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AN INTRODUCTION TO DSmT 

Second part 

JEAN DEZERT 1, FLORENTIN SMARANDACHE 2 

Abstract. The management and combination of uncertain, imprecise, fuzzy and even 
paradoxical or highly conflicting sources of information has always been, and still 
remains today, of primal importance for the development of reliable modern 
information systems involving artificial reasoning. In this introduction, we present a 
survey of our recent theory of plausible and paradoxical reasoning, known as Dezert-
Smarandache Theory (DSmT), developed for dealing with imprecise, uncertain and 
conflicting sources of information. We focus our presentation on the foundations of 
DSmT and on its most important rules of combination, rather than on browsing 
specific applications of DSmT available in literature. Several simple examples are 
given throughout this presentation to show the efficiency and the generality of this 
new theory.  

Key words: Dezert-Smarandache Theory, DSmT, quantitative and qualitative 
reasoning, information fusion.   

1. INTRODUCTION 

The management and combination of uncertain, imprecise, fuzzy and even 
paradoxical or highly conflicting sources of information has always been, and still 
remains today, of primal importance for the development of reliable modern 
information systems involving artificial reasoning. The combination (fusion) of 
information arises in many fields of applications nowadays (especially in defense, 
medicine, finance, geo-science, economy, etc). When several sensors, observers or 
experts have to be combined together to solve a problem, or if one wants to update 
our current estimation of solutions for a given problem with some new information 
available, we need powerful and solid mathematical tools for the fusion, specially 
when the information one has to deal with is imprecise and uncertain. In this 
chapter, we present a survey of our recent theory of plausible and paradoxical 
reasoning, known as Dezert-Smarandache Theory (DSmT) in the literature, 
developed for dealing with imprecise, uncertain and conflicting sources of 
information. Recent publications have shown the interest and the ability of DSmT 
to solve problems where other approaches fail, especially when conflict between 
sources becomes high. We focus this presentation rather on the foundations of 
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DSmT, and on the main important rules of combination, than on browsing specific 
applications of DSmT available in literature. Successful applications of DSmT in 
target tracking, satellite surveillance, situation analysis, robotics, medicine, 
biometrics, etc, can be found in Parts II of [29, 33, 35] and on the world wide web 
[36]. Several simple examples are given in this paper to show the efficiency and 
the generality of DSmT. 

2. UNIFORM AND PARTIALLY UNIFORM REDISTRIBUTION RULES 

The principles of Uniform Redistribution Rule (URR) and Partially Uniform 
Redistribution Rule (PURR) have been proposed in 2006 with examples in [32]. 

The Uniform Redistribution Rule consists in redistributing the total 
conflicting mass 12k  to all focal elements of ΘG  generated by the consensus 
operator. This way of redistributing mass is very simple and URR is different from 
Dempster's rule of combination, because Dempster's rule redistributes the total 
conflict proportionally with respect to the masses resulted from the conjunctive 
rule of non-empty sets. PCR5 rule presented previously does proportional 
redistributions of partial conflicting masses to the sets involved in the conflict. The 
URR formula for two sources is given by: ∅≠∀A  
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where )(12 Am  is the result of the conjunctive rule applied to belief assignments 
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where )(...12 Am s  is the result of the conjunctive rule applied to (.)im , for all 
},...{1,2, si∈  and  

    0})(or...or0)(or0)(,{Card= 2112 ≠≠≠∈ Θ ZmZmZmGZn ss… .  

As alternative (modified version of URR), we can also consider the cardinal 
of the ensemble of sets whose masses resulted from the conjunctive rule are non-
null, i.e. the cardinality of the core of conjunctive consensus: 

.0})(,{Card= ...12...12 ≠∈ Θ ZmGZn s
c

s  

It is also possible to do a uniformly partial redistribution, i.e. to uniformly 
redistribute the conflicting mass only to the sets involved in the conflict. For 
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example, if 0.08=)(12 BAm ∩  and ∅∩ =BA , then 0.08 is equally 
redistributed to A  and B  only, supposing A  and B  are both non-empty, so 0.04 
assigned to A  and 0.04 to B . 

The Partially Uniform Redistribution Rule (PURR) for two sources is defined 
as follows: ∅≠∀A  
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where )(12 Am  is the result of the conjunctive rule applied to belief assignments 
(.)1m  and (.)2m .  

 For 2≥s  sources to combine: ∅≠∀A , one has  
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where }),...,({Card 1 sA XX  is the number of A 's occurring in },...,,{ 21 sXXX . 
If ∅=A , 0=)(12 Am PURR  and 0=)(...12 Am sPURR . 
These rules have a low computation cost with respect to Proportional 

Conflict Redistribution (PCR) rules developed in the DSmT framework and they 
preserve the neutrality of the vacuous belief assignment (VBA) since any bba 

(.)1m  combined with VBA defined on any frame },...,{= 1 nθθΘ  by 
1=)...( 1 nVBAm θθ ∪∪ , using the conjunctive rule, gives (.)1m , so no conflicting 

mass is needed to transfer. Of course these rules are very easy to implement but 
from a theoretical point of view they remain less precise in their transfer of 
conflicting beliefs since they do not take into account the proportional 
redistribution with respect to the mass of each set involved in the conflict. 
Reasonably, URR or PURR cannot outperform PCR5 but they may hopefully could 
appear as good enough in some specific fusion problems when the level of total 
conflict is not important. PURR does a more refined redistribution that URR and 
MURR but it requires a little more calculation. 

3. RSC FUSION RULES 

In this section, we briefly recall a new class of fusion rules based on the 
belief redistribution to subsets or complements and denoted CRSC (standing for 
Class of Redistribution rules to Subsets or Complements) for short. This class is 
presented in details in [35] with several examples.  
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Let (.)1m  and (.)2m  be two normalized basic belief assignments (bba’s) 
defined3 from ΘS  to [0,1] . We use the conjunctive rule to first combine (.)1m  
with (.)2m  to get (.)∩m  and then the mass of conflict say 0=)( YXm ∩∩ , when 

∅∩ =YX  or even when YX ∩  is different from the empty set is redistributed 
to subsets or complements in many ways (see [35] for details). The new class of 
fusion rule (denoted cCRSC ) for transferring the conflicting masses only is 

defined for },{\ tISA ∅∈ Θ  by: 

⋅⋅+⋅+⋅+ ∩∩ )]()(Card)([)(=)( AfAAmAmAm
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where ntI θθθ ∪∪∪ ...= 21  represents the total ignorance when },...,{= 1 nθθΘ . 
M  can be )( YXc ∪  (the complement of YX ∪ ), or a subset of )( YXc ∪ , or 

