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Abstract. Poor quality roadmaps can lead to in-optimal paths and lengthy path 
planning processes. Incremental path planners allow undesired vertices of the newly 
developed components to be removed when updating the existing roadmaps with the 
new components. Hence, it is possible for the planners to produce high quality 
roadmaps if quality measures are used to identify the undesired vertices. The 
usefulness of a vertex in the sense of high quality roadmap construction depends on 
the type of the region it resides, given a configuration space. Therefore, it is important 
for such path planners to identify the region types. This paper presents the concept of 
the usefulness and a vertex-based classification approach to enable the planners to 
identify the region types and to calculate the usefulness of vertices accordingly. 

Key words: robot path planning, quality of roadmap, incremental path planning, 
region classification. 

1. INTRODUCTION 

Sampling-based path planners normally involve the construction of roadmaps 
that will be repeatedly used in the later stage to answer various path planning 
queries.  The process of building up a roadmap can be time-consuming given the 
complexity of a configuration space.  For this reason, the planners often focus on 
the speed rather than the quality.  The quality of a roadmap can be measure through 
roadmap size, coverage, connectivity and useful circles, among many other criteria.  
Poor quality roadmaps can have redundant vertices and edges, which does not only 
lead to high costs in terms of searching time for a path in the roadmap but also to 
detours in the obtained paths.  Some of them can even contain disconnected sub-
roadmaps, which does not represent the real connectivity of the environment and 
causes failures in finding paths. 

Incremental path planners, on the other hand, do not require the  
pre-processing stage of constructing roadmaps. Instead, the planners develop 
roadmaps incrementally while answering queries. For this reason, speed does not 
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need to be emphasised in incremental path planners at the same level as in the 
sampling-based planners and there are more rooms to address the quality issue. 
Most incremental path planners contain the stage of removing some vertices from 
the newly developed roadmap components. The quality issue can be emphasised in 
the way of introducing roadmap quality measures into this stage to calculate the 
usefulness to the construction of a high quality roadmap for all the recorded 
vertices. Vertices that hold low level of usefulness will then be identified and 
removed. Because only the highly useful vertices are retained, the pruned new 
components are of high quality. 

The usefulness of a vertex depends on the type of the region it resides in a  
C-space. C-space regions can be classified into four types, namely, free region, 
clustered region, narrow passage and blocked region (Dale and Amato, 2001). The 
number and the relative location of vertices can mean differently when they are 
located in different regions. For example, the same number of vertices will be 
considered less representing in a free region than in a clustered one. That is, they 
are less useful to constructing a high quality roadmap in the free region. Therefore, 
it is important to identify the region types when calculating the usefulness of the 
vertices. 

Dale and Amato (2001) also proposed five different features for the types of 
regions they suggested and a feature-based classification algorithm to identify the 
regions. Morales et al. (2005) suggested a C-space subdivision method. Given a set 
of samples of a C-space, this method recursively performs partitioning until the 
features of the obtained regions match those of pre-defined region types. Denny et 
al (2010) investigated three clustering algorithms for region identification. They 
evaluated the algorithms on the impact on the quality of the roadmaps developed 
based on the regions classified using the algorithms. 

It worth to notice that all the research mentioned above aims to break a  
C-space into a number of small regions allowing suitable sampling-based path 
planners to be applied to the small regions according to the types of the regions. 
Roadmaps can be built up for the small regions relatively more quickly and of good 
quality. For the purpose of subdivision, all the algorithms are required to explore 
the entire C-space to gain the global knowledge of the C-space. However, 
incremental path planners only explore local workspaces that are related to the 
queries they are answering. 

This paper presents a vertex-based classifier for incremental planners to 
identify region types. RRT_extension function (LaValle, 1996) and 
RRT_connection function (Kuffiner and LaValle, 2000) are employed to collect 
local information about obstacle distribution in the region around a recorded 
vertex. The information is then stored in the vertex. Vertex types are defined based 
on this information. Each of these types reflects one of the region types. Features of 
the vertex types are also defined to enable the classification of vertex types when 
give the information stored in a vertex and its neighbouring vertices.  The planners 
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can then calculate the usefulness of the vertices recorded according to the 
recognised region types. The proposed classifier has the advantage of utilising local 
knowledge rather than global knowledge of a C-space. Therefore, the process of 
exploring the entire C-space is not required. 

The rest of this paper is organised as the following. Section 2 gives related 
work in the area of roadmap quality, incremental path planners and region type 
classification. Section 3 presents the proposed vertex-based classifier, including 
vertex types definition, features of vertex types and classification algorithm.  
Section 4 introduces the concept of usefulness of vertices in terms of roadmap 
quality. Section 5 is about the analysis of simulation results. Finally, conclusions 
are given in Section 6. 

2. RELATED WORK 

2.1. QUALITY MEASURES 

Given a Cfree, the configurations that are free of obstacles of a C-space, a 
number of different roadmaps can be constructed with various quality levels.  The 
quality of a roadmap refers to the usefulness of the roadmap to answer queries and 
the cost of constructing it. Four criteria, namely, the Cfree coverage ratio, 
connectivity, useful cycles and roadmap size, are often employed to evaluate the 
quality of roadmaps. 

