looks very 
expensive in terms of computations and memory size due to the huge number of 
elements in ΘD  when the cardinality of Θ  increases. This remark is however 
valid only if the cores (the set of focal elements of gbba) )( 11 mK  and )( 22 mK  
coincide with ΘD , i.e. when 0>)(1 Am  and 0>)(2 Am  for all Θ∈∅≠ DA . 
Fortunately, it is important to note here that in most of the practical applications the 
sizes of )( 11 mK  and )( 22 mK  are much smaller than || ΘD  because bodies of 
evidence generally allocate their basic belief assignments only over a subset of the 
                                                 

7 While independence is a difficult concept to define in all theories managing epistemic 
uncertainty, we follow here the interpretation of Smets in [37] and [38], p. 285 and consider that two 
sources of evidence are independent (i.e. distinct and noninteracting) if each leaves one totally 
ignorant about the particular value the other will take. 
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hyper-power set. This makes things easier for the implementation of the classic 
DSm rule (4). The DSm rule is actually very easy to implement. It suffices for each 
focal element of )( 11 mK  to multiply it with the focal elements of )( 22 mK  and 
then to pool all combinations which are equivalent under the algebra of sets. While 
very costly in term on memory storage in the worst case (i.e. when all 0>)(Am , 

Θ∈DA  or 
ref

A Θ∈2 ), the DSm rule however requires much smaller memory 
storage than when working with ΘS , i.e. working with a minimal refined frame 
satisfying Shafer's model. 

In most fusion applications only a small subset of elements of ΘD  have a 
non null basic belief mass because all the commitments are just usually impossible 
to obtain precisely when the dimension of the problem increases. Thus, it is not 
necessary to generate and keep in memory all elements of ΘD  (or eventually ΘS ) 
but only those which have a positive belief mass. However there is a real technical 
challenge on how to manage efficiently all elements of the hyper-power set. This 
problem is obviously much more difficult when trying to work on a refined frame 
of discernment refΘ  if one really prefers to use Dempster-Shafer theory and apply 
Dempster's rule of combination. It is important to keep in mind that the ultimate 
and minimal refined frame consisting in exhaustive and exclusive finite set of 
refined exclusive hypotheses is just impossible to justify and to define precisely for 
all problems dealing with fuzzy and ill-defined continuous concepts. A discussion 
on refinement with an example has be included in [29]. 

2.5. THE HYBRID DSM RULE OF COMBINATION 

When the free DSm model )(ΘfM  does not hold due to the true nature of 
the fusion problem under consideration which requires to take into account some 
known integrity constraints, one has to work with a proper hybrid DSm model 

)()( Θ≠Θ fMM . In such case, the hybrid DSm rule (DSmH) of combination 
based on the chosen hybrid DSm model )(ΘM  for 2≥k  independent sources of 
information is defined for all Θ∈DA  as [29]:  

)]()()()[()(=)( 321)( ASASASAAmAm MDSmH ++∆Θ φ  (5) 

where all sets involved in formulas are in the canonical form and )(Aφ  is the 
characteristic non-emptiness function of a set A , i.e. 1=)(Aφ  if ∅∉A  and 

0=)(Aφ  otherwise, where },{ ∅∅∆∅ M . �∅  is the set of all elements of ΘD  
which have been forced to be empty through the constraints of the model � and ∅  
is the classical/universal empty set. )()(

)(1 AmAS fM θ
≡ , )(2 AS , )(3 AS  are 
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defined by  
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with )()()( 21 kXuXuXuU ∪∪∪∆ …  where )(Xu  is the union of all iθ  that 
compose X , ntI θθθ ∪∪∪∆ …21  is the total ignorance. )(1 AS  corresponds to 
the classic DSm rule for k  independent sources based on the free DSm model 

)(ΘfM ; )(2 AS  represents the mass of all relatively and absolutely empty sets 
which is transferred to the total or relative ignorances associated with non 
existential constraints (if any, like in some dynamic problems); )(3 AS  transfers the 
sum of relatively empty sets directly onto the canonical disjunctive form of non-
empty sets. 

The hybrid DSm rule of combination generalizes the classic DSm rule of 
combination and is not equivalent to Dempter's rule. It works for any models (the 
free DSm model, Shafer's model or any other hybrid models) when manipulating 
precise generalized (or eventually classical) basic belief functions. An extension of 
this rule for the combination of imprecise generalized (or eventually classical) 
basic belief functions is presented in next section. As already stated, in DSmT 
framework it is also possible to deal directly with complements if necessary 
depending on the problem under consideration and the information provided by the 
sources of evidence themselves.  

