
 

  

PHASE TRANSITION SIGNALS IN HEAVY ION COLLISIONS  
BY LATINO MODEL 

A. BARRAÑÓN1, J.A. LÓPEZ-GALLARDO2, F. de L. CASTILLO-ALVARADO3 

Abstract. LATINO Model is a semi-classical approach to simulate heavy ion collisions 
attaining qualitative and quantitative agreement with theoretical predictions and 
experimental results. Criticality signals have been obtained in this study where impact 
parameter and projectile energy are increased. Large density fluctuations are described 
by large values of the relative variance plotted in Campi Plots. Self-similarity in the 
critical region is signed by linear plots of Scaled Factorial Moments. These signatures 
are related to a liquid gas phase transition for nuclear matter. Also Excitation curves 
and Temperature plateau decrease with residual size in agreement with experimental 
results.  
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1. INTRODUCTION 

Heavy Ion Collisions are expected to experience a liquid-gas phase transition 
due to the specifics of the internucleonic interaction, which is attractive in both the 
long and intermediate ranges and repulsive in the short range. It is possible that a 
wide zone of phase space is explored when two nuclei collide, including a region 
where liquid and gas phases coexist, namely the spinodal region. At this spinodal 
region, incompressibility is negative and uniform nuclear matter is unstable, 
leading to multifragmentation due to the increase of density fluctuations [1, 2]. 
LATINO Model includes all correlations while dynamical simulations based on 
Boltzmann equation, such as Landau-Vlasov (LV), Boltzmann-Uehling-
Uhlenbeck (BUU) or Boltzmann-Nordheim-Vlasov (BNV), describe the time 
evolution of the density of a one-body system, ignoring those correlations whose 
order is larger than the order of binary correlations, neglecting fluctuations around 
the mean trajectory of the system, which altogether comes out to be quite 
inconvenient to study the spinodal instability zone [10]. As shown by Guarnera et 
al. [3], a spinodal decomposition produces a “primitive breakup” where equal 
sized fragments have a privileged fragment size, which is related to the wave 
lengths of the most unstable modes of nuclear matter.  
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Tabacaru et al. have obtained reduced velocity correlations between 
fragments and did not find a bubble-like profile, which excludes surface 
instabilities that might cause multifragmentation. They also computed higher order 
charge correlations, defined as the ratio between the number of correlated 
fragments and the number of uncorrelated fragments, obtaining evidence of a 
privileged production of equal sized fragments. Chomaz et al. [4] have introduced 
a scenario inspired on experimental data, where a gently compressed systems 
expands and reaches thermal equilibrium approximately at the time when system 
enters into the spinodal region. At this moment, density fluctuations break up the 
system into several hot fragments and particles. When fragments are released from 
the nuclear force, configuration frozen and fragments only interact with each other 
via Coulomb force. At this moment, system has explored so much phase space that 
it can be described by statistical models and there is no contradiction between 
statistical or dynamical approximations. Barrañón et al. have obtained 
computational evidence about the inverse relation between entropy and the 
residual size, using LATINO dynamical model to study the spinodal 
decomposition region of central HIC at intermediate energies [5]. 

Until now, several criticality signals have been essayed for Heavy Ion 
Collisions. M. D’Agostino et al., obtained a signal of criticality in terms of the 
negative sign of the heat capacity which resists several kinds of calorimetric 
reconstruction from experimental data [6]. In the experimental field a power law 
for the intermediate fragments distribution has been interpreted as a signal of the 
proximity to the critical point of the liquid-gas phase transition. J.B. Elliott et al. 
[7] have used the liquid droplet model to estimate the critical temperature with a 
value close to 6.7 MeV. And other authors have analysed Campi plots to prove 
that phase transition happens at the spinodal decomposition, calling this very 
temperature a spinodal critical temperature Tc, with a value close to 6 MeV [8]. 