YX ∪ , or a subset of YX ∪ ; {0,1},, ∈γβα  but 0≠++ γβα ; in a weighted 
way we can take [0,1],, ∈γβα  also with 0≠++ γβα ; )(Xf  is a function of 
X , i.e. another parameter that the mass of X  is directly proportionally with 

respect to; )(Card X  is the cardinal of X . 
  The mass of belief )( tcCRSC Im  committed to the total ignorance is given by:  
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A more general formula for the redistribution of conflict and non-conflict to 
subsets or complements class of rules for the fusion of masses of belief for two 
sources of evidence is defined },{\)\( Θ∅∈ ∅

∩
Θ nonSSA  by: 
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3 Since these rules use explicitely the complementation operator (.)c , they apply only with the 

super-power set ΘS  or on Θ2  depending on the underlying model chosen for the frame Θ . 
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and for tIA = :  
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where }}{\,where,=|{= ∅∈∩∈ ΘΘ
∩ SZYZYXSXS , all propositions 

are expressed in their canonical form and where X contains at least an ∩  symbol 
in its expression; ∅

∩S  be the set of all empty intersections from ∩S  (i.e. the set of 
exclusivity constraints), and ∅

∩
nonS  the set of all non-empty intersections from ∩S . 

∅
∩
non

rS ,  is the set of all non-empty intersections from ∅
∩
nonS  whose masses are 

redistributed to other sets/propositions. The set ∅
∩
non

rS ,  highly depends on the model 

for the frame of the application under consideration. (.)f  is a mapping from 
ΘS  

to +R . For example, we can choose )(=)( XmXf ∩ , |=|)( XXf , 

|),(|
||=)(
YXT

XXf T , or ||)(=)( XXmxf +∩ , etc. The function T  specifies a 

subset of ΘS , for example )}({=),( YXcYXT ∪ , or }{=),( YXYXT ∪  or 
can specify a set of subsets of ΘS . For example, )}({=),( YXcAYXT ∪⊂ , or 

}{=),( YXAYXT ∪⊂ . The function 'T  is a subset of ΘS , for example 
}{=),(' YXYXT ∪ , or 'T  is a subset of YX ∪ , etc. 

It is important to highlight that in formulas (5–6) one transfers only the 
conflicting masses, whereas the formulas (7–8) are more general since one 
transfers the conflicting masses or the non-conflicting masses as well depending on 
the preferences of the fusion system designer. The previous formulas have been 
directly extended for any 2≥s  sources of evidence in [35]. All denominators in 
these CRSC formulas are naturally supposed different from zero. It is worth to note 
also that the extensions of these rules for including the reliabilities of the sources 
are also presented in [35]. 

4.  THE GENERALIZED PIGNISTIC TRANSFORMATION (GPT) 

4.1.  THE CLASSICAL PIGNISTIC TRANSFORMATION 

We follow here Philippe Smets' vision which considers the management of 
information as a two 2-levels process: credal (for combination of evidences) and 
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pignistic4 (for decision-making) , i.e. "when someone must take a decision, he/she 
must then construct a probability function derived from the belief function that 
describes his/her credal state. This probability function is then used to make 
decisions" [38] (p. 284). One obvious way to build this probability function 
corresponds to the so-called Classical Pignistic Transformation (CPT) defined in 
DST framework (i.e. based on the Shafer's model assumption) as [40]: 

)(
||

||=}{BetP
2

Xm
X

AXA
X

∩∑
Θ∈

, (9) 

where || A  denotes the cardinality of A  (with convention 1|=|/|| ∅∅ , to define 
}{Bet ∅P ). Decisions are achieved by computing the expected utilities of the acts 

using the subjective/pignistic {.}BetP  as the probability function needed to 
compute expectations. Usually, one uses the maximum of the pignistic probability 
as decision criterion. The maximum of {.}BetP  is often considered as a prudent 
betting decision criterion between the two other alternatives (max of plausibility or 
max. of credibility which appears to be respectively too optimistic or too 
pessimistic). It is easy to show that {.}BetP  is indeed a probability function 
(see [39]). 

4.2.  NOTION OF DSm CARDINALITY 

One important notion involved in the definition of the Generalized Pignistic 
Transformation (GPT) is the DSm cardinality. The DSm cardinality of any element 
A  of hyper-power set ΘD , denoted )(ACM , corresponds to the number of parts 

of A  in the corresponding fuzzy/vague Venn diagram of the problem (model M ) 
taking into account the set of integrity constraints (if any), i.e. all the possible 
intersections due to the nature of the elements iθ . This intrinsic cardinality 
depends on the model   M (free, hybrid or Shafer's model). M  is the model that 
contains A , which depends both on the dimension |=|Θn  and on the number of 
non-empty intersections present in its associated Venn diagram (see [29] for 
details). The DSm cardinality depends on the cardinal of },...,,{= 21 nθθθΘ  and 

on the model of ΘD  (i.e., the number of intersections and between what elements 
of Θ  – in a word the structure) at the same time; it is not necessarily that every 
singleton, say iθ , has the same DSm cardinal, because each singleton has a 
different structure; if its structure is the simplest (no intersection of this elements 
with other elements) then 1=)( iMC θ , if the structure is more complicated (many 

                                                 
4 Pignistic terminology has been coined by Philippe Smets and comes from pignus, a bet in Latin. 
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intersections) then 1>)( iMC θ ; let's consider a singleton iθ : if it has 1 intersection 
only then 2=)( iMM CC θ , for 2 intersections only )( iMC θ  is 3 or 4 depending on 

the model M , for m  intersections it is between 1+m  and m2  depending on the 
model; the maximum DSm cardinality is 12 −n  and occurs for nθθθ ∪∪∪ ...21  in 

the free model fM ; similarly for any set from ΘD : the more complicated 
structure it has, the bigger is the DSm cardinal; thus the DSm cardinality measures 
the complexity of an element from ΘD , which is a nice characterization in our 
opinion; we may say that for the singleton iθ  not even ||Θ  counts, but only its 
structure (= how many other singletons intersect iθ ). Simple illustrative examples 

are given in Chapter 3 and 7 of [29]. One has 12)(1 −≤≤ n
M AC . )(ACM  must 

not be confused with the classical cardinality || A  of a given set A  (i.e. the 
number of its distinct elements) – that's why a new notation is necessary here. 

)(ACM  is very easy to compute by programming from the algorithm of generation 
of ΘD  given explicated in [29]. 

4.3.  THE GENERALIZED PIGNISTIC TRANSFORMATION 

To take a rational decision within DSmT framework, it is necessary to 
generalize the Classical Pignistic Transformation in order to construct a pignistic 
probability function from any generalized basic belief assignment (.)m  drawn 
from the DSm rules of combination. Here is the simplest and direct extension of 
the CPT to define the Generalized Pignistic Transformation:  

      )(
)(

)(
=}{Bet, Xm

XC
AXC

APDA
M

M

DX

∩
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Θ∈

Θ , (10) 

where )(XCM  denotes the DSm cardinal of proposition X  for the DSm model 
M  of the problem under consideration. 