The first and simplest way is to work with ΘS  on Shafer's model when a 
minimal refinement is possible and makes sense. The second way is to deal with 
partially known frame and introduce directly the complementary hypotheses into 
the frame itself. By example, if one knows only two hypotheses 1θ , 2θ  and their 
complements 1θ , 2θ , then we can choose to switch from original frame 
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},{= 21 θθΘ  to the new frame },,,{= 2121 θθθθΘ . In such case, we don't 
necessarily assume that 21 = θθ  and 12 = θθ  because 1θ  and 2θ  may include other 
unknown hypotheses we have no information about (case of partial known frame). 
More generally, in DSmT framework, it is not necessary that the frame is built on 
pure/simple (possibly vague) hypotheses iθ  as usually done in all theories 
managing uncertainty. The frame Θ  can also contain directly as elements 
conjunctions and/or disjunctions (or mixed propositions) and negations/ 
complements of pure hypotheses as well. The DSm rules also work in such non-
classic frames because DSmT works on any distributive lattice built from Θ  
anywhere Θ  is defined. 

2.6. EXAMPLES OF COMBINATION RULES 

Here are some numerical examples on results obtained by DSm rules of 
combination. More examples can be found in [29]. 

2.6.1. Example with },,,{= 4321 θθθθΘ  

Let's consider the frame of discernment },,,{= 4321 θθθθΘ , two independent 
experts, and the two following bbas 

0.8=)(0.2=)(0.4=)(0.6=)( 42223111 θθθθ mmmm   

represented in terms of mass matrix  









0.800.20
00.400.6

=M .  

Dempster's rule cannot be applied because: 41 ≤≤∀ j , one gets 

0/0=)( jm θ  (undefined!).  

But the classic DSm rule works because one obtains: 
0=)(=)(=)(=)( 4321 θθθθ mmmm , and 0.12=)( 21 θθ ∩m , 

0.48=)( 41 θθ ∩m , 0.08=)( 32 θθ ∩m , 0.32=)( 43 θθ ∩m  (partial paradoxes/ 
conflicts).  

Suppose now one finds out that all intersections are empty (Shafer's model), 
then one applies the hybrid DSm rule and one gets (index h  stands here for hybrid 
rule): 0.12=)( 21 θθ ∪hm , 0.48=)( 41 θθ ∪hm , 0.08=)( 32 θθ ∪hm  and 

0.32=)( 43 θθ ∪hm . 
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2.6.2.  Generalization of Zadeh's example with },,{= 321 θθθΘ  

Let's consider 1<,<0 21 εε  be two very tiny positive numbers (close to 
zero), the frame of discernment be },,{= 321 θθθΘ , have two experts (independent 
sources of evidence 1s  and 2s ) giving the belief masses  

13121111 =)(0=)(1=)( εθθεθ mmm −   

23222212 =)(1=)(0=)( εθεθθ mmm − .  

From now on, we prefer to use matrices to describe the masses, i.e.  









−

−

22

11

10
01

εε
εε

.  

Using Dempster's rule of combination, one gets  

1=
)(100)(1

)(=)(
2121

21
3 εεεε

εεθ
+−⋅+⋅−

m ,  

which is absurd (or at least counter-intuitive). Note that whatever positive values 
for 1ε , 2ε  are, Dempster's rule of combination provides always the same result 
(one) which is abnormal. The only acceptable and correct result obtained by 
Dempster's rule is really obtained only in the trivial case when 1== 21 εε , i.e. 

when both sources agree in 3θ  with certainty which is obvious.  
Using the DSm rule of combination based on free-DSm model, one gets 

213 =)( εεθm , ))(1(1=)( 2121 εεθθ −−∩m , 2131 )(1=)( εεθθ −∩m , 

1232 )(1=)( εεθθ −∩m  and the others are zero which appears more 
reliable/trustable.  

Going back to Shafer's model and using the hybrid DSm rule of combination, 
one gets 213 =)( εεθm , ))(1(1=)( 2121 εεθθ −−∪m , 2131 )(1=)( εεθθ −∪m , 

1232 )(1=)( εεθθ −∪m  and the others are zero.  

Note that in the special case when 1/2== 21 εε , one has  

1/2=)(0=)(1/2=)( 312111 θθθ mmm   

1/2=)(1/2=)(0=)( 322212 θθθ mmm .  

Dempster's rule of combinations still yields 1=)( 3θm  while the hybrid DSm 
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rule based on the same Shafer's model yields now 1/4=)( 3θm , 1/4=)( 21 θθ ∪m , 
1/4=)( 31 θθ ∪m , 1/4=)( 32 θθ ∪m  which is normal. 