Many studies have been performed to describe the phase transitions in 
Heavy Ion Collisions in terms of statistical and dynamical models. Critical 
temperatures are in the range of 5–20 MeV/A, and size dependence has been 
observed since many years ago. LATINO Model is a semi-classical model that 
takes on account dynamical evolution of these Heavy Ion Collisions and provides 
statistical information of fragmentation. This way, statistical signatures can be 
used to detect critical behavior and dynamical effects can also be replicated. In the 
following sections we show several statistical signatures of criticality for Heavy 
Ion Collision simulated via LATINO Model. In this very study some statistical 
evidence is reported about a liquid-gas phase transition. Other features of Heavy 
Ion Collisions behavior have been computationally replicated and hereby reported, 
namely the dependence of excitation with size system as well as the dependence of 
limit temperatures with system size. LATINO Model has been used elsewhere to 
provide computational evidence concerning dynamical instabilities associated with 
phase transitions due to spinodal decomposition which is in agreement with 
experimental observations [5, 10], and a signature of breakups with fragments of 
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equal size is hereby computed which indicates a spinodal decomposition as a 
source of this critical behavior. 

2. METHODOLOGY  

Heavy Ion collisions were simulated using LATINO semi-classical model 
where binary interaction is reproduced with a Pandharipande potential given by: 
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made up from linear combinations of Yukawa potentials, where 
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These coefficients are designed to allow the potential to fulfill the properties 
of nuclear matter in ground state and to comply with Pauli Exclusion Principle 
[10, 11]. This potential provides a equation of state that has an isothermal 
compressibility K  in the range of 250 MeV, where: 
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and amazingly reproduces the properties of nuclear matter in ground state since its 
equilibrium density is equal to 3

0 0.16 fm−ρ =  with and energy )( 0ρE  equal to 
16 MeV/nucleon− . 

Clusters are detected using an Early Cluster Recognition Algorithm that 
optimizes the configurations in energy space. Most Bound Partition is obtained 
minimizing the sum of cluster energies for each partition: 
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where the cluster energy is given by: 
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in this expression the first sum is on the partition clusters, CM
jK is the kinetic 

energy of particle j measured in the cluster mass centre, and ijV is the 
internucleonic potential. The algorithm uses the technique of “simulated 
annealing” to find the most bound partition in energy space. 

Ground states of neutron or proton rich sources, were built up starting from a 
random configuration with a given kinetic energy and confined in a parabolic 
potential (Fig. 1 ). Nucleon speed was gradually reduced until the system was 
bound, afterwards the parabolic potential was suppressed and a frictional method 
was applied until the system reached its theoretical binding energy. 

Projectile is boosted on target with a given kinetic energy for distinct impact 
parameters. System evolution was simulated using a Verlet algorithm [12], where 
two Taylor expansions are subtracted, one of them forwards and the other 
backwards on time: 

2)()()(2)( htattrtrttr +∆−−=∆+ , (9) 

[ ]htattatvttv )()(*5.0)()( +∆++=∆+ , (10) 

( ) ( ))(/1)( ttrVmtta ∆+∇−=∆+ . (11) 

 
Fig. 1 – Ground State of the heavy ion Zn76 obtained starting from a random configuration, 

subsequently confined in a parabolic potential and finally cooled by a frictional method until it 
attains the theoretical binding energy. 
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Projectile energy is varied in the range going from 600 up to 2 000 MeV and 
system evolves until its microscopic composition remains frozen (Fig. 2), although 
some monomers might be ejected. 

 
Fig. 2 – Time evolution of a heavy ion collision simulated with LATINO Model. 

This time can be determined using the Microscopic Persistence Coefficient, 
defined as the probability of having two particles linked in a cluster of partition X 
still bound in a cluster of partition Y: 

     [ ] ∑∑
=

cluster
iii

cluster
i

ban
n

YXP /1, , (12) 

where ib is equal to the number of particles that belong to cluster iC  of partition 
{ }iCX ≡  and ia is equal to the number of particle pairs belonging to cluster iC of 

partition { }iCX ≡  that also belong to a given cluster iC ′of partition { }iCY ′≡ . 

in is the number of particles in cluster iC . Persistence attains an asymptotic limit 
value once the biggest fragment size (BFS), as well as the logarithmic derivative 
of the kinetic energy transported by light fragments and the logarithmic derivative 
of the number of intermediate fragments are altogether stable. 