The decision about the solution of the problem is usually taken by the 
maximum of pignistic probability function {.}BetP . Let's remark the close 
ressemblance of the two pignistic transformations (9) and (10). It can be shown that 
(10) reduces to (9) when the hyper-power set ΘD  reduces to classical power set 

Θ2  if we adopt Shafer's model. But (10) is a generalization of (9) since it can be 
used for computing pignistic probabilities for any models (including Shafer's 
model). It has been proved in [29, Chap. 7], that {.}BetP  defined in (10) is indeed 
a probability distribution. In the following section, we introduce a new alternative 
to BetP which is presented in details in [35]. 
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5. THE DSmP TRANSFORMATION 

In the theories of belief functions, the mapping from the belief to the 
probability domain is a controversial issue. The original purpose of such mappings 
was to make (hard) decision, but contrariwise to erroneous widespread idea/claim, 
this is not the only interest for using such mappings nowadays. Actually the 
probabilistic transformations of belief mass assignments (as the pignistic 
transformation mentioned previously) are for example very useful in modern 
multitarget multisensor tracking systems (or in any other systems) where one deals 
with soft decisions (i.e. where all possible solutions are kept for state estimation 
with their likelihoods). For example, in a Multiple Hypotheses Tracker using both 
kinematical and attribute data, one needs to compute all probabilities values for 
deriving the likelihoods of data association hypotheses and then mixing them 
altogether to estimate states of targets. Therefore, it is very relevant to use a 
mapping which provides a highly probabilistic information content (PIC) for 
expecting better performances.  

In this section, we briefly recall a new probabilistic transformation, denoted 
DSmP  and introduced in [8] which is explained in details in [35]. DSmP  is 
straight and different from other transformations. The basic idea of DSmP  
consists in a new way of proportionalizations of the mass of each partial ignorance 
such as 21 AA ∪  or )( 321 AAA ∩∪  or )()( 4321 AAAA ∩∪∩ , etc. and the mass 
of the total ignorance nAAA ∪∪∪ ...21 , to the elements involved in the 
ignorances. This new transformation takes into account both the values of the 
masses and the cardinality of elements in the proportional redistribution process. 
We first remind what PIC criteria is and then shortly present the general formula 
for DSmP transformation with few numerical examples. More examples and 
comparisons with respect to other transformations are given in [35]. 

5.1.  THE PROBABILISTIC INFORMATION CONTENT (PIC) 

Following Sudano's approach [41, 42, 44], we adopt the Probabilistic 
Information Content (PIC) criterion as a metric depicting the strength of a critical 
decision by a specific probability distribution. It is an essential measure in any 
threshold-driven automated decision system. The PIC is the dual of the normalized 
Shannon entropy. A PIC value of one indicates the total knowledge to make a 
correct decision (one hypothesis has a probability value of one and the rest of 
zero). A PIC value of zero indicates that the knowledge to make a correct decision 
does not exist (all the hypotheses have an equal probability value), i.e. one has the 
maximal entropy. The PIC is used in our analysis to sort the performances of the 
different pignistic transformations through several numerical examples. We first 
recall what Shannon entropy and PIC measure are and their tight relationship. 

• Shannon entropy  
Shannon entropy, usually expressed in bits (binary digits), of a probability 
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measure {.}P  over a discrete finite set },...,{= 1 nθθΘ  is defined by5 [23]:  

       2
=1

( ) { } ( { })log
n

i i
i

H P P P
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=− θ θ∑ . (11) 

)(PH  is maximal for the uniform probability distribution over Θ , i.e. when 
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deterministic probability, i.e. for any {.}P  such that 1=}{ iP θ  for some 
},...{1,2, ni∈  and 0=}{ jP θ  for ij ≠ . )(PH  measures the randomness carried 

by any discrete probability {.}P . 
  • The PIC metric  
  The Probabilistic Information Content (PIC) of a probability measure {.}P  

associated with a probabilistic source over a discrete finite set },...,{= 1 nθθΘ  is 
defined by [42]:  

        .}){(log}{11=)(PIC 2
1=max

ii

n

i
PP

H
P θθ∑⋅+  (12) 

The PIC is nothing but the dual of the normalized Shannon entropy and thus is 
actually unit less. )(PIC P  takes its values in [0,1] . )(PIC P  is maximum, i.e. 

1=PICmax  with any deterministic probability and it is minimum, i.e. 
0=PICmin , with the uniform probability over the frame Θ . The simple 

relationships between )(PH  and )(PIC P  are ))/((1=)(PIC maxHPHP −  and 
))(PIC(1=)( max PHPH −⋅ . 

5.2. THE DSmP FORMULA 

Let's consider a discrete frame Θ  with a given model (free DSm model, 
hybrid DSm model or Shafer's model), the DSmP  mapping is defined by 

0=)(DSm ∅εP  and }{\ ∅∈∀ ΘGX  by  
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5 With common convention 0=0log0 2 . 
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where 0≥ε  is a tuning parameter and ΘG  corresponds to the generic set ( Θ2 , 
ΘS  or ΘD  including eventually all the integrity constraints (if any) of the model 

M ); )( YXC ∩  and )(YC  denote the DSm cardinals6 of the sets YX ∩  and Y  
respectively. ε  allows to reach the maximum PIC value of the approximation of 

(.)m  into a subjective probability measure. The smaller ε , the better/bigger PIC 
value. In some particular degenerate cases however, the 0=DSm εP  values cannot 
be derived, but the 0>DSm εP  values can however always be derived by choosing 
ε  as a very small positive number, say 1/1000=ε  for example in order to be as 
close as we want to the maximum of the PIC. When 1=ε  and when the masses of 
all elements Z  having 1=)(ZC  are zero, (13) reduces to (10), i.e. 

PP Bet=DSm 1=ε . The passage from a free DSm model to a Shafer's model 
involves the passage from a structure to another one, and the cardinals change as 
well in the formula (13).  

DSmP works for all models (free, hybrid and Shafer's). In order to apply 
classical transformation (Pignistic, Cuzzolin's one, Sudano's ones, etc – see [35]), 
we need at first to refine the frame (on the cases when it is possible!) in order to 
work with Shafer's model, and then apply their formulas. In the case where 
refinement makes sense, then one can apply the other subjective probabilities on 
the refined frame. DSmP works on the refined frame as well and gives the same 
result as it does on the non-refined frame. Thus DSmP with 0>ε  works on any 
models and so is very general and appealing. DSmP does a redistribution of the 
ignorance mass with respect to both the singleton masses and the singletons' 
cardinals in the same time. Now, if all masses of singletons involved in all 
ignorances are different from zero, then we can take 0=ε , and DSmP gives the 
best result, i.e. the best PIC value. In summary, DSmP does an 'improvement' over 
previous known probabilistic transformations in the sense that DSmP 
mathematically makes a more accurate redistribution of the ignorance masses to 
the singletons involved in ignorances. DSmP and BetP  work in both theories: DST 
(= Shafer's model) and DSmT (= free or hybrid models) as well. 