2.6.3.  Comparison with Smets, Yager and Dubois & Prade rules 

We compare the results provided by DSmT rules and the main common rules 
of combination on the following very simple numerical example where only 2 
independent sources (a priori assumed equally reliable) are involved and providing 
their belief initially on the 3D frame },,{= 321 θθθΘ . It is assumed in this example 
that Shafer's model holds and thus the belief assignments (.)1m  and (.)2m  do not 
commit belief to internal conflicting information. (.)1m  and (.)2m  are chosen as 
follows:  

      0.3=)(0.2=)(0.4=)(0.1=)( 211312111 θθθθθ ∪mmmm   

      0.1=)(0.3=)(0.1=)(0.5=)( 212322212 θθθθθ ∪mmmm .  

These belief masses are usually represented in the form of a belief mass 
matrix M  given by  









0.10.30.10.5
0.30.20.40.1

=M , (9) 

where index i  for the rows corresponds to the index of the source no. i  and the 
indexes j  for columns of M  correspond to a given choice for enumerating the 
focal elements of all sources. In this particular example, index 1=j  corresponds 
to 1θ , 2=j  corresponds to 2θ , 3=j  corresponds to 3θ  and 4=j  corresponds 
to 21 θθ ∪ . 

Now let's imagine that one finds out that 3θ  is actually truly empty because 
some extra and certain knowledge on 3θ  is received by the fusion center. As 
example, 1θ , 2θ  and 3θ  may correspond to three suspects (potential murders) in a 
police investigation, (.)1m  and (.)2m  corresponds to two reports of independent 
witnesses, but it turns out that finally 3θ  has provided a strong alibi to the criminal 
police investigator once arrested by the policemen. This situation corresponds to 

set up a hybrid model M  with the constraint ∅
M
=3θ .  

Let's examine the result of the fusion in such situation obtained by the Smets', 
Yager's, Dubois & Prade's and hybrid DSm rules of combinations. First note that, 
based on the free DSm model, one would get by applying the classic DSm rule 
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(denoted here by index DSmC ) the following fusion result  

 0.11=)(0.21=)( 21 θθ DSmCDSmC mm   

0.03=)(0.06=)( 213 θθθ ∪DSmCDSmC mm   

0.13=)(0.21=)( 3121 θθθθ ∩∩ DSmCDSmC mm   

0.11=))((0.14=)( 21332 θθθθθ ∪∩∩ DSmCDSmC mm .  

But because of the exclusivity constraints (imposed here by the use of 

Shafer's model and by the non-existential constraint ∅
M
=3θ ), the total conflicting 

mass is actually given by 0.65=0.110.140.130.210.06=12 ++++k . 

• If one applies Dempster's rule [22] (denoted here by index DS ), one 
gets:  

0=)(∅DSm   

0.600000=0.21/0.35=0.65]0.21/[1=]0.21/[1=)( 121 −− kmDS θ   

0.314286=0.11/0.35=0.65]0.11/[1=]0.11/[1=)( 122 −− kmDS θ   

0.085714=0.03/0.35=0.65]0.03/[1=]0.03/[1=)( 1221 −−∪ kmDS θθ .  

• If one applies Smets' rule [39, 40] (i.e. the non normalized version of 
Dempster's rule with the conflicting mass transferred onto the empty set), one gets: 

  

mass) ng(conflicti0.65=)(=)( ∅∅ mmS  

0.21=)( 1θSm   

0.11=)( 2θSm   

0.03=)( 21 θθ ∪Sm .  

• If one applies Yager's rule [48-50], one gets:  

0=)(∅Ym   

0.21=)( 1θYm   
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0.11=)( 2θYm   

0.68=0.650.03=0.03=)( 1221 ++∪ kmY θθ .  

• If one applies Dubois & Prade's rule [10], one gets because ∅
M
=3θ  :  

rule) sePrad&Dubois of definition(by 0=)( ′∅DPm   

)()()()([=)( 2121112111 θθθθθθ ∪+ mmmmmDP  
)]()( 21112 θθθ ∪+ mm  

)]()()()([ 31123211 θθθθ mmmm ++  
0.2]0.50.3[0.10.3]0.50.10.10.5[0.1= ⋅+⋅+⋅+⋅+⋅  

0.34=0.130.21= +  

 

0.2]0.10.3[0.40.3]0.10.10.40.1[0.4=)( 2 ⋅+⋅+⋅+⋅+⋅θDPm  
0.25=0.140.11= +  

 

)]()([=)( 21221121 θθθθθθ ∪∪∪ mmmDP  
)]()()()([ 3121232211 θθθθθθ mmmm ∪+∪+  

)]()()()([ 21122211 θθθθ mmmm ++  
0.4]0.50.1[0.10.2]0.10.3[0.3[0.30.1]= ⋅+⋅+⋅+⋅+  

0.20][0.010.02][0.09[0.03]= ++++  
0.35=0.210.110.03= ++ . 