It is convenient to study the time evolution of the following quantities 
defined in terms of the last persistence. Namely forwards persistence: 

             [ ] [ ] [ ]( ) ( ), ( ) / ( ), ( ) .colisionesP X t P X t X t P X t X t+ ′≡ →∞ →∞  (13) 
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Also a backwards persistence can be defined: 

       [ ] [ ] [ ] colisionestXtXPtXtXPtXP )(),(/)(),()( ′∞→≡−
 (14) 

another way of defining the persistence to measure the instantaneous evolution 
persistence is: 

       [ ] [ ] [ ]( ) ( ), ( d) / ( d), ( d)dt
colisionesP X t P X t X t t P X t t X t t′≡ + + + , (15) 

where ( )X t  represents a partition computed at time t, )( ∞→tX  is an 

asymptotic partition, colisiones represents an average taken on the total set of 

collisions. ( )tX ′  is a partition identical to partition ( )tX , except for a nucleon 
evaporated in each cluster. Fig. 3 shows how the backward and forward 
persistence attain a maximum value when the biggest fragment size (Mass) is 
decreased due to fragmentation along time. Also, Multiplicity, which is equal to 
the number of fragments, increases with time due to disassembling of the system. 
Persistence is related to the microscopic composition of the system which is frozen 
in the asymptotic region of time. 
 

 
Fig 3 – Persistence in terms of Multiplicity and biggest fragment size. 

Two colliding stages are observed, with an initial highly colliding stage 
produced when the projectile hits the droplet surface and the energy is distributed 
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chaotically. Collisions at this initial stage form a shock wave responsible for the 
prompt emission of light energetic particles from the surface. As the shock wave 
travels into the droplet, it produces density fluctuations and internal fractures. 
These are consequence of the momentum transferred and initiates disordered 
collisions leading to an excitation thermalization. Momentum transferred can be 
measured by Mean velocity transfer (MVT) which is given by: 

         , ,MVT ( ) ( )i k i k i
k

V t dt V t dt= + − +∑  (16) 

The first stage ends with a peak in the kinetic energy transported by 
promptly emitted light particles, signed by a peak in the KE(PEP) curve. A second 
stage ends with the attenuation of the intermediate size fragments production (IMF 
curve). Between these peaks of KEP(PEP) curve and IMF(curve), a peak in Mean 
Velocity Transfer (MVT curve) is observed. Hence, Mean Velocity Transfer 
(MVT) is increased due to the instabilities arising from the emission of prompt and 
fast light particles. As a result of these instabilities the compound fragment formed 
by the projectile and target, disassembles producing intermediate size fragments. 
MVT has been already stabilized before intermediate fragments are emitted 
inasmuch as the biggest fragment breaks up Fragments afterwards will freeze-out 
which can be signed by a sustained increase of the persistence. All these features 
are shown in Fig. 4. 

Asymptotic fragment distributions are given by: 

             ( ) ( ) ( ) / ,j k j
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Z
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when k = 2 this moment is proportional to the isothermal compressibility. Relative 
variance can be computed in terms of these moments and a high value of this 
variance indicates high density fluctuations: 
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neutrons and protons moving forwards and backwards, respectively. And thermal 
equilibrium of the heavy residues can be examined studying the quadrupolar 
moment ZZQ  defined by: 

         3 2 2 2d d (2 ) 2 ( , , )ZZ z x yQ r p p p p f r p t = π − − ∫ , (19) 
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where ),,( tprf  is Wigner function. Clearly 0=ZZQ  is a sufficient condition 
for thermal equilibrium [26]. 
 

 
Fig. 4 – Shows how persistence grows with time. 

Dynamical equilibrium is given when the squared adiabatic velocity is 
negative. This is given by: 

       ( ) ( ) ( ) ( )2
0 0(1/ ) / (1/ ) 10/9 / /c KS

V m P m E a b σ  = ∂ ∂ρ = < >+ ρ ρ + ρ ρ   , (20) 

where >< KE  is the mean kinetic energy for nucleon, a = –358.1 MeV, b = 304.8 
MeV and σ = 7/6 are the corresponding parameters of a soft equation of state. 
When 02 <cV , nuclear matter is unstable with respect to density fluctuations 
which leads to dynamical instabilities. 