Cfree coverage ratio 

The prerequisite of making use of a roadmap to answer a query ),( gi qqQ  is 

that iq  and gq  can be connected to the roadmap directly without colliding into any 

obstacle. The collision-free connection of iq  and gq  to the roadmap depends on 

whether iq  and gq  are in the visibility domain of the roadmap. The visibility 
domain of a roadmap is the union of visibility domains of all vertices in the 
roadmap (Siméon et al. 2000). The visibility domain )(qVis  of a configuration q , 
which is illustrated as the shaded area with grid pattern in Fig. 1, is a set of 
configurations ( q′ ) in freeC  and every path segment ( )qqS ′,  is collision-free. The 

visibility domain ( )Vis q  is formulated as: 

( ) { }Vis  | , ( , ) .free freeq q q C S q q C′ ′ ′= ∈ ⊂  (1) 

The visibility domain ( )Vis R  of a roadmap R  such that ( )EVR ,=  is the 
union of the visibility domain of every vertex in the roadmap and is formulated as: 
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( ) ( )( )Vis Vis   .iR R v V= ∈∪  (2) 

 
Fig. 1 – The visibility domain of a configuration. 

The area of the visibility domain of a roadmap is called the covered freeC area 

of the roadmap. Coverage ratio is the percentage of covered freeC  by a roadmap in 

the entire freeC . The coverage ratio (CCR) is defined as 

free

cov eredVol ( )CCR ,
Vol ( )C

R
R

=  (3) 

where coveredVol ( )R  is the volume of covered freeC area by a roadmap R and 

Vol ( )
freeC R  is the volume of the freeC , which is represented by R.  

A CCR can take a value in the range of [0, 1]. The higher the CCR is, the 
more area in a Cfree is covered by a roadmap, R . If a roadmap fully covers a freeC , 
the CCR takes the value of 1. This is called total coverage (Geraerts, 2006). Total 
coverage means that the visibility domain of a roadmap is freeC . Therefore, the 

total coverage of a roadmap ensures that each configuration q  such that freeCq∈  

can be connected to at least one vertex of the roadmap without colliding with any 
obstacle. 

Calculating CCR of a roadmap based on Equation 3 requires the computation 
of the area of the visibility domain of every vertex in the roadmap, which involves 
complex geometric calculation and is time-consuming. Geraerts (2006) suggested 
an easier, approximate calculation method. This method consists of dividing a  

Obstacle 
q 

( )qVis  
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C-space into a grid of equal-sized square cells. The finer the C-space is divided, the 
more exact the CCR obtained using this method. If a configuration q  in the middle 
of a cell is collision-free, the cell is considered to belong to freeC  and is called a 

freeC  cell. If q  is visible from at least one vertex of a roadmap, the cell is called 

visible freeC  cell for the roadmap. Let ( )RNvis  be the number of all visible freeC  

cells for a roadmap R  and ( )RN
freeC  be the number of all freeC  cells in the 

freeC which represented by R . Then, the CCR of R  can be calculated by using the 
following formula:  

( )CCR
( )

free

vis

C

N R
N R

=  (4) 

with a higher CCR, any given pair of connectable iq  and gq  is much more likely 
to be connected to a roadmap. That is, the roadmap is more useful to answer 
queries. Improving CCR is a key issue in the improvement of the quality of a 
roadmap. 

Connectivity. Connectivity of a roadmap refers to the vertices of the roadmap 
are connected.  If all vertices are connected, as shown in Fig. 2, the roadmap 
achieves the maximal connectivity. If a roadmap consists several mini-roadmaps 
each of which represent an isolated part of an un-connected freeC , as illustrated in 

Fig. 3, and each mini-roadmap is a connected roadmap, this roadmap also achieves 
the maximal connectivity. If a roadmap representing a connected freeC  contains 

fewer mini-roadmaps, then its connectivity is higher than the one that have more 
mine-roadmaps. 

  
Fig. 2 – A maximally connected roadmap 

representing a connected Cfree. 
Fig. 3 – A maximally connected roadmap 

representing an un-connected Cfree. 
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Given a roadmap, for a connectable query ),( gi qqQ  of which iq  and gq are 
in the visibility domain, the success of finding a path in the roadmap depends on 
the connectivity of the roadmap. The maximal connectivity of a roadmap 
guarantees a path for any connectable query ),( gi qqQ , provided that iq  and gq  
are in the visibility domain of the roadmap. On the other hand, a roadmap with 
poor connectivity cannot ensure a path even if the roadmap achieves total 
coverage. 

Useful circles. Given a connectable query ),( gi qqQ , a roadmap is expected 
to provide the shortest path. This requires two configurations are connected with 
alternative paths. The alternative paths connecting the same two configurations 
form a circle in the roadmap. Schmitzberger (2002), Nieuwenhuisen and Overmars 
(2004), and Jaillet and Siméon (2008) suggested three types of useful circles, 
namely, un-reducible circles, un-convertible circles and non-first-order 
deformation circles. 

a) Un-reducible circles. A homotopy preserving probabilistic roadmaps 
(HPPR) provides an exhaustive list of all paths, which are not in the same 
homotopic class, to answer queries. Paths in different homotopic classes cannot be 
continuously distorted into each other without colliding with any obstacles.  All 
such paths connecting the same two configurations form un-reducible circles 
(Schmitzberger, 2002). Figure 4 illustrates such an un-reducible circle. Both paths 
P1 and P2 connect the two same configurations iq  and gq . P1, shown with solid 
lines, cannot be distorted into P2, as shown with dashed lines, while staying 
collision-free. The path loop constructed by 1P  and 2P  is an un-reducible cycle. 

b) Un-convertible circles. Nieuwenhuisen and Overmars (2004) furthered 
research on the useful circles in the same homotopic class. If two paths that 
connect the same two configurations and are in the same hometopic class cannot be 
distorted into each other by a series of simple smoothing steps without colliding 
with obstacles, the two paths are said to be un-convertible. Un-convertible paths 
form an un-convertible circle. 