 

 Now if one adds up the masses, one gets 0.94=0.350.250.340 +++  
which is less than 1. Therefore Dubois & Prade's rule of combination does not 
work when a singleton, or an union of singletons, becomes empty (in a dynamic 
fusion problem). The products of such empty-element columns of the mass matrix 
M  are lost; this problem is fixed in DSmT by the sum (.)2S  in (5) which transfers 
these products to the total or partial ignorances.  

• Finally, if one applies DSmH rule, one gets because ∅
M
=3θ :  

DSmH) of definition(by 0=)(∅DSmHm   
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))(θm as (same0.34=)( 1DP1θDSmHm   

))(θm as (same0.25=)( 2DP2θDSmHm   

)]()([=)( 21221121 θθθθθθ ∪∪∪ mmmDSmH  
)]()()()([ 3121232211 θθθθθθ mmmm ∪+∪+  

)]()([)]()()()([ 323121122211 θθθθθθ mmmmmm +++  
0.41=0.060.35=0.060.210.110.03= ++++  

)( 21 θθ ∪≠ DPm . 

 

We can easily verify that 1=)()()( 2121 θθθθ ∪++ DSmHDSmHDSmH mmm . In 
this example, using the hybrid DSm rule, one transfers the product of the empty-
element 3θ  column, 0.06=0.30.2=)()( 3231 ⋅θθ mm , to )( 21 θθ ∪DSmHm , which 
becomes equal to 0.41=0.060.35+ . Clearly, DSmH rule doesn't provide the 
same result as Dubois and Prade's rule, but only when working on static frames of 
discernment (restricted cases).  

2.7. FUSION OF IMPRECISE BELIEFS 

In many fusion problems, it seems very difficult (if not impossible) to have 
precise sources of evidence generating precise basic belief assignments (especially 
when belief functions are provided by human experts), and a more flexible 
plausible and paradoxical theory supporting imprecise information becomes 
necessary. In the previous sections, we presented the fusion of precise uncertain 
and conflicting/paradoxical generalized basic belief assignments (gbba) in DSmT 
framework. We mean here by precise gbba, basic belief functions/masses (.)m  
defined precisely on the hyper-power set ΘD  where each mass )(Xm , where X  
belongs to ΘD , is represented by only one real number belonging to [0,1]  such 
that 1=)(Xm

DX∑ Θ∈
. In this section, we present the DSm fusion rule for dealing 

with admissible imprecise generalized basic belief assignments (.)Im  defined as 
real subunitary intervals of [0,1], or even more general as real subunitary sets [i.e. 
sets, not necessarily intervals].  

An imprecise belief assignment (.)Im  over ΘD  is said admissible if and 
only if there exists for every Θ∈DX  at least one real number )()( XmXm I∈  
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such that 1=)(Xm
DX∑ Θ∈

. The idea to work with imprecise belief structures 

represented by real subset intervals of [0,1]  is not new and has been investigated 
in [4, 5, 14] and references therein. The proposed works available in the literature, 
upon our knowledge were limited only to sub-unitary interval combination in the 
framework of Transferable Belief Model (TBM) developed by Smets [39, 40]. We 
extend the approach of Lamata & Moral and Denœux based on subunitary interval-
valued masses to subunitary set-valued masses; therefore the closed intervals used 
by Denœux to denote imprecise masses are generalized to any sets included in 
[0,1], i.e. in our case these sets can be unions of (closed, open, or half-open/half-
closed) intervals and/or scalars all in [0,1]. Here, the proposed extension is done in 
the context of DSmT framework, although it can also apply directly to fusion of 
imprecise belief structures within TBM as well if the user prefers to adopt TBM 
rather than DSmT. 

Before presenting the general formula for the combination of generalized 
imprecise belief structures, we remind the following set operators involved in the 
DSm fusion formulas. Several numerical examples are given in the chapter 6 of 
[29]. 