6.  FUSION OF QUALITATIVE BELIEFS 

We recall here the notion of qualitative belief assignment to model beliefs of 
human experts expressed in natural language (with linguistic labels). We show how 
qualitative beliefs can be efficiently combined using an extension of DSmT to 
qualitative reasoning. A more detailed presentation can be found in [33, 35]. The 
derivations are based on a new arithmetic on linguistic labels which allows a direct 
extension of all quantitative rules of combination and conditioning. The qualitative 
version of PCR5 rule and DSmP is also presented in the sequel. 
                                                 

6 We have omitted the index of the model M  for the notation convenience. 
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6.1.  QUALITATIVE OPERATORS 

Computing with words (CW) and qualitative information is more vague, less 
precise than computing with numbers, but it offers the advantage of robustness if 
done correctly. Here is a general arithmetic we propose for computing with words 
(i.e. with linguistic labels). Let's consider a finite frame },...,{= 1 nθθΘ  of n  
(exhaustive) elements iθ , ni ,...1,2,= , with an associated model )(ΘM  on Θ  

(either Shafer's model )(0 ΘM , free-DSm model )(ΘfM , or more general any 
Hybrid-DSm model [29]). A model )(ΘM  is defined by the set of integrity 
constraints on elements of Θ  (if any); Shafer's model )(0 ΘM  assumes all 
elements of Θ  truly exclusive, while free-DSm model )(ΘfM  assumes no 
exclusivity constraints between elements of the frame Θ . Let's define a finite set 
of linguistic labels },...,,{=~

21 mLLLL  where 2≥m  is an integer. L~  is endowed 
with a total order relationship ≺ , so that mLLL ≺≺≺ ...21 . To work on a close 

linguistic set under linguistic addition and multiplication operators, we extends L~  
with two extreme values 0L  and 1+mL  where 0L  corresponds to the minimal 
qualitative value and 1+mL  corresponds to the maximal qualitative value, in such a 
way that  

,... 1210 +mm LLLLL ≺≺≺≺≺   
where ≺  means inferior to, or less (in quality) than, or smaller (in quality) than, 
etc. hence a relation of order from a qualitative point of view. But if we make a 
correspondence between qualitative labels and quantitative values on the scale 
[0,1], then 0min = LL  would correspond to the numerical value 0, while 

1max = +mLL  would correspond to the numerical value 1, and each iL  would 
belong to [0,1], i.e.  

.=<<...<<<= max1210min LLLLLLL mm +   

From now on, we work on extended ordered set L  of qualitative values  

.},,...,,,{=},~,{= 121010 ++ mmm LLLLLLLLL   

In our previous works, we did propose approximate qualitative operators, but 
in [35] we propose to use better and accurate operators for qualitative labels. Since 
these new operators are defined in details in the chapter of [35] devoted on the 
DSm Field and Linear Algebra of Refined Labels (FLARL), we just briefly 
introduce here only the the main ones (i.e. the accurate label addition, 
multiplication and division). In FLARL, we can replace the "qualitative quasi-
normalization" of qualitative operators we used in our previous papers by 
"qualitative normalization" since in FLARL we have exact qualitative calculations 
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and exact normalization. 
 Label addition :  

          ,= baba LLL ++  (14) 

since 
1

=
11 +

+
+

+
+ m

ba
m

b
m

a
.   

 Label multiplication :  
       ,= 1))/(( +× mabba LLL  (15) 

since 
1

1))/((=
11 +

+
+

⋅
+ m

mab
m

b
m

a
. 

 Label division (when 0LLb ≠ ):  
     ,= 1))(/( +÷ mbaba LLL  (16) 

since 
1

1))(/(==
11 +

+
+

÷
+ m

mba
b
a

m
b

m
a

.  

More accurate qualitative operations (substraction, scalar multiplication, 
scalar root, scalar power, etc) can be found in [35]. Of course, if one really needs to 
stay within the original set of labels, an approximation will be necessary at the very 
end of the calculations. 

6.2.  QUALITATIVE BELIEF ASSIGNMENT 

A qualitative belief assignment7 (qba) is a mapping function 
LGqm →Θ:(.)  where ΘG  corresponds either to Θ2 , to ΘD  or even to ΘS  

depending on the model of the frame Θ  we choose to work with. In the case when 
the labels are equidistant, i.e. the qualitative distance between any two consecutive 
labels is the same, we get an exact qualitative result, and a qualitative basic belief 
assignment (bba) is considered normalized if the sum of all its qualitative masses is 
equal to 1max = +mLL . If the labels are not equidistant, we still can use all 
qualitative operators defined in the FLARL, but the qualitative result is 
approximate, and a qualitative bba is considered quasi-normalized if the sum of all 
its masses is equal to maxL . Using the qualitative operator of FLARL, we can 
easily extend all the combination and conditioning rules from quantitative to 
qualitative. In the sequel we will consider 2≥s  qualitative belief assignments 

(.),...(.),1 sqmqm  defined over the same space ΘG  and provided by s  independent 

sources sSS ,...,1  of evidence.  
Note. The addition and multiplication operators used in all qualitative fusion 

formulas in next sections correspond to qualitative addition and qualitative 

                                                 
7 We call it also qualitative belief mass or q-mass for short. 
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multiplication operators and must not be confused with classical addition and 
multiplication operators for numbers. 

6.3.  QUALITATIVE CONJUNCTIVE RULE 

The qualitative Conjunctive Rule (qCR) of 2≥s  sources is defined similarly 
to the quantitative conjunctive consensus rule, i.e. 