Comparing the relaxation times for thermal, dynamical and chemical 
equilibrium, when the projectile energy is low, the largest relaxation time is the 
thermal one, since the energy is consumed by deformations and fragments are 
emitted from the surface (Fig. 2). But when the projectile energy is large, 
fragments are emitted from the bulk and therefore these relaxation times are the 
same (Fig. 5). 

Fig. 6 shows a case where thermal and the chemical relaxation times are 
close to each other. As a matter of fact the isotopic temperature attains its 
asymptotic value in a very early stage of the collision even when the temperature 
of the biggest fragment is still changing as well as the size of the biggest fragment 
is still decreasing with time. 
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Fig. 5 – Relaxation times decrease with projectile energy for thermal, dynamical  

and chemical equilibrium in the case of central heavy ion collision Ni+Ni. 

 

 
Fig. 6 – Relaxation times are in the same range for high values of the projectile energy. 

The magnitude of the variance provides evidence of the closeness to the 
critical point. As a matter of fact, supposing that close to the critical point there is 
a general property of scaling and it comes out that in the neighborhood of the 
critical point [21]: 

(1 ) /k
k CM T T − + −τ σ∝ − , (21)  

when the multiplicity is critical in the case of heavy ion collisions, the following 
relation is fulfilled:   
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            2M −γ∝ ε , (22) 

therefore the relative variance comes out to be a reliable signal of criticality in 
heavy ion collisions. Campi Plots [22] use logarithmic scales to produce the graph 
of the Biggest Fragment Size vs Second Moment which develop a boomerang 
profile where we have plotted the relative variance to identify regions with large 
density fluctuations due to critical behavior. This way critical behavior due to 
impact parameter increase or due to increase of the projectile energy can be easily 
seen by means of these plots. 

Intermittency in fluctuations and correlations of a distribution has been 
employed to study turbulent flow, astrophysical phenomena and 
magnetohidrodynamics [23, 24]. This intermittency is shown in the self-similarity 
of large fluctuations that are not statistical on a large range of scales. To detect this 
behaviour, factorial moments are used that measure the properties of dynamical 
fluctuations without the bias of statistical fluctuations [25]. When this happens, 
factorial moments show a power law pattern with respect to the length of the 
subinterval in which the range of the studied variable is divided. This can be seen 
in terms of a linear relation between the logarithms of these quantities. Hence, 
Scaled Factorial Moments (SFM) can be used to detect a fluctuations intermittent 
pattern signed by a linear relation of ln(SFM) versus ln(δ ). In this case, high 
density fluctuations will be self-similar in all the scales considered. SFM are given 
by: 
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A liquid-gas phase transition due to a spinodal decomposition in central 
heavy ion collisions can be shown by computing higher order charge correlations 
[13], given by: 

,
),('
),(

MZZY
ZZY
><∆
><∆

 (24) 

where ( , )Y Z Z∆ < >  is equal to the number of fragments produced for given 
values of Z∆  and Z< > . 

Spinodal decomposition is related to small density fluctuations spread out 
according to the following equation: 
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where M is the moblity of the medium. The force that originates diffusion comes 
from the differences in the chemical potential for the perturbation and the 
chemical potential of the medium. Writing µ  in terms of the free energy, diffusion 
equation can be generalized (once it is linearized with respect to n ) as: 

           
2

2 4
2

n fM n MB n
t n
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∂ ∂
. (26) 

Describing an arbitrary fluctuation in terms of its Fourier components, the 
general solution of the last equation is an oscillatory function given by 

( , ) cos( )n A q t q rδ = ⋅  whose width is given by: 

         















+

∂
∂

−= tBq
n

fMqqAtqA 2
2

2
2exp)0,(),( . (27) 

Two possibilities arise, whether  
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, in which case the inhomogeneities will be 

exponentially amplified with time and a spinodal decomposition takes place. 
Raduta et. al. have applied a microcanonical analysis and found that in the 

plot temperature .vs. excitation, when a spinodal instability happens the heat 
capacity is negative and there is a temperature plateau of 6.5 MeV[19]. 