    • Addition of sets  

},,=|{= 2211211221 SsSsssxxSSSS ∈∈+∆++   

    • Subtraction of sets 

},,=|{ 22112121 SsSsssxxSS ∈∈−∆-   

    • Multiplication of sets  

},,=|{ 22112121 SsSsssxxSS ∈∈⋅∆⋅   

    • Division of sets: If 0  doesn't belong to 2S ,  

},,/=|{/ 22112121 SsSsssxxSS ∈∈∆   

2.7.1.  DSm rule of combination for imprecise beliefs 

We present the generalization of the DSm rules to combine any type of 
imprecise belief assignment which may be represented by the union of several sub-
unitary (half-) open intervals, (half-)closed intervals and/or sets of points belonging 
to [0,1]. Several numerical examples are also given. In the sequel, one uses the 
notation ),( ba  for an open interval, ],[ ba  for a closed interval, and ],( ba  or 

),[ ba  for a half open and half closed interval. From the previous operators on sets, 
one can generalize the DSm rules (classic and hybrid) from scalars to sets in the 
following way [29] (chap. 6): Θ∈∅≠∀ DA ,  
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where ∑  and ∏  represent the summation, and respectively product, of 

sets. 
Similarly, one can generalize the hybrid DSm rule from scalars to sets in the 

following way:  

)]()()([)()(=)( 321)( ASASASAAmAm IIIII
DSmH ����� φΘ , (11) 

where all sets involved in formulas are in the canonical form and )(Aφ  is the 
characteristic non emptiness function of the set A  and )(1 AS I , )(2 AS I  and 

)(3 AS I  are defined by  
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In the case when all sets are reduced to points (numbers), the set operations 
become normal operations with numbers; the sets operations are generalizations of 
numerical operations. When imprecise belief structures reduce to precise belief 
structure, DSm rules (10) and (11) reduce to their precise version (4) and (5) 
respectively. 

3. PROPORTIONAL CONFLICT REDISTRIBUTION RULE  

 Instead of applying a direct transfer of partial conflicts onto partial 
uncertainties as with DSmH, the idea behind the Proportional Conflict 
Redistribution (PCR) rule [31, 33] is to transfer (total or partial) conflicting masses 
to non-empty sets involved in the conflicts proportionally with respect to the 
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masses assigned to them by sources as follows: 
    1.  calculation the conjunctive rule of the belief masses of sources;  
    2.  calculation the total or partial conflicting masses;  
    3.  redistribution of the (total or partial) conflicting masses to the non-

empty sets involved in the conflicts proportionally with respect to their masses 
assigned by the sources.  

 The way the conflicting mass is redistributed yields actually several versions 
of PCR rules. These PCR fusion rules work for any degree of conflict, for any 
DSm models (Shafer's model, free DSm model or any hybrid DSm model) and 
both in DST and DSmT frameworks for static or dynamical fusion situations. We 
present below only the most sophisticated proportional conflict redistribution rule 
denoted PCR5 in [31, 33]. PCR5 rule is what we feel the most efficient PCR fusion 
rule developed so far. This rule redistributes the partial conflicting mass to the 
elements involved in the partial conflict, considering the conjunctive normal form 
of the partial conflict. PCR5 is what we think the most mathematically exact 
redistribution of conflicting mass to non-empty sets following the logic of the 
conjunctive rule. It does a better redistribution of the conflicting mass than 
Dempster's rule since PCR5 goes backwards on the tracks of the conjunctive rule 
and redistributes the conflicting mass only to the sets involved in the conflict and 
proportionally to their masses put in the conflict. PCR5 rule is quasi-associative 
and preserves the neutral impact of the vacuous belief assignment because in any 
partial conflict, as well in the total conflict (which is a sum of all partial conflicts), 
the conjunctive normal form of each partial conflict does not include Θ  since Θ  
is a neutral element for intersection (conflict), therefore Θ  gets no mass after the 
redistribution of the conflicting mass. We have proved in [33] the continuity 
property of the fusion result with continuous variations of bba's to combine. 

3.1.  PCR  FORMULAS 

 The PCR5 formula for the combination of two sources ( 2=s ) is given by: 
0=)(5 ∅PCRm  and }{\ ∅∈∀ ΘGX   

]
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where all sets involved in formulas are in canonical form and where ΘG  
corresponds to classical power set Θ2  if Shafer's model is used, or to a constrained 
hyper-power set ΘD  if any other hybrid DSm model is used instead, or to the 
super-power set ΘS  if the minimal refinement refΘ  of Θ  is used; 

)()(12 XmXm ∩≡  corresponds to the conjunctive consensus on X  between the 
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2=s  sources and where all denominators are different from zero. If a 
denominator is zero, that fraction is discarded. 