 .)(=)(
1=

=1

,,1

ii

s

i
XsXX

GsXX
qCR XqmXqm ∏∑

∩∩

Θ∈
…
…

 
(17) 

The total qualitative conflicting mass is given by  

.)(=
1=

=...1

,..,1

...1 ii

s

i

sXX
GsXX

s XqmK ∏∑
∅∩∩

Θ∈

 

6.4. QUALITATIVE DSm CLASSIC RULE 

The qualitative DSm Classic rule (q-DSmC) for 2≥s  is defined similarly to 
DSm Classic fusion rule (DSmC) as follows : 0=)( LqmqDSmC ∅  and for all 

}{\ ∅∈ ΘDX , 

.)(=)(
1=

=...1

,...,,1

ii

s

i
XsXX

DsXX
qDSmC XqmXqm ∏∑

∩∩

Θ∈

 
  (18) 

6.5. QUALITATIVE HYBRID DSm RULE 

The qualitative hybrid DSm rule (q-DSmH) is defined similarly to 
quantitative hybrid DSm rule [29] as follows:  

                                          ,=)( 0LqmqDSmH ∅    (19) 

and for all }{\ ∅∈ ΘGX   

             ,)]()()([)()( 321 XqSXqSXqSXXqmqDSmH ++⋅=
∆

φ    (20) 

where all sets involved in formulas are in the canonical form and )(Xφ  is the 
characteristic non-emptiness function of a set X , i.e. 1=)( +mLXφ  if ∅∉X  and 

0=)( LXφ  otherwise, where },{ ∅∅∆∅ M . M∅  is the set of all elements of ΘD  
which have been forced to be empty through the constraints of the model M  and 
∅  is the classical/universal empty set. )()(1 XqmXqS qDSmC≡ , )(2 XqS , 
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)(3 XqS  are defined by  

,)()(
1=

=...21

,...,2,1

1 ii

s

i
XsXXX

DsXXX

XqmXqS ∏∑
∩∩∩

Θ∈

∆    (21) 

[ ] ( )[ ]

,)()(
1=

)(
,...,2,1

2 ii

s

i
IXUXU

sXXX
XqmXqS

t

∏∑
=∧∅∈∨=

∅∈
∆    (22) 

,)()(
1=

...21

=...21

,...,2,1

3 ii

s

i

sXXX
XsXXX

DkXXX

XqmXqS ∏∑

∅∈∩∩∩
∪∪∪

Θ∈

∆  
  (23) 

with )(...)( 1 sXuXuU ∪∪=
∆

 where )(Xu  is the union of all iθ  that compose X , 

ntI θθ ∪∪∆ ...1  is the total ignorance. )(1 XqS  is nothing but the qDSmC rule for 
s  independent sources based on )(ΘfM ; )(2 XqS  is the qualitative mass of all 
relatively and absolutely empty sets which is transferred to the total or relative 
ignorances associated with non existential constraints (if any, like in some dynamic 
problems); )(3 XqS  transfers the sum of relatively empty sets directly onto the 
canonical disjunctive form of non-empty sets. qDSmH generalizes qDSmC works 
for any models (free DSm model, Shafer's model or any hybrid models) when 
manipulating qualitative belief assignments. 

6.6. QUALITATIVE PCR5 RULE (qPCR5) 

In classical (i.e. quantitative) DSmT framework, the Proportional Conflict 
Redistribution rule no. 5 (PCR5) defined in [33] has been proven to provide very 
good and coherent results for combining (quantitative) belief masses, see [7, 31]. 
When dealing with qualitative beliefs within the DSm Field and Linear Algebra of 
Refined Labels [35] we get an exact qualitative result no matter what fusion rule is 
used (DSm fusion rules, Dempster's rule, Smets's rule, Dubois-Prade's rule, etc.). 
The exact qualitative result will be a refined label (but the user can round it up or 
down to the closest integer index label). 

6.7. A SIMPLE EXAMPLE OF QUALITATIVE FUSION OF qba'S 

Let's consider the following set of ordered linguistic labels  

},,,,,{= 543210 LLLLLLL  

(for example, 1L , 2L , 3L  and 4L  may represent the values: 
poor very 1∆L , poor 2∆L , good 3∆L  and good very 4∆L , where ∆  symbol 

means by definition). 



15 An introduction to DSmT  233 

Let's consider now a simple two-source case with a 2D frame },{= 21 θθΘ , 
Shafer's model for Θ , and qba's expressed as follows:  

,=)(,=)(,=)( 1211321111 LqmLqmLqm θθθθ ∪   

.=)(,=)(,=)( 2212122212 LqmLqmLqm θθθθ ∪   

The two qualitative masses (.)1qm  and (.)2qm  are normalized since:  

51311312112111 ===)()()( LLLLLqmqmqm ++++∪++ θθθθ   

and 
52122122122212 ===)()()( LLLLLqmqmqm ++++∪++ θθθθ .  

We first derive the result of the conjunctive consensus. This yields:  

)()()()()()(=)( 12211212111211112 θθθθθθθθθ qmqmqmqmqmqmqm ∪+∪+
=×+×+× 212121= LLLLLL  

,==== 1.2
5
6

5
2

5
2

5
2

5
21

5
21

5
21 LLLLLL

++
⋅⋅⋅ ++  

 

=∪+∪+ )()()()()()(=)( 22211212212221212 θθθθθθθθθ qmqmqmqmqmqmqm
=×+×+× 112313= LLLLLL  

,==== 2
5

10
5
1

5
6

5
3

5
11

5
23

5
13 LLLLLL

++
⋅⋅⋅ ++  

 

0.4
5
2

5
21212122112112 ====)()(=)( LLLLLqmqmqm ⋅×∪∪∪ θθθθθθ

=+∩ )()()()(=)( 122122112112 θθθθθθ qmqmqmqmqm  

=+×+× ⋅⋅
5
32

5
113211 == LLLLLL  

.=== 1.4
5
7

5
6

5
1 LLL
+

 

 

Therefore we get: 
 for the fusion with qDSmC, when assuming ∅≠∩ 21 θθ ,  

,=)(,=)( 221.21 LqmLqm qDSmCqDSmC θθ   

;=)(,=)( 1.4210.421 LqmLqm qDSmCqDSmC θθθθ ∩∪   
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 for the fusion with qDSmH, when assuming ∅∩ =21 θθ . The mass of 

21 θθ ∩  is transferred to 21 θθ ∪ . Hence: 

,=)(,=)( 221.21 LqmLqm qDSmHqDSmH θθ   

;==)(,=)( 1.81.40.421021 LLLqmLqm qDSmHqDSmH +∪∩ θθθθ   

 for the fusion with qPCR5, when assuming ∅∩ =21 θθ . The mass 

1.42112 =)( Lqm θθ ∩  is transferred to 1θ  and to 2θ  in the following way:  

.)()()()(=)( 211222112112 θθθθθθ qmqmqmqmqm +∩   

Then, 0.2
5
1

5
11112211 ====)()( LLLLLqmqm ⋅×θθ  is redistributed to 1θ  

and 2θ  proportionally with respect to their qualitative masses put in the conflict 1L  
and respectively 1L :  

      ,======= 0.5
2
1

5
2

0.2
2

0.2

11

0.2

11

0.2

1

2

1

1 LLL
L
L

L
L

LL
L

L

y

L

x
⋅

++
θθ

  

 
whence 0.1

5
0.5

5
0.510.5121

===== LLLLLyx ⋅×θθ . 

Actually, we could easier see that 0.22211 =)()( Lqmqm θθ  had in this case to 
be equally split between 1θ  and 2θ  since the mass put in the conflict by 1θ  and 2θ  

was the same for each of them: 1L . Therefore 0.1
2

0.2
0.2 ==
2

LLL
. 