Also, a plateau in the caloric curve has been associated with the liquid-gas 
phase transition, and the limit temperature in this plateau has been considered as 
inversely related with the residual size of the compound formed by the projectile 
and the target. These caloric curves are built computing the participant 
temperature obtained applying the kinetic gas temperature to the nucleons in the 
participant region: 

            kTn
Vm

E f
ff

2
3

2

2

== . (28) 

Several studies of the caloric curve in heavy ion collisions have shown that 
there is a size effect for the limit temperatures of these caloric curves [14]. Also, 
when isotopic temperatures are used to estimate the caloric curves, several kinds 
of shapes have been obtained [15]. These shapes can be growth-plateau-
growth[16], growth-plateau [17], or even a growth-growth shape that lacks the 
plateau expected in the first order phase transition [18]. 

Excitation is computed as the temperature attained by the system at the the 
maximum compression of the compound formed by the projectile and the target. 
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An inverse relation between excitation and residual size is expected and in this 
article we confirm this expectation.  

Once the collision dynamic simulation is performed, prompt fragments are 
detected, times when microscopic composition remains frozen are identified and 
excitation energy as well as temperature are computed, a caloric curve can be 
obtained. Fig. 15 shows the caloric curves computed for a wide energy range of 
excited collision systems. As can be seen, caloric curves are similar to those 
obtained from uniformly excited systems [20]. Once again, the relevant 
characteristic is the almost constant temperature behavior in fragmentation region. 
In other words, collision data provide a “rise-plateau” caloric curve. Besides, these 
caloric curves portray a limit temperature that diminishes as the residual size 
increases. 

3. RESULTS  

Clear criticality signals were obtained when the impact parameter is 
increased, for central Ni+Ni heavy ions collision. When the projectile energy is 
equal to 1 300 MeV, high values of the relative variance were obtained for large 
impact parameters with a relative variance peak attained when the impact 
parameter changes from 4 to 6fm (Fig. 7). 

 

 
Fig. 7 – Campi Plot for Ni+Ni heavy ion collision with Eproy = 1 300 MeV simulated  

with LATINO Model. 

Therefore, these signals indicate a phase transition induced by the increase 
of the impact parameter. This is confirmed in the Campi Plot with an impact 
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parameter equal to 4 fm and projectile energy varies from 900 to 2 000 MeV 
(Fig. 8). As portrayed in Fig. 8 large values of the relative variance are attained in 
the boomerang region of this graph. 

A relative variance peak develops between 1 300 and 1 500 MeV. Critical 
region area is decreased when the impact parameter grows up to 5 fm as shown in 
Fig. 9, where scattered plot comes out to be a small area with high values of the 
relative variance. Relative variance attains a peak in the small boomerang vertex 
for several projectile energies in the range of 900 to 2 000 MeV. When impact 
parameter is increased, a three sources pattern is shown, namely a projectile, a 
target and an intermediate velocity source (Fig. 10). As shown in Fig. 10, this 
three sources pattern can be observed when a Ni+Ni collision with a projectile. 

 
  

Fig. 8 – Campi plot for central Ni+Ni heavy ion 
collision with an impact parameter equal to 4 fm, 

simulated with LATINO Model. 

Fig. 9 – Campi Plot for central Ni+Ni heavy ion 
collision with an impact parameter equal to 5 fm, 

simulated with LATINO Model. 
 
 
Projectile energy equal to 900 MeV and an impact parameter equal to 6 fm, 

is simulated with LATINO Model. 
This suggests that a liquid-gas phase transition can be interpreted as the 

decomposition of the liquid phase made by the compound initially formed by the 
projectile and the target which decomposes into a phase formed by light particles 
that build the gas phase plus two remnants of the initial compound which are in the 
liquid phase. 
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Fig. 10 – When impact parameter is high, a three sources is shown, namely a projectile,  

a target and an intermediate velocity source. 
 
 

 
Fig. 11 – When impact parameter is equal to zero, a one source pattern develops with fragments 
emitted at intermediate velocities with a flow angle is in the range of 90 degrees. Ni+Ni collision  

with a projectile energy equal to 900 MeV and an impact parameter equal to 0 fm, simulated  
with LATINO Model. 