For example, in Fig. 5, paths 1P  and 3P  represented by solid lines to connect 

iq  and gq  are un-convertible and construct a useful cycle. Since the path 1P  can 

be distorted into the path 2P  by simple smoothing steps, the cycle constructed by 

1P  and 2P  is not a useful cycles. 
c) Non-first-order deformation circles. Path deformation roadmaps (PDRs) 

were proposed by Jaillet and Siméon (2008). PDRs are able to add additional 
circles based on the measure of the usefulness of a circle in terms of K-order 
deformation. A K-order deformation circle is constructed by two paths 1P  and 2P  
in the same homotopic class that can be connected by K  ruled surfaces. A ruled 
surface is a surface that can be swept by moving a straight line in a space. Figure 6 
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illustrates a first-order deformation circle constructed by two paths 1P  and 

2P which can be connected by a ruled surface. Figure 7 gives a second-order 
deformation circle constructed by two paths P1 and 2P  which can be connected by 
two ruled surfaces. Non-first-order deformation circles are useful ones. 

 
 

Fig. 4 – An un-reducible circles. Fig. 5 – Convertible paths and un-convertible 
paths. 

  
Fig. 6 – A first-order deformation circle. Fig. 7 – second-order deformation circle. 

Roadmap size. Roadmap size is the number of vertices in a roadmap. A 
smaller roadmap consumes less cost in terms of construction and answering 
queries. Roadmap size sometimes contradicts CCR. This is because with a 
small number of vertices, it is hard for a roadmap to achieve full coverage. 

2.2. INCREMENTAL PATH PLANNERS 

Li and Shie (2002) proposed a two-phase RRF algorithm for incrementally 
building up roadmaps. First, the algorithm answers path queries by growing two 
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RRTs (LaValle, 1998). After having successfully answered a query, the algorithm 
records the two newly grown RRTs and merges them with those that were recorded 
when answering previous queries. During the course of answering more queries, 
the recorded RRTs gradually form a forest. At the second phase, the algorithm 
applies pruning to the obtained forest to remove some vertices and edges for the 
purpose of reducing the size of the forest. 

Adorno and Borges (2009) developed an ARW-based approach to the 
incremental roadmap development. Given a path query, this approach starts two 
random walks from the starting and the destination configurations, respectively, 
and saves the successful path as a new component of a roadmap.  Similar to the 
RRF algorithm, the ARW-based approach also involves a process of retaining 
some vertices in the new component before saving it to the roadmap.  In addition, it 
takes into account of the global connectivity of a given configuration space by 
choosing the samples from less explored regions among a group of multiple 
candidates to ensure the random walk covers those regions. 

Also aiming to the global connectivity, in particular, in narrow passage 
regions, of a given configuration space, Kazemi et al. (2005) proposed an approach 
of iteratively updating the existing roadmaps by using topology information about 
the space obtained through harmonic functions. Given a query, this approach first 
randomly generates a set of nodes and connects them to form an initial roadmap.  It 
then calculates the velocity of an imaging fluid for each node. As the velocity is 
high in narrow passage regions, the nodes with high values of velocity are selected 
as “milestone nodes”. A pre-defined number of nodes are then randomly generated 
within the neighbourhood of each milestone node, so that the distribution of the 
random nodes is biased towards the narrow passage regions. After a collision 
detection, the collision-free ones are added to the initial roadmap. 

2.3. REGION CLASSIFICATION 

Dale and Amato (2002) suggested the following four types of regions for a 
C-space. 

Free region – a free region contains no obstacles. A robot is able to move 
freely in such a region. A roadmap with simple structure and small number of 
vertices will be able to represent a free region. There is no need to keep a large 
number of vertices in the roadmap. For example regions A and E in Fig. 8 are free 
regions. 

Cluttered region – a cluttered region is cluttered with obstacles. The 
difficulties of constructing a high quality roadmap depends on how cluttered the 
obstacles resident in the region. For example, regions C and F in Fig. 8 are 
clustered regions. It is much more difficult to construct a high quality roadmap in 
region C. 
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Narrow passage – a narrow passage region contains a narrow passage 
between other types of regions. It is not easy to construct a path to go throw this 
region. Therefore, it is essential to keep the path in this region. For example, in 
Fig. 8, region B is a narrow message region 
Blocked region – a blocked region is totally surrounded by obstacles without any 
path to go to other regions. For example, region D in Fig. 8 is a blocked region. 