Similarly, 1.2
5
6

5
32322112 ====)()( LLLLLqmqm ⋅×θθ  has to be 

redistributed to 1θ  and 2θ  proportionally with 2L  and 3L  respectively: 

   ,====== 1.2
5

5
1.2

5

1.2

32

1.2

32

1.2

3

2

2

1 LL
L
L

L
L

LL
L

L

y

L

x
⋅

++

′′ θθ
  

 whence 






×′

×′

⋅

⋅

0.72
5

3.6
5
1.231.232

0.48
5

2.4
5
1.221.221

====

====

LLLLLy

LLLLLx

θ

θ

 Now, add all these to the 

qualitative masses of 1θ  and 2θ  respectively: 
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,===)(=)( 1.780.480.11.20.480.11.21111215 LLLLLxxqmqmqPCR ++++′++ θθθθ
 

,===)(=)( 2.820.720.120.720.122221225 LLLLLyyqmqmqPCR ++++′++ θθθθ
 

,=)(=)( 0.42112215 LqmqmqPCR θθθθ ∪∪  

.=)( 0215 LqmqPCR θθ ∩  
The qualitative mass results using all fusion rules (qDSmC,qDSmH,qPCR5) 

remain normalized in FLARL. 
Naturally, if one prefers to express the final results with qualitative labels 

belonging in the original discrete set of labels },,,,,{= 543210 LLLLLLL , some 
approximations will be necessary to round continuous indexed labels to their 
closest integer/discrete index value; by example, 21.7815 =)( LLqmqPCR ≈θ , 

32.8225 =)( LLqmqPCR ≈θ  and 00.4215 =)( LLqmqPCR ≈∪θθ . 

6.8. A SIMPLE EXAMPLE FOR THE qDSmP TRANSFORMATION 

We first recall that the qualitative extension of (13), denoted (.)εqDSmP  is 
given by 0=)(DSm ∅εPq  and }{\ ∅∈∀ ΘGX  by  

  ,)(
)()(

)()(

=)(DSm

1=)(

1=)( Yqm
YCZqm

YXCZqm

XPq

ZC
YZ

ZC
YXZ

GY ⋅+

∩⋅+

∑

∑
∑

⊆

∩⊆

Θ∈ ε

ε

ε  (24) 

where all operations in (24) are referred to labels, that is q -operators on linguistic 
labels and not classical operators on numbers. 

Let's consider the simple frame },{= 21 θθΘ  (here 2|==|Θn ) with 
Shafer's model (i.e. ∅∩ =21 θθ ) and the following set of linguistic labels 

},,,,,{= 543210 LLLLLLL , with min0 = LL  and 1max5 == +mLLL  (here 4=m ) 
and the following qualitative belief assignment: 11 =)( Lqm θ , 32 =)( Lqm θ  and 

121 =)( Lqm θθ ∪ . (.)qm  is quasi-normalized since max52
==)( LLXqm

X∑ Θ∈
. 

In this example and with PDSm  transformation, 121 =)( Lqm θθ ∪  is 
redistributed to 1θ  and 2θ  proportionally with respect to their qualitative masses 

1L  and 3L  respectively. Since both 1L  and 3L  are different from 0L , we can take 
the tuning parameter 0=ε  for the best transfer. ε  is taken different from zero 
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when a mass of a set involved in a partial or total ignorance is zero (for qualitative 
masses, it means 0L ). 

Therefore using (16), one has  

      
1.25

4
55

4
1

4

1

31

1

3

2

1

1 ====== LLL
L
L

LL
L

L

x

L

x
⋅+

θθ

 
 

and thus using (15), one gets  

       ,==== 0.25
5

1.25
5

(1.25)11.2511
LLLLLx ⋅×θ   

        .==== 0.75
5

3.75
5

(1.25)31.2532
LLLLLx ⋅×θ   

 Therefore, 
,=)(DSm=)(DSm 00=210= LPqPq ∅∩ εε θθ   

,===)(DSm 1.250.2511110= LLLxLPq ++ θε θ   

.===)(DSm 3.750.7532320= LLLxLPq ++ θε θ   

Naturally in our example, one has also 

=∩−+∪ )(DSm)(DSm)(DSm=)(DSm 210=20=10=210= θθθθθθ εεεε PqPqPqPq
.=== max503.751.25 LLLLL −+  

Since 1=2log=log= 22max nH , using the qualitative extension of PIC 
formula (12), one obtains the following qualitative PIC value: 

+⋅+ ))(DSm(log)(DSm[
1
11= PIC 10=210= θθ εε PqPq  

))](DSm(log)(DSm 20=220= θθ εε PqPq+  
,)(log)(log1= 0.943.7523.751.2521.25 LLLLL ≈++  

since we considered the isomorphic transformation 1)/(= +miLi , in our 
particular example 4=m  interior labels. 

7. BELIEF CONDITIONING RULES 

7.1.  SHAFER'S CONDITIONING RULE (SCR) 

Until very recently, the most commonly used conditioning rule for belief 
revision was the one proposed by Shafer [22] and referred here as Shafer's 
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Conditioning Rule (SCR). The SCR consists in combining the prior bba (.)m  with 
a specific bba focused on A  with Dempster's rule of combination for transferring 
the conflicting mass to non-empty sets in order to provide the revised bba. In other 
words, the conditioning by a proposition A , is obtained by SCR as follows : 

           ,](.)[=)|(. SSCR mmAm ⊕      (25) 

where (.)m  is the prior bba to update, A  is the conditioning event, (.)Sm  is the 
bba focused on A  defined by 1=)(AmS  and 0=)(XmS  for all AX ≠  and ⊕  
denotes Dempster's rule of combination [22]. 

The SCR approach based on Dempster's rule of combination of the prior bba 
with the bba focused on the conditioning event remains subjective since actually in 
such belief revision process both sources are subjective and in our opinions SCR 
doesn't manage satisfactorily the objective nature/absolute truth carried by the 
conditioning term. Indeed, when conditioning a prior mass (.)m , knowing (or 
assuming) that the truth is in A , means that we have in hands an absolute (not 
subjective) knowledge, i.e. the truth in A has occurred (or is assumed to have 
occurred), thus A is realized (or is assumed to be realized) and this is (or at least 
must be interpreted as) an absolute truth. The conditioning term "Given A" must 
therefore be considered as an absolute truth, while 1=)(AmS  introduced in SCR 
cannot refer to an absolute truth actually, but only to a subjective certainty on the 
possible occurrence of A from a virtual second source of evidence. The advantage 
of SCR remains undoubtedly in its simplicity and the main argument in its favor is 
its coherence with the conditional probability when manipulating Bayesian belief 
assignment. But in our opinion, SCR should better be interpreted as the fusion of 

(.)m  with a particular subjective bba 1=)(AmS  rather than an objective belief 
conditioning rule. This fundamental remark motivated us to develop a new family 
of BCR [33] based on hyper-power set decomposition (HPSD) explained briefly in 
the next section. It turns out that many BCR are possible because the redistribution 
of masses of elements outside of A (the conditioning event) to those inside A can be 
done in n-ways. This will be briefly presented right after the next section. 