This is in contrast to the pattern obtained when the collision is central 
(Fig. 11), where a one source shape is shown and fragments are emitted at 
intermediate velocities and with a flow angle equal to 90 degrees. For a large 
impact parameter, light fragments are isotropically emitted from a source moving 
at intermediate velocity, with a flow angle in the range of 18 degrees (Fig. 12), 
which can be interpreted as a gas phase. 

Scaled Factorial Moments Analysis was carried out for central Ni+Ni heavy 
ion collisions when Eproy =1 300 MeV simulated with LATINO Model. showing 
linear graphs that indicate self-similarity due to scaling (Fig. 13). This critical 
behaviour happens in the same region of criticality shown by the Campi Plots, 
confirming that in the critical region there are large density fluctuations as well as 
self-similarity due to scaling. 
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Fig. 12 – When the impact parameter is high, fragments are emitted isotropically from a source 

moving at intermediate velocity and with flow angles in the range of 18 degrees. Ni+Ni collision at 
1 000 MeV and 4fm, simulated with LATINO Model. 

 
Fig. 13 – Scaled Factorial Moments Analysis for central Ni+Ni heavy ion collisions when 
Eproy = 1 300 MeV simulated with LATINO Model. Linear graphs indicate self-similarity  

due to scaling. 

Higher order correlations show a peak for a fragment size equal to 6, with 
four equal sized fragments produced with this privileged size and an excitation 
equal to 4.75 MeV (Fig. 14). This peak can be considered a fossil spinodal 
decomposition signature given by an early breakup of equal sized fragments of a 
privileged size. 

An inverse relation between excitation and residual size was obtained hereby 
as shown in Fig. 15 for Ag+Ag heavy ion collision. This suggests that when the 
residual is large we expect low temperatures since projectile energy and excitation 
are low. Also, when the projectile energies are large, larger temperatures will be 
experienced by the compound which should lead to larger excitations and since the 
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residual disassembles from the bulk, smaller residuals will be expected. Therefore 
we expect that excitation will decrease with residual size. 
 

 
Fig. 14 – Higher order correlations show a peak for a fragment size equal to 6, with four equal sized 
fragments produced with this privileged size and an excitation equal to 4.75 MeV. Ni+Ni heavy ion 

central collision simulated with LATINO Model. 

Also caloric curves were computed for central Ag+Ag heavy ion collisions 
using LATINO Model. Fig. 16 shows that limit temperatures decrease when the 
residual is increased. 

 
Fig. 15 – Excitation inversely correlated to the residual size. Ag+Ag central collisions  

simulated with LATINO Model. 

4. CONCLUSION 

Scaled Factorial Moments Analysis confirm the self-similarity expected in 
critical states such as a phase transition induced by an increase of impact 
parameter. This is signed by straight lines in the graph ln(dF) versus ln(ds). 
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Critical behavior of Scaled Factorial Moments Plots, indicate system entrance into 
a gaseous phase. In this case, a largest density fluctuation is in agreement with 
experimentally observed phase transitions. 

 
 

  
 

Fig. 16 – Caloric curves computed for central Ag+Ag heavy ion collisions using LATINO Model.  
Limit temperatures decrease when the residual is increased. 

 
Signals suggest a phase transition induced by the increase of impact 

parameter. This is confirmed when Campi plots are examined and a relative 
variance peak appears when impact parameter is increased. Critical region is 
reduced when impact parameter is increased, with high relative variance values. 
Relative variance maximums are related with high density fluctuations. These 
instability signatures are associated with a phase transition, and confirmed by the 
self-similarity signature of a linear relation in the Scaled Factorial Moments plots. 
Caloric temperatures and excitation curves decrease with residual size in 
agreement with experimental results. 

Several statistical signatures of a liquid-gas phase transition were obtained 
hereby using LATINO Model for heavy ion collision, A.B. acknowledge financial 
support from CONACYT, UAM-Azcapotzalco. F.L.C. acknowledges financial 
support from IPN and J.L. acknowledges financial support from The University of 
Texas at El Paso and NSF. 
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