Although some quality issues such as roadmap size and global connectivity 
have been taken into account in the above mentioned work, the driving force of the 
research was to bypass the lengthy pre-processing stage of roadmap construction in 
sampling-based path planners. Other quality issues, including coverage (Simeon et 
al., 2000) and useful circles (Schmitzberger, 2002; Nieuwenhuisen and Overmars, 
2004; Jaillet and Siméon, 2008), have not been considered in the research. Quality 
can be emphasised in the way of introducing roadmap quality measures in the 
process of removing some vertices from the recorded new components of the 
incremental path planners to calculate the usefulness to the construction of a high 
quality roadmap for all the recorded vertices. Vertices that hold low level of 
usefulness will then be identified and removed. Because only the highly useful 
vertices are retained, the pruned new components are of high quality. 

 
Fig. 8 – Workspace region classification. 

3. VERTEX CLASSIFICATION 

Vertex type classification aims to identify the types of regions where vertices 
reside. Therefore, vertex types are meant to reflect C-space region types. Features 
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of the vertex types are needed so that classification can be carried out based on the 
features. 

3.1. VERTEX TYPES 

LaVella (1996) suggested an RRT_extension function which checks whether 
there is any collision-free path segment to connect an existing vertex v to a new 
vertex v’ along a certain direction in a roadmap. The length of the path segment is a 
user-defined distance, called extend step.  If there is such a short path segment, the 
extension is successful.  The failure to find such a path segment means that v is 
near to at least one obstacle in the direction. The function returns information about 
whether an attempt of extension succeeds or fails. Kuffiner and laVella (2000) 
published another function called RRT_connection function. This function checks 
if there is a collision-free path segment between two existing vertices, v and v’. The 
function also tries to find out where is the nearest obstacle along the direction from 
v to v’ if v and v’ cannot be connected. A new vertex v’’ will be added just before 
the obstacle. The function returns information about whether v and v’ can be 
connected successfully and also the location of , called successful connection 
distance, if it is added. 

The information given by the RRT_extension function indicates whether 
there is an obstacle along a certain direction and in a certain range from a vertex. 
The nearest obstacle to a vertex can even be allocated by the RRT_connection 
function. Repeatedly executing the two functions to a number of different 
directions will produce rich topology information of the region around a vertex. 
The information forms a basis for defining vertex types and features of each vertex 
type. The obtained information is stored in the corresponding vertex. 

Four different vertex types are defined according to the topology information, 
namely, free vertex, near-obstacle vertex, narrow-passage vertex and cluttered 
vertex. 

Definition 1 (Free vertex). A vertex v is a free vertex if d1 > D, where d1 is 
the distance from v to the nearest obstacle and D is the successful connection 
distance. 

Vertex va in Fig. 1 is a free vertex as no obstacle is located within the range 
specified by D. The region where a roadmap is constructed by free vertices is free 
of obstacles. 

Definition 2 (Near-obstacle vertex). A vertex v is a near-obstacle vertex if 
d1 ≤ D and d2 ≤ D, where d2 is the distance from v to the nearest free vertex. 

A near-obstacle vertex normally faces obstacle or obstacles in one or a few 
directions but nearby free vertices in other directions within the range specified by 
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D. Vertex vb in Fig. 1 is a near-obstacle vertex because on one hand it closes to an 
obstacle and on the other hand it can be connected directly to the nearest free 
vertex which is located within the range specified by D. 

Definition 3 (Cluttered vertex). A vertex v is a cluttered vertex if d1 ≤ D, in 
the cases where there is no any other vertex is near to v, or d1 ≤ D and d3 ≤ D, 
where d3 is the distance from v to another non-free vertex, otherwise. 

Different from the near-obstacle vertices, a cluttered vertex is surrounded by 
obstacles and can only be connected with other non-free vertex within the range 
specified by D. Vertex vc in Figure 1 is such a vertex. 

Definition 4 (Narrow-message vertex). A vertex v is a narrow-passage vertex 
iff d1  ≤ D in two opposite directions, and the nearby vertex v’ also share the same 
property.  

Vertices vd and ve are narrow-passage vertices in Fig. 1. 

3.2. FEATURES OF ROADMAP VERTICES 

Features of a roadmap vertex, v, contain its own features and collective ones 
that are related to its neighbouring vertices. The neighbouring vertices of v are 
those that are located within a circle centred at v and with the radius of d and are 
either directly or indirectly connected to v. The reason why the collective features 
are needed is that sometimes the type of a vertex cannot be classified with its own 
features alone. All the features can be extracted from the information returned by 
the RRT_extension and the RRT_connection functions. 

Definition 5 (Failed extension ratio of a vertex). For a vertex, v, its failed 
extension ratio, , is the ratio of the number of failed extensions from v 
and the total number of extensions made from v, such as 

         
, (5) 

where NfExt(v) is the number of failed extensions from v and NsExt(v) stands for the 
number of succeeded extensions from v. RfExt(v) takes values from [0, 1]. Non-zero 
values of  mean that v is near obstacles and therefore is not a free vertex. 