A general formula of PCR5 for the fusion of 2>s  sources has been 
proposed in [33], but a more intuitive PCR formula (denoted PCR6) which 
provides good results in practice has been proposed by Martin and Osswald in [33] 
(pages 69-88) and is given by: 0=)(6 ∅PCRm  and }{\ ∅∈∀ ΘGX  
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where iσ  counts from 1 to s  avoiding i :  

( ) =  < ,
( ) = 1  .

i

i

j j f j i
j j f j i

σ
σ + ≥

 (17) 

Since iY  is a focal element of expert/source i , 0)()( )()(
1

1=
≠+∑ −

jiji

s

jim YmX σσ ; 

the belief mass assignment )()(12 XmXm s ∩≡K  corresponds to the conjunctive 
consensus on X  between the 2>s  sources. For two sources ( 2=s ), PCR5 and 
PCR6 formulas coincide. 

3.2.  EXAMPLES 

• Example 1: Let's take },{= BAΘ  of exclusive elements (Shafer's model), 
and the following bba:  

  
    A    B    BA∪  

 (.)1m    0.6   0   0.4  

 (.)2m    0   0.3   0.7  

  (.)∩m    0.42   0.12   0.28  

  
 The conflicting mass is )(=12 BAmk ∩∩  and equals 

0.18=)()()()( 2121 AmBmBmAm + . Therefore A  and B  are the only focal 
elements involved in the conflict. Hence according to the PCR5 hypothesis only A  
and B  deserve a part of the conflicting mass and BA∪  do not deserve. With 
PCR5, one redistributes the conflicting mass 0.18=12k  to A  and B  
proportionally with the masses )(1 Am  and )(2 Bm  assigned to A  and B  
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respectively.  
  Here are the results obtained from Dempster's rule, DSmH and PCR5:  

  
    A    B    BA∪  

 DSm    0.512   0.146   0.342  

DSmHm    0.420   0.120   0.460  

5PCRm    0.540   0.180   0.280  

 
• Example 2: Let's modify example 1 and consider  

  
    A    B    BA∪  

 (.)1m    0.6   0   0.4  

 (.)2m    0.2   0.3   0.5  

  (.)∩m    0.50   0.12   0.20  

  
  The conflicting mass )(=12 BAmk ∩∩  as well as the distribution 

coefficients for the PCR5 remains the same as in the previous example but one gets 
now  

  
    A    B    BA∪  

 DSm    0.609   0.146   0.231  

DSmHm    0.500   0.120   0.380  

5PCRm    0.620   0.180   0.200  

 
• Example 3: Let's modify example 2 and consider  

  
    A    B    BA∪  

 (.)1m    0.6   0.3   0.1  

 (.)2m    0.2   0.3   0.5  

  (.)∩m    0.44   0.27   0.05  

  
 The conflicting mass 0.24=)()()()(=0.24= 212112 AmBmBmAmk +  is 

now different from previous examples, which means that 0.2=)(2 Am  and 
0.3=)(1 Bm  did make an impact on the conflict. Therefore A  and B  are the only 

focal elements involved in the conflict and thus only A  and B  deserve a part of 
the conflicting mass. PCR5 redistributes the partial conflicting mass 0.18 to A  and 
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B  proportionally with the masses )(1 Am  and )(2 Bm  and also the partial 
conflicting mass 0.06 to A  and B  proportionally with the masses )(2 Am  and 

)(1 Bm . After all derivations (see [11] for details), one finally gets:  
  

    A    B    BA∪  
 DSm    0.579   0.355   0.066  

DSmHm    0.440   0.270   0.290  

5PCRm    0.584   0.366   0.050  

  
One clearly sees that )( BAmDS ∪  gets some mass from the conflicting mass 

although BA∪  does not deserve any part of the conflicting mass (according to 
PCR5 hypothesis) since BA∪  is not involved in the conflict (only A  and B  are 
involved in the conflicting mass). Dempster's rule appears to us less exact than 
PCR5 and Inagaki's rules [13]. It can be showed [11] that Inagaki's fusion rule 
(with an optimal choice of tuning parameters) can become in some cases very close 
to PCR5 but upon our opinion PCR5 result is more exact (at least less ad-hoc than 
Inagaki's one).  