7.2.  HYPER-POWER SET DECOMPOSITION (HPSD) 

Let },...,,{= 21 nθθθΘ , 2≥n , a model )(ΘM  associated for Θ  (free DSm 

model, hybrid or Shafer's model) and its corresponding hyper-power set ΘD . Let's 
consider a (quantitative) basic belief assignment (bba) [0,1]:(.) 6ΘDm  such 
that 1=)(Xm

DX∑ Θ∈
. Suppose one finds out that the truth is in the set 

}{\ ∅∈ ΘDA . Let }{\2=)(PD ∅∩ ΘDA A , i.e. all non-empty parts (subsets) 
of A  which are included in ΘD . Let's consider the normal cases when ∅≠A  and 
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0>)(
)(

Ym
ADPY∑ ∈

. For the degenerate case when the truth is in ∅=A , we 

consider Smets' open-world, which means that there are other hypotheses 
}...,,{= 21 mnnn +++Θ′ θθθ , 1≥m , and the truth is in }{\ ∅∈ Θ′DA . If ∅=A  and 

we consider a close-world, then it means that the problem is impossible. For 
another degenerate case, when 0=)(

)(DP
Ym

AY∑ ∈
, i.e. when the source gave us a 

totally (100%) wrong information (.)m , then, we define: 1)|(
∆

=AAm  and, as a 
consequence, 0=)|( AXm  for any AX ≠ . Let },...,,{=)(

21 piiiAs θθθ , 

np ≤≤1 , be the singletons/atoms that compose A  (for example, if 
)(= 431 θθθ ∩∪A  then },,{=)( 431 θθθAs ). The Hyper-Power Set 

Decomposition (HPSD) of ∅Θ \D  consists in its decomposition into the three 
following subsets generated by A :   

    • )(=1 APD D , the parts of A  which are included in the hyper-power set, 
except the empty set;  

    • }{\},)),(\{(=2 ∅∩∪Θ AsD , i.e. the sub-hyper-power set generated by 
)(\ AsΘ  under ∪  and ∩ , without the empty set; 

    • )(\}){\(= 213 DDDD ∪∅Θ ; each set from 3D  has in its formula 
singletons from both )(As  and )(\ AsΘ  in the case when )(\ AsΘ  is different 
from empty set. 

  1D , 2D  and 3D  have no element in common two by two and their union is 

}{\ ∅ΘD . 
 Simple example of HPSD. Let's consider },,{= 321 θθθΘ  with Shafer's 

model (i.e. all elements of Θ  are exclusive) and let's assume that the truth is in 
32 θθ ∪ , i.e. the conditioning term is 32 θθ ∪ . Then one has the following HPSD: 

},,{= 32321 θθθθ ∪D , }{= 12 θD  and },,{= 32131213 θθθθθθθ ∪∪∪∪D . 
More complex and detailed examples can be found in [33]. 

7.3.  QUANTITATIVE BELIEF CONDITIONING RULES (BCR) 

Since there exists actually many ways for redistributing the masses of 
elements outside of A  (the conditioning event) to those inside A , several BCR's 
have been proposed in [33]. In this introduction, we will not browse all the 
possibilities for doing these redistributions and all BCR's formulas but only one, 
the BCR number 17 (i.e. BCR17) which does in our opinion the most refined 
redistribution since:  

– the mass )(Wm  of each element W  in 32 DD ∪  is transferred to those 
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1DX ∈  elements which are included in W  if any proportionally with respect to 
their non-empty masses;  

– if no such X  exists, the mass )(Wm  is transferred in a pessimistic/prudent 
way to the k -largest element from 1D  which are included in W  (in equal parts) if 
any;  

– if neither this way is possible, then )(Wm  is indiscriminately distributed to 
all 1DX ∈  proportionally with respect to their nonzero masses. 

BCR17 is defined by the following formula (see [33], Chap. 9 for detailed 
explanations and examples): 

,)/(
)(
)()(=)|(

0=)(
largestisk,
32

0)(

32
117 kWm

WS
WmSXmAXm

WS
XWX

DDW

WS
WX

DDW
DBCR ∑∑

−⊂
∪∈

≠
⊂
∪∈

+





















+⋅  (26) 

where " isX k-largest" means that X  is the k -largest (with respect to inclusion) 
set included in W  and 

,)()(
,1

YmWS
WYDY

∑
⊂∈

∆   

.
)(

)(

1

with1|2or
,1

1 Ym

Zm

S

DY

ZYDYDZ
DZ

D ∑

∑

∈

⊂∈∃/∈
∈

∆
ó

  

Note. The authors mentioned in an Erratum to the printed version of the 
second volume of DSmT book series (http://fs.gallup.unm.edu//Erratum.pdf) and 
they also corrected the online version of the aforementioned book (see page 240 in 
http://fs.gallup.unm.edu//DSmT-book2.pdf that all denominators of the BCR's 
formulas are naturally supposed to be different from zero. Of course, Shafer's 
conditioning rule as stated in Theorem 3.6, page 67 of [22] does not work when the 
denominator is zero and that's why Shafer has introduced the condition 

1<)(Bel B  (or equivalently 0>)(BPl ) in his theorem when the conditioning 
term is B . 

A simple example for BCR17. Let's consider },,{= 321 θθθΘ  with Shafer's 
model (i.e. all elements of Θ  are exclusive) and let's assume that the truth is in 

32 θθ ∪ , i.e. the conditioning term is 32 θθ ∪=
∆

A . Then one has the following 
HPSD:  
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     }{=},,,{= 1232321 θθθθθ DD ∪ ,  

     }.,,{= 32131213 θθθθθθθ ∪∪∪∪D   

Let's consider the following prior bba: 0.2=)( 1θm , 0.1=)( 2θm , 
0.2=)( 3θm , 0.1=)( 21 θθ ∪m , 0.1=)( 32 θθ ∪m  and 0.3=)( 321 θθθ ∪∪m . 