Definition 6 (Succeeded connection ratio of a vertex). For a vertex, v, its 
succeeded connection ratio, RsCon(v), is the ratio of the number of succeeded 
connections from v and the total number of connections made from v, such as 

, (6) 

where NfCon(v) is the number of failed connections from v and NsCon(v) stands for 
the  number of succeeded connections from v. RsCon(v) takes values from [0, 1].  If 
the value of RsCon(v) is close to 1, it is very likely that region around v is free. 
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Definition 7 (Failed extension ratio of a collection of vertices). Given a 
vertex, v, let  be a set of vertices consisting of v and 
its neighbouring vertices within the circle centred at v and with a radius d. The 
failed extension ratio of , , is the ratio of the total number of 
failed extensions from every vertex in  and the total number of extensions 
made from ), such as 

, (7) 

where  is the total number of failed extensions from , 
 stands for the total number of succeeded extensions from , and 

d is the summation of the extension step and the minimal successful distance.  
 takes values from [0, 1]. The vertex v is a free vertex, if both 

 and  are zero. 
Definition 8 (Succeeded connection ratio of a collection of vertices). Given a 

vertex, v, let  be a set of vertices consisting of v and 
its neighbouring vertices within the circle centred at v and with a radius d.  The 
succeeded connection ratio of , , is the ratio of the total 
number of succeeded connections from every vertex in  and the total number 
of connections made from ), such as 

, (8) 

where  is the total number of failed connections from  and 
 stands for the total number of succeeded extensions from . 
 takes values from [0, 1]. The vertex v is likely to be a near-obstacle 

vertex if  is close to 1 and  takes a non-zero value. 
Definition 9 (Free vertices ratio of a collection of vertices). Given a vertex, v, 

let  be a set of vertices consisting of v and its 
neighbouring vertices within the circle centred at v and with a radius d. The free 
vertices ratio of  , , is the ratio of the number of free vertices 
and the total number of vertices within in , such as 

, (9) 
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where  is the number of free vertices in  and  
stands for the total number of vertices in .  takes values from 
[0, 1]. The vertex v is a near-obstacle vertex if  is not zero. 

Definition 10 (Non-free vertices ratio of a collection of vertices). Given a 
vertex, v, let  be a set of vertices consisting of v and 
its neighbouring vertices within the circle centred at v and with a radius d. The non-
free vertices ratio of , , is the ratio of the number of non-free 
vertices and the total number of vertices within in , such as 

, (10) 

where  is the number of non-free vertices in . 
. 

Given a vertex and an extension step, the radius d can be calculated with the 
minimal successful connection distance returned by the RRT_connection function 
and subsequently  can be determined. With the obtained  and the 
returned information from both the RRT_extension and the RRT_connection 
functions, the values for all the features of the vertex can then be calculated. 

3.3. CLASSIFICATION 

A decision tree was developed to classify the types of the recorded vertices. 
The decision tree has the features as the nodes and the vertex types as the leaves. 

A decision tree is normally developed through a training process with a 
training data set of a set of classes. Each datum in the dataset is labelled and 
consists of a set of features and a class of the class set. In the training process, 
information gain in terms of entropy is calculated for all the features and the one 
with the highest entropy is added to the tree as a new node. 

As there exist a number of decision tree training algorithms, the key to the 
development of the decision tree for vertex type classification is the preparation of 
a training dataset. The class set, Sclass, and the feature set, Sfeature, to define the 
training date are shown in the following, respectively. 

Sclass = {free, near-obstacle, cluttered, narrow-passage}, 
Sfeature = { }. 

Three simulation workspaces were set up for training data collection, namely, 
simple workspace, cluttered workspace and narrow-passage workspace, as shown 
in Figs. 9 to 11. In Fig. 9, the distance between every two obstacles is set at least 
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thee double of the extension step to ensure that all the vertices generated are either 
free vertices or near-obstacle vertices. In Fig. 10, a cluster of obstacles was set up 
and the distance between every pair of obstacles is shorter than the double of the 
extension step so that no free vertices can be generated inside the obstacle cluster. 
All the vertices inside the obstacle sets cluster will be cluttered vertices. Figure 11 
shows a narrow passage going through an obstacle. Both the height and the width 
are smaller than the extension step. The length is greater than the minimal 
successful connection distance. Therefore, the passage is a narrow passage and all 
the vertices inside of the passage are narrow-passage vertices. To general training 
data, a simple incremental learning path planner which employs the 
RRT_extension function and the RRT_connection function was used to construct 
roadmaps in the given workspaces while answering path queries. To ensure the 
training data for each workspace are generic, all the queries were generated 
randomly. The path planner calculated the values of the features defined in 
Section 3.2 for all recorded vertices while constructing a roadmap until the vertices 
of the roadmap are distributed across the whole workspace. All recorded vertices 
were manually labelled with classes of Sclass. The obtained values and the labels are 
then put together to form training data. 

 
Fig. 9 – A simple workspace. 
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Fig. 10 – A cluttered workspace. 

 
Fig. 11 – A narrow-passage workspace. 
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The training data were presented to C5.0, a well-developed decision tree 
training algorithm (Quinlan, 2007).  The decision tree developed is shown in 
Fig. 12.  

 

Fig. 12 – Vertex type classifier. 