• Example 4 (A more concrete example): Three people, John ( J ), George 
( G ), and David ( D ) are suspects to a murder. So the frame of discernment is 

},,{ DGJ∆Θ . Two sources (.)1m  and (.)2m  (witnesses) provide the following 
information: 

  
    J    G    D  

 1m    0.9   0   0.1  

2m    0   0.8   0.2  

  
We know that John and George are friends, but John and David hate each 

other, and similarly George and David.   
a) Free model, i. e. all intersections are nonempty: ∅≠∩GJ , ∅≠∩DJ , 

∅≠∩DG , ∅≠∩∩ DGJ . Using the DSm classic rule one gets: 
  

    J    G    D    GJ ∩    DJ ∩    DG∩   DGJ ∩∩  

 DSmCm    0   0   0.02   0.72   0.18   0.08   0  

  
So we can see that John and George together ( GJ ∩ ) are most likely to 

have committed the crime, since the mass 0.72=)( GJmDSmC ∩  is the biggest 
resulting mass after the fusion of the two sources. In Shafer's model, only one 
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suspect could commit the crime, but the free and hybrid models allow two or more 
people to have committed the same crime – which happens in reality. 

b)  Let's consider the hybrid model, i.e. some intersections are empty, and 
others are not. According to the above statement about the relationships between 
the three suspects, we can deduce that ∅≠∩GJ , while 

∅∩∩∩∩ === DGJDGDJ . Then we first apply the DSm Classic rule, 
and then the transfer of the conflicting masses is done with PCR5: 

   
    J    G    D    GJ ∩    DJ ∩    DG∩   DGJ ∩∩  

 1m    0.9   0   0.1          

2m    0   0.8   0.2          

 DSmCm    0   0   0.02   0.72   0.18   0.08   0  

 
Using PCR5 now we transfer 0.18=)( DJm ∩ , since ∅∩ =DJ , to J  

and D  proportionally with 0.9 and 0.2 respectively, so J  gets 0.15 and D  gets 
0.03 since:  

0.18/1.1=0.2)0.18/(0.9=/0.21=/0.9 +DzxJ  

whence 0.15=.1)0.9(0.18/1=xJ  and 0.03=.1)0.2(0.18/1=1Dz . 
Again using PCR5, we transfer 0.08=)( DGm ∩ , since ∅∩ =DG , to G  

and D  proportionally with 0.8 and 0.1 respectively, so G  gets 0.07 and D  gets 
0.01 since: 

0.08/0.9=0.1)0.08/(0.8=/0.12=/0.8 +DzyG  
whence 0.07=.9)0.8(0.08/0=yG  and 0.01=.9)0.1(0.08/0=zD . Adding we 
get finally: 

   
    J    G    D    GJ ∩   DJ ∩   DG∩   

DGJ ∩∩  
 5PCRm    0.15   0.07   0.06   0.72   0   0   0  

 
So one has a high belief that the criminals are John and George (both of them 

committed the crime) since 0.72=)( DJm ∩  and it is by far the greatest fusion 
mass.  

In Shafer’s model, if we try to refine we get the disjoint parts: D , GJ ∩ , 
)(\ GJJ ∩ , and )(\ GJG ∩ , but the last two are ridiculous (what is the 

real/physical nature of )(\ GJJ ∩  or )(\ GJG ∩  ? Half of a person(!) ?), so the 
refining does not work here in reality. That’s why the hybrid and free models are 
needed. 
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• Example 5 (Imprecise PCR5): The PCR5 formula can naturally work also 
for the combination of imprecise bba's. This has been already presented in section 
1.11.8 page 49 of [33] with a numerical example to show how to apply it. This 
example will therefore not be reincluded here.  

3.3.  ZADEH'S EXAMPLE 

We compare here the solutions for well-known Zadeh's example [53, 56] 
provided by several fusion rules. A detailed presentation with more comparisons 
can be found in [29, 33]. Let's consider },,{= TCMΘ  as the frame of three 
potential origins about possible diseases of a patient ( M  standing for meningitis, 
C  for concussion and T  for tumor), the Shafer's model and the two following 
belief assignments provided by two independent doctors after examination of the 
same patient.  

0.1=)(0=)(0.9=)( 111 TmCmMm  

0.1=)(0.9=)(0=)( 222 TmCmMm  
The total conflicting mass is high since it is  

0.99=)()()()()()( 122121 TmCmTmMmCmMm ++  
 with Dempster's rule and Shafer's model (DS), one gets the counter-

intuitive result (see justifications in [9, 29, 46, 50, 53]): 1=)(TmDS   
 with Yager's rule [50] and Shafer's model: 0.99=)( TCMmY ∪∪  

and 0.01=)(TmY   
 with DSmH and Shafer's model:  

0.01=)(0.81=)( TmCMm DSmHDSmH ∪
 

0.09=)(=)( TCmTMm DSmHDSmH ∪∪
 

 The Dubois & Prade's rule (DP) [9] based on Shafer's model provides in 
Zadeh's example the same result as DSmH, because DP and DSmH 
coincide in all static fusion problems8.  

 with PCR5 and Shafer's model: 0.486=)(=)( 55 CmMm PCRPCR  and 
0.028=)(5 TmPCR .  