With BCR17, for 2D , 0.2=)( 1θm  is transferred proportionally to all 

elements of 1D , i.e. 0.5=
0.4
0.2=

0.1
=

0.2
=

0.1
3232 θθθθ ∪zyx

 whence the parts of )( 1θm  

redistributed to 2θ , 3θ  and 32 θθ ∪  are respectively 0.05=
2θ

x , 0.10=
3θ

y , and 

0.05=
32 θθ ∪z . For 3D , there is actually no need to transfer )( 31 θθ ∪m  because 

0=)( 31 θθ ∪m  in this example; whereas 0.1=)( 21 θθ ∪m  is transferred to 2θ  
(no case of k -elements herein); 0.3=)( 321 θθθ ∪∪m  is transferred to 2θ , 3θ  
and 32 θθ ∪  proportionally to their corresponding masses:  

,0.75=0.3/0.4=/0.1=/0.2=/0.1
3232 θθθθ ∪zyx   

whence 0.075=
2θ

x , 0.15=
3θ

y , and 0.075=
32 θθ ∪z . Finally, one gets  

,0.325=0.0750.100.050.10=)|( 32217 +++∪θθθBCRm   

,0.450=0.150.100.20=)|( 32317 ++∪θθθBCRm   

,0.225=0.0750.050.10=)|( 323217 ++∪∪ θθθθBCRm   
which is different from the result obtained with SCR, since one gets in this 
example:  

,0.25=)|(=)|( 323322 θθθθθθ ∪∪ SCRSCR mm   

.0.50=)|( 3232 θθθθ ∪∪SCRm   
More complex and detailed examples can be found in [33]. 

7.4.  QUALITATIVE BELIEF CONDITIONING RULES 

In this section we present only the qualitative belief conditioning rule no 17 
which extends the principles of the previous quantitative rule BCR17 in the 
qualitative domain using the operators on linguistic labels defined previously. We 
consider from now on a general frame },...,,{= 21 nθθθΘ , a given model )(ΘM  

with its hyper-power set ΘD  and a given extended ordered set L  of qualitative 
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values },,...,,,{= 1210 +mm LLLLLL . The prior qualitative basic belief assignment 
(qbba) taking its values in L  is denoted (.)qm . We assume in the sequel that the 
conditioning event is ∅≠A , Θ∈DA , i.e. the absolute truth is in A . The 
approach we present here is a direct extension of BCR17 using FLARL operators. 
Such extension can be done with all quantitative BCR's rules proposed in [33], but 
only qBCR17 is presented here for the sake of space limitations. 

7.4.1. Qualitative belief conditioning rule no 17 (qBCR17) 

Similarly to BCR17, qBCR17 is defined by the following formula:  
 

,)/(]
)(
)([)(=)|(

0=)(
largestisk,
32

0)(

32
117 kWqm

WqS
WqmqSXqmAXqm

WqS
XWX

DDW

WqS
WX

DDW
DqBCR ∑∑

−⊂
∪∈

≠
⊂
∪∈

++⋅

 

(27) 

where "X is k-largest" means that X  is the k -largest (with respect to inclusion) set 
included in W  and 
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Y D Y W
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∆

∈ ⊂

= ∑   

1

2 1
1

1

( )
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D

Y D

qm Z

S
qm Y

∈
∆ ∈ ∃ ∈ ⊂/

∈

=

∑

∑
  

Naturally, all operators (summation, product, division, etc) involved in the 
formula (27) are the operators defined in FLARL working on linguistic labels. It is 
worth to note that the formula (27) requires also the division of the label )(Wqm  
by a scalar k . This division is defined as follows: 

 Let 0, ≠∈ rRr . Then the label division by a scalar is defined by  

                   
ra

a L
r
L

/=
 

   (28) 

Let's consider },,,,,,{= 6543210 LLLLLLLL  a set of ordered linguistic 
labels. For example, 1L , 2L , 3L , 4L  and 5L  may represent the values: 

poorvery 1

∆

=L , poor 2

∆

= L , medium 3

∆

=L , good 4

∆

=L  and goodvery 5

∆

=L . 
Let's consider also the frame },,,{= DCBAΘ  with the hybrid model 
corresponding to the Venn diagram (Fig. 1). 
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Fig. 1 – Venn diagram for the hibrid model for this example. 

7.4.2. A simple example for qBCR17 

We assume that the prior qualitative bba (.)qm  is given by:  

       411 =)(,=)(,=)( LDqmLCqmLAqm   

and the qualitative masses of all other elements of ΘG  take the minimal/zero value 
0L . This qualitative mass is normalized since max6411411 === LLLLLL ++++ . 

If we assume that the conditioning event is the proposition BA∪ , i.e. the 
absolute truth is in BA∪ , the hyper-power set decomposition (HPSD) is obtained 
as follows: 1D  is formed by all parts of BA∪ , 2D  is the set generated by 

},,,{=\},),,{( DCDCDCDC ∩∪∅∩∪ , and ,,,{=3 CBDACAD ∪∪∪  

}),(,, …DCACBADB ∩∪∪∪∪ . Because the truth is in BA∪ , 

4=)( LDqm  is transferred in a prudent way to DBDBA ∩∩∪ =)(  according 
to our hybrid model, because DB∩  is the first-largest element from BA∪  
which is included in D . While 1=)( LCqm  is transferred to A  only, since it is 
the only element in BA∪  whose qualitative mass )(Aqm  is different from 0L  
(zero); hence:  

 .===)()(=)|( 2111117 LLLLCqmAqmBAAqmqBCR +++∪   

Therefore, one finally gets:  

,=)|(,=)|( 017217 LBACqmLBAAqm qBCRqBCR ∪∪   

,=)|(,=)|( 417017 LBADBqmLBADqm qBCRqBCR ∪∩∪   

which is a normalized qualitative bba. 
 More complicated examples based on other qBCR's can be found in [34]. 
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10. CONCLUSION 

A general presentation of the foundations of DSmT has been proposed in this 
introduction. DSmT proposes new quantitative and qualitative rules of combination 
for uncertain, imprecise and highly conflicting sources of information. Several 
applications of DSmT have been proposed recently in the literature and show the 
potential and the efficiency of this new theory. DSmT offers the possibility to work 
in different fusion spaces depending on the nature of problem under consideration. 
Thus, one can work either in ),(=2 ∪ΘΘ  (i.e. in the classical power set as in DST 
framework), in ),,(= ∩∪ΘΘD  (the hyper-power set Ń also known as Dedekind's 
lattice) or in the super-power set (.)),,,(= cS ∩∪ΘΘ , which includes Θ2  and 

ΘD  and which represents the power set of the minimal refinement of the frame Θ  
when the refinement is possible (because for vague elements whose frontiers are 
not well known the refinement is not possible). We have enriched the DSmT with a 
subjective probability ( εPDSm ) that gets the best Probabilistic Information 
Content (PIC) in comparison with other existing subjective probabilities. Also, we 
have defined and developed the DSm Field and Linear Algebra of Refined Labels 
that permit the transformation of any fusion rule to a corresponding qualitative 
fusion rule which gives an exact qualitative result (i.e. a refined label), so far the 
best in literature. 
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