= 0 

Free vertex 

> 0 

< 0.45 

))(( vSosucConRati d  

= 0 

))(( vSsRatioNOSVertice d

Narrow-passage vertex 

))(( vSRatioFailExtend d

Cluttered vertex 

)(vFailExtend

= 0 > 0 

Near-obstacle vertex 
45.0≥  

))(( vSsRatioNOSVertice d

32.0≤  

Near-obstacle vertex 

32.0>  
> 0 

Cluttered vertex ))(( vSRatioFailExtend d

< 0.7 

Cluttered vertex ))(( vSsRatioNOSVertice d

Cluttered vertex 

7.0≥

< 0.78 78.0≥  



17 Building up high quality roadmap using vertex classification based incremental path planner 185 

 
 

The decision tree was evaluated with another workspace, as shown in Fig. 13. 
The workspace contains free regions, cluttered regions and narrow passages. All 
different types of vertices could be generated in such a workspace. 

Three groups of testing data were generated with different extension steps 
and successful connection distances using the same workspace. The value of the 
extension steps and the successful connection distances were set to make sure that 
all kind of vertices can be generated when the path planner constructs roadmaps. 

  
Fig. 13 – Evaluation experimental environment. 

Simulation results are given in Table 1. The high success rates (≥ 80%) show 
that the vertex type classifier is able to classify the vertices in a roadmap in various 
regions. It also shows that the classifier works well with various extension steps 
and successful connection distances. 

Table 1 

Decision tree evaluation results 

Robot size Extension step Successful connection distance Successful rate 
5*5*7 5 3* extendStep =15 88.1% 

4.5*4.5*7 6 2.5* extendStep =15 89.0% 
3.5*3.5*7 7 2* extendStep =14 87.4% 

4. VERTEX PRUNING 

Vertex pruning aims to produce high quality roadmaps. During the pruning 
process, the vertices that are useful to the construction of high quality roadmaps 
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will be retained and the rest will be removed. Incremental path planners allow 
roadmaps to be to be expended by having new vertices and edges added. While the 
feature values of some vertices of the existing roadmaps, obtained when the 
planners answered previous queries, will not be affected by the newly added 
vertices, others will because, for example, they are connected to the new vertices. 
Pruning only applies to the new vertices and those whose feature values changed 
when new vertices are added. 

Vertices are removed according to their usefulness to a high quality roadmap. 
The usefulness depends on the quality measure and the vertex type which reflect 
the type of the region where the vertex resides. The new vertices and the existing 
ones whose feature values are affected by adding new vertices are grouped 
according to their types. The groups can be classified into free group, cluttered 
group, narrow-passage group and near-obstacle group. All the vertices in a group 
are connected with each other. Therefore, a group is a connected mini-roadmap. 
The vertices that connect to the vertices of other groups are marked as group 
connectors. Figure 14 shows all four groups; all the vertices in hollow points in 
each group are group connector vertices. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 14 – Vertices groups. 

Narrow-passage 
group 

Near-obstacle group 

Free 
group 

Cluttered group 
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The quality criteria such as connectivity, roadmap size and useful circles are 
taken into the consideration of the usefulness for vertices in the free group. The 
following vertices are highly useful: 

• Connectors – the connectors of a free group contribute of the connectivity 
of the group and the rest part of a roadmap as they link to the vertices of 
the rest part of the roadmap. 

• Vertices that are in the paths from one connector to another – these vertices 
contribute to the connectivity within a free group. Without these vertices, 
paths from one connector to another cannot be formed. 

• Vertices that form K-order deformation circles – they ensure useful circles 
are not broken. 

CCR is not considered for the free group. This is because a free region does 
not contain any obstacle and is fully visible. 

CCR, connectivity, roadmap size and useful circles are taken into the 
consideration of the usefulness for vertices in the cluttered group. The following 
vertices are highly useful: 

• Connectors – the connectors of a cluttered group contribute of the 
connectivity of the group and the rest part of a roadmap as they link to the 
vertices of the rest part of the roadmap. 

• Vertices that are in the paths from one connector to another – these vertices 
contribute to the connectivity within a cluttered group. Without these 
vertices, paths from one connector to another cannot be formed. 

• Vertices that form K-order deformation circles – they ensure useful circles 
are not broken. 

The following vertices are less useful: 
• Sibling vertices of a leaf vertex within the range specified by the length of 

extension step – these vertices do not have added values to high CCR as 
they are too close to the leaf vertex. 

• Leaf vertices if the distance between a leaf vertex and its ancestor is 
shorter than two times of the length of extension step – the leaf vertices is 
considered too close to their ancestors and do not make further 
contributions to CCR.  

Connectivity and roadmap size are taken into the consideration of the 
usefulness for vertices in the narrow-passage group. The following vertices are 
highly useful: 

• Connectors – the connectors of a narrow-passage group contribute of the 
connectivity of the group and the rest part of a roadmap as they link to the 
vertices of the rest part of the roadmap. 

• Vertices that are in the paths from one connector to another – these vertices 
contribute to the connectivity within a narrow-passage group. Without 
these vertices, paths from one connector to another cannot be formed. 



188 Yueqiao Li, Dayou Li, Carsten Maple, Yong Yue, Zuobin Wang 20 

CCR, connectivity, roadmap size and useful circles are taken into the 
consideration of the usefulness for vertices in the near-obstacle group. The 
following vertices are highly useful: 

• Connectors – the connectors of a near-obstacle group contribute of the 
connectivity of the group and the rest part of a roadmap as they link to the 
vertices of the rest part of the roadmap. 