 One sees that when the total conflict between sources becomes high, DSmT 
is able (upon authors opinion) to manage more adequately through DSmH or PCR5 

                                                 
8Indeed DP rule has been developed for static fusion only while DSmH has been developed to 

take into account the possible dynamicity of the frame itself and also its associated model. 
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rules the combination of information than Dempster's rule, even when working 
with Shafer's model, which is only a specific hybrid model. DSmH rule is in 
agreement with DP rule for the static fusion, but DSmH and DP rules differ in 
general (for non degenerate cases) for dynamic fusion while PCR5 rule is the most 
exact proportional conflict redistribution rule. Besides this particular example, we 
showed in [29] that there exist several infinite classes of counter-examples to 
Dempster's rule which can be solved by DSmT. 

In summary, DST based on Dempster's rule provides counter-intuitive results 
in Zadeh's example, or in non-Bayesian examples similar to Zadeh's and no result 
when the conflict is 1. Only ad-hoc discounting techniques allow to circumvent 
troubles of Dempster's rule or we need to switch to another model of 
representation/frame; in the later case the solution obtained doesn't fit with the 
Shafer's model one originally wanted to work with. We want also to emphasize that 
in dynamic fusion when the conflict becomes high, both DST [22] and Smets' 
Transferable Belief Model (TBM) [39] approaches fail to respond to new 
information provided by new sources. This can be easily showed by the very 
simple following example.  

Example (where TBM doesn't respond to new information): Let 
},,{= CBAΘ  with the (precise) bba's 0.4=)(1 Am , 0.6=)(1 Cm  and 

0.7=)(2 Am , 0.3=)(2 Bm . Then one gets9 with Dempster's rule, Smets' TBM 
(i.e. the non-normalized version of Dempster's combination), DSmH and PCR5: 

1=)(12 AmDS , 0.28=)(12 AmTBM , 0.72=)(12 ∅TBMm ,  



















∪
∪
∪

0.313846=)(
0.111429=)(
0.574725=)(

and

0.18=)(
0.42=)(
0.12=)(

0.28=)(

12
5

12
5

12
5

12

12

12

12

Cm
Bm
Am

CBm
CAm
BAm

Am

PCR

PCR

PCR

DSmH

DSmH

DSmH

DSmH

 

(1) 

Now let's consider a temporal fusion problem and introduce a third source 
(.)3m  with 0.8=)(3 Bm  and 0.2=)(3 Cm . Then one sequentially combines the 

results obtained by (.)12
TBMm , (.)12

DSm , (.)12
DSmHm  and (.)12

PCRm  with the new 

evidence (.)3m  and one sees that (12)3
DSm  becomes not defined (division by zero) 

and 1=)((12)3 ∅TBMm  while (DSmH) and (PCR5) provide  

                                                 
9We introduce here explicitly the indexes of sources in the fusion result since more than two 

sources are considered in this example. 
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(12)3

(12)3(12)3
5

(12)3(12)3
5

(12)3(12)3
5

(12)3

( ) = 0.240
( ) = 0.277490( ) = 0.120
( ) = 0.545010( ) = 0.224
( ) = 0.177500.( ) = 0.056

( ) = 0.360

DSmH

PCRDSmH

PCRDSmH

PCRDSmH

DSmH

m B
m Am C

and m Bm A B
m Cm A C

m A B C


  

∪ 
 ∪ 
 ∪ ∪

 (1) 

When the mass committed to empty set becomes one at a previous temporal 
fusion step, then both DST and TBM do not respond to new information10. Let's 
continue the example and consider a fourth source (.)4m  with 0.5=)(4 Am , 

0.3=)(4 Bm  and 0.2=)(4 Cm . Then it is easy to see that (.)((12)3)4
DSm  is not 

defined since at previous step (.)(12)3
DSm  was already not defined, and that 

1=)(((12)3)4 ∅TBMm  whatever (.)4m  is because at the previous fusion step one had 

1=)((12)3 ∅TBMm . Therefore for a number of sources 2≥n , DST and TBM 
approaches do not respond to new information incoming in the fusion process 
while both (DSmH) and (PCR5) rules respond to new information. To make DST 
and/or TBM working properly in such cases, it is necessary to introduce ad-hoc 
temporal discounting techniques which are not necessary to introduce if DSmT is 
adopted. If there are good reasons to introduce temporal discounting, there is 
obviously no difficulty to apply the DSm fusion of these discounted sources. An 
analysis of this behavior for target type tracking is presented in [7, 33]. 
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