• Vertices that are in the paths from one connector to another – these vertices 
contribute to the connectivity within a near-obstacle group. Without these 
vertices, paths from one connector to another cannot be formed. 

• Vertices that form K-order deformation circles – they ensure useful circles 
are not broken. 

• Vertices whose NfExt is not zero – these vertices are located along the edges 
of obstacles and contribute to CCR. 

5.  SIMULATION  AND  ANALYSIS 

The simulation results represented in this section show the performance of 
the classifier when it works with a KSR incremental path planner (Li et al., 2008). 
The KSR path planner is able to produce high quality roadmaps by employing the 
vertex-based classifier to classify vertices of a roadmap and to remove the 
undesired vertices accordingly. 

5.1. SCENARIOS 

Simulation scenarios were set up for robots with high dof ( 3≥ ). The scenarios 
contain a variety of different workspaces regions types introduced in Section 2. 
Roadmaps that represent these regions consist of vertices which belong to various 
vertex types. The scenarios are as follows: 

a) Simple scenario – the simple scenario represents a box robot with three 
dofs in a workspace consisting of nine cubical obstacles, which is 
illustrated in Fig. 15. The distance between each pair of obstacles is 
relatively large, compared to the size of the robot. Therefore, the roadmap 
contains free vertices and near-obstacle vertices.  

b) Cluttered scenario – the cluttered scenario represents the same box robot 
moving in a workspace consisting of five hundred uniformly distributed 
tetrahedral obstacles, as shown in Fig. 16. The roadmap contains cluttered 
vertices only. 
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            Fig. 15 – Simple scenario. 

 
             Fig. 16 – Clutter scenario. 

 
           Fig. 17 – Wrench scenario. 

 
              Fig. 18 – Room scenario. 

 
             Fig. 19 – Tube scenario. 

 
             Fig. 20 – House scenario. 
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c) Wrench scenario: the wrench scenario represents a wrench robot with six 
dofs in a workspace consisting of twelve obstacles, as shown in Fig. 17. 
The size of the robot is relatively large compared to the spaces between the 
obstacles. The movements of the robot are constrained in such a workspace. 
Therefore, the roadmap contains cluttered vertices. 

d) Room scenario – the room scenario represents a table robot with six dofs in 
an environment consisting of eight rooms, which is depicted in Fig. 18. 
The width of the doors and that of the corridor connecting the rooms are 
narrow compared to the size of the robot. The table robot is required to 
rotate in order to pass through the doors and to move along the corridor.  
However, since the doors are thin and the corridor between doors is short, 
the vertices in the roadmap are cluttered vertices. Therefore, the roadmap 
contains free vertices, cluttered vertices and near-obstacle vertices. 

e) Tube scenario – the tube scenario represents a box robot with three dofs in 
a workspace consisting of a tube obstacle, which is shown in Fig. 19. The 
tube connects two obstacle free areas. There is a narrow passage inside the 
tube. This narrow passage is not straight which means that it is more 
difficult for the robot to travel through. The roadmap contains free vertices, 
narrow-passage vertices and near-obstacle vertices. 

f) House scenario – the house scenario represents a bird robot with six dofs in 
a house environment as shown in Fig. 20. There are rooms and narrow 
corridors in the house. One of the rooms contains a number of pieces of 
furniture to construct a cluttered workspace. The roadmap contains all 
types of vertices. 

5.2. CLASSIFICATION AND PRUNING 

To evaluate the successful classification rate of the classifier when it works 
with the KSR planner, 100 path queries which are randomly generated were fed to 
the planner. Table 1 gives the successful classification rate achieved by the 
classifier together with the size of the roadmaps constructed by the KSR after 5, 10, 
20, 50, 80, 100 queries were answered. To calculate the successful classification 
rate, all vertices were labelled with correct types manually in an off-line manner. 
The types of vertices identified by the classifier were then compared with the 
correct ones. The successful classification rate was calculated using the following 
formula: 

. (11) 

The high success rate (above 80%) in Table 1 shows that the classifier can be 
used together with incremental path planners. The successful classification rate 
increases along with more path queries are answered. As the KSR is an incremental 
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path planner, region information stored in a vertex was insufficient at the beginning 
to reflect the workspace surrounding the vertex, which leads to the incorrect 
classification. 

Table 2 

Success classification rate of the vertex category classifier 

 Workspace 
Query 

number 
KSR Size & 
Success rate Simple Cluttered Wrench Room Tube House 

size 34 119 145 134 160 224 5 Success rate 90.0.3% 80.7% 82.8% 81.5% 80.4% 76.1% 
size 87 299 369 236 239 364 

10 Success rate 95.5% 82.3% 83.2% 84.9% 88.1% 78.1% 
size 135 661 711 375 276 514 20 Success rate 96.1% 83.5% 84.4% 85.3% 88.7% 80.4% 
size 261 997 883 411 296 632 

50 Success rate 96.6% 84.1% 85.1% 86.5% 88.7% 83.1% 
size 261 1241 956 462 305 710 80 Success rate 96.6% 85.8% 85.1% 86.5% 88.7% 83.9% 
size 261 1304 992 487 305 713 

100 Success rate 96.6% 85.8% 85.1% 86.5% 98.7% 83.9% 

The classifier updated the classification results and corrected the incorrect 
classification with more region information obtained when more vertices are added 
by the KSR path planner.  

Pruning based on the classification significantly reduced the size of roadmaps 
constructed by the planner and at the same time retained the quality of the 
roadmaps.  Table 3 shows the comparison on the quality of the roadmaps before 
and after the pruning process.   

The quality of roadmaps built up based on the classification and pruning was 
measured against CCR, connectivity, useful circles and roadmap size.  The 
performance of the KSR path planner, in teams of the efficiency of answering 
queries by using the roadmaps was measured with the number of collision 
detection carried out by the KSR path planner.   

Since the KSR path planner is an incremental path planning algorithm, the 
quality of the roadmaps improves markedly during the first few path queries.  It 
then changes slightly when the roadmaps are able to answer most of the path 
queries.  Therefore, the measures of roadmap quality were recorded after 5, 10, 20, 
50, 80, 100 path queries were answered in each scenario.  
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Table 3 

The performance of the KSR path planner with and without pruning 

Workspace Pruning size Connectivity CCR Useful cycles 
no 772 1 100% 13 Simple yes 261 1 100% 12 
no 2929 1 100% 47 Clutter yes 1304 1 100% 43 
no 2528 1 100% 17 Wrench yes 992 1 100% 16 
no 1652 1 100% 3 Room yes 487 1 100% 3 
no 2532 1 100% 0 Tube yes 305 1 100% 0 
no 1783 1 100% 25 House yes 713 1 100% 22 

5.3. QUALITY OF ROADMAPS 

The number of collision detection decreased along with more and more 
queries were answered.  This is because CCR increased when more queries were 
answered.  The number of collision detection made by the KSR planner was also 
recorded after 5, 10, 20, 50, 80, 100 path queries were answered in each scenario. 
Tables 4 to 9 show the quality of the roadmaps and the performance of the KSR 
planner using the roadmaps.   

Table 4 

The performance of the KSR path planner in the simple scenario 

Quality Num of 
query Size Connectivity Coverage Useful 

cycles 

Collision 
detections/q

uery 
5 34 1 93.2% 3 76 

10 87 1 98.3% 9 36 
20 135 1 98.3% 10 40 
50 261 1 100.0% 12 24 
80 261 1 100.0% 12 12 

Simple 

100 261 1 100.0% 12 10 

Table 5 

  The performance of the KSR path planner in the clutter scenario 

Quality Num of 
query Size Connectivity Coverage Useful 

cycles 

Collision 
detections/q

uery 
5 119 3 45.5% 1 288 Clutter  

10 299 2 63.2% 5 245 
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20 661 1 82.8% 16 192 
50 997 1 95.6% 35 131 
80 1241 1 100.0% 39 81 
100 1304 1 100.0% 43 11 

Table 6 

The performance of the KSR path planner in the wrench scenario 

Quality Num of 
query Size 

 
Connectivity 

 
Coverage Useful 

cycles 

Collision 
detections/q

uery 
5 145 1 73.2% 0 210 

10 369 1 89.4% 2 187 
20 711 2 96.1% 4 167 
50 883 1 100.0% 6 98 
80 956 1 100.0% 13 54 

Wrench 

100 992 1 100.0% 16 14 

Table 7 

The performance of the KSR path planner in the room scenario 

Quality Num of 
query Size 

 
Connectivity 

 
Coverage Useful 

cycles 

Collision 
detections/q

uery 
5 134 4 43.9% 0 183 

10 236 2 74.8% 0 164 
20 375 2 87.3% 2 150 
50 411 1 100.0% 2 98 
80 462 1 100.0% 3 45 

Room 

100 487 1 100.0% 3 13 

Table 8 

The performance of the KSR path planner in the tube scenario 

Quality Num of 
query Size 

 
Connectivity 

 
Coverage Useful 

cycles 

Collision 
detections/q

uery 
5 160 2 56.7% 0 185 

10 239 2 91.2% 0 136 
20 376 1 100.0% 0 111 
50 296 1 100.0% 0 45 
80 305 1 100.0% 0 31 

Tube 

100 305 1 100.0% 0 24 
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Table 9 

The performance of the KSR path planner in the house scenario 

Quality Num of 
query Size Connectivity 

 
Coverage Useful 

cycles 

Collision 
detections/q

uery 
5 224 3 36.7% 0 265 

10 364 2 56.8% 3 210 
20 514 1 77.6% 6 138 
50 632 1 92.3% 14 81 
80 710 1 100.0% 20 27 

House 

100 713 1 100.0% 22 16 

6. CONCLUSION 

This paper emphasises the construction of high quality roadmaps.  
Incremental path planners are able to build up high quality roadmaps if vertices 
that are not useful to the quality can be removed during the process of roadmap 
development.  The usefulness of vertices depends on the types of regions of a 
workspace where the vertices locate.  The presented vertex-based classifier is able 
to classify the types of vertices, which indicate the types of regions, to high 
successful rates.  Integrating the classifier into a KSR incremental path planner 
leads to high quality roadmaps in various types of workspaces.  Simulations show 
that the quality of roadmaps was gradually improved during the incremental 
process of roadmap construction.   
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