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Abstract. The 3-UPU three degrees of freedom fully parallel manipulator, where U 
and P are for universal and prismatic pair respectively, is a very well known 
manipulator that can provide the platform with three degrees of freedom of pure 
translation, pure rotation or mixed translation and rotation with respect to the base, 
according to the relative directions of the revolute pair axes. In particular, pure 
translational parallel 3-UPU manipulators (3-UPU TPMs) received great attention. 
However, much work has still to be done to reveal all the features this topology can 
offer to the designer when different architectures, i.e. different geometries, are 
considered. Therefore, this paper will focus on this type of the 3-UPU manipulators. 
The paper collects the previous most relevant work done on the 3-UPU TPMs and 
shows the main results in a coherent general frame. The paper presents new 
architectures of the 3-UPU TPMs which offer interesting features to the designer. 
Then, based on a number of indexes, a procedure is proposed that allows the designer 
to select the best architecture of the 3-UPU TPMs for a given task. 

Key words: parallel manipulators, pure translation, architectures, singularity, 
topology. 

1. INTRODUCTION 

Recently, parallel manipulators (PMs) with less than three degrees of 
freedom (DOF) have attracted the attention since many tasks do not require 6-DOF 
and consequently less complex and cheaper machines are worth to be studied. 

In particular 3-DOF PMs have been studied in the last two decades after the 
Delta robot was proposed in 1988 [1]. Many different topologies have been 
presented since then with various complexities. Three-DOF PMs of pure 
translation, rotation and a mixed of rotation and translation have been deeply 
studied and almost all possible topologies have been presented [2–16]. The 
influence of the topology on the performances of the manipulator has also been 
investigated. However, much is still to be said, still keeping the same topology, on 
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the influence of the manipulator geometry, i.e. of its architecture, which can 
significantly change the behavior of the manipulator. 

An interesting 3-DOF PM is the 3-UPU one, presented by Tsai in [3]. Here U 
and P are for universal and prismatic kinematic pairs respectively. Normally the P 
pairs are actuated while the remaining ones are passive. This topology (Fig. 1), that 
features three serial chains (legs) of type UPU connecting the base with the 
platform, under certain geometric conditions provides the movable platform with 3 
DOF of pure translation with respect to the base. This paper will focus on this 
family of 3-UPU translational parallel manipulators, hereafter called 3-UPU TPMs. 

Since its appearance in [3], the influence of geometry on the 3-UPU TPM 
performances has been investigated [4,  6,  9,  11, 17, 18,  19], many different 
architectures presented, and their performances discussed. Moreover, the 3-UPU 
TPM represented a kind of benchmark mechanism for the study of different type of 
singularities [5,  6,  9,  11,  14,  17, 18] in parallel manipulators. Nevertheless, 
further architectures still deserve attention. Indeed, in a recent paper [20], the 
influence of the location of the legs has been investigated leading to new 3-UPU 
TPM architectures with interesting features. 

The aim of this paper is to present new architectures of the 3-UPU TPM in 
order to show the potential of the 3-UPU TPM topology on one hand, and on the 
other hand to propose a new procedure on how a designer can select the best 
architecture of the 3-UPU TPMs for a given task. In particular, the influence of the 
orientation of the revolute axes on the base and on the platform respectively, is 
investigated with special attention to its influence on the singularity loci, and 
consequently on the manipulator workspace free from singularity, which is one of 
the major features to pursue in the design of a parallel manipulator. Two new         
3-UPU TPM architectures are presented, which exhibit attractive kinematic and 
static performances. On the other hand, performance indexes are proposed as main 
tools of a procedure to select the best architecture, also exploiting the definition of 
singularity that can give useful information for the selection. 

2. BACKGROUND ON THE 3-UPU TPM 

A schematic of the 3-UPU TPM is shown in Fig.  1. The P joints are actuated. 
Each U joint comprises two revolute pairs with intersecting and perpendicular axes, 
centred at point Bi, i = 1, 2, 3, in the base and at point Ai , i  = 1, 2, 3, in the 
platform. 

The platform pure translational motion is obtained (and the platform rotation 
is totally prevented) when the following geometric conditions are satisfied for each 
leg [3,  4,  6]: 
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– the axes of the two intermediate revolute pairs are parallel to each other; 
– the axes of the two ending revolute pairs are parallel to each other. 

What follows in this section refers to a special family of 3-UPU TPM architecture: 
the one that has the three axes of the revolute pairs in the base/platform in a same 
plane respectively. 

In [20], two architectures of the 3-UPU TPM have been defined. They are 
here recalled for completeness of presentation.  

The first one, defined as architecture 1.A and shown in Fig.  2, occurs when 
the axes q1i , i  = 1, 2, 3 and q4i , i  = 1, 2, 3 of the revolute pairs in the base/platform 
two-by-two intersect at three points Ci , i  = 1, 2, 3, which define a plane (see plane 
π in Fig.  2). 

In Fig. 2, only the revolute pairs on the base and the platform are represented 
for clarity, all other ones are omitted. The same simplification has been adopted for 
all the subsequent figures of the paper. 

The singularity of the manipulator, i.e., when the relationship between a 
wrench of the external load applied on the platform and the wrench provided by the 
legs that are related by the Jacobian matrix J is no longer a one-to-one relationship, 
occurs when the determinant K of the Jacobian matrix, K = detJ, vanishes. This 
condition is given by [6] 

        ( ) ( )1 2 3 1 2 3. . . 0   × × =   s s s u u u , (1) 

where si , ui , i  = 1, 2, 3 (Fig.  1), are respectively the unit vector of the ith leg AiBi 
and the unit vector orthogonal to the cross link of the U joint in the ith leg on the 
base/platform. 

A system of reference Sb fixed to the base with origin Ob (the centre of the 
circle with radius b defined by the points Bi , i  = 1, 2, 3) is chosen. Axes x and y are 
on the plane π, with x axis through point B1, z axis is pointing upward from the 
base to the platform, while y axis is taken according to the right hand rule. 

Singularities occur when:  
– all unit vectors si become coplanar. This occurs when point Op (center of the 

circle with radius p defined by the points Ai , i  = 1, 2, 3) and origin of the reference 
system Sp fixed to the platform with x axis through point A1 and z axis is pointing 
upward from the base to the platform, while y axis obtained according to the right 
hand rule lies on the plane π. This plane corresponds to z  = 0 in Sb; 

– two out of three unit vectors ui become parallel. This occurs when points Ai 
and Aj ( i  = 1, 2, 3, j  = 1, 2, 3, i ≠ j) belong respectively to the two planes δi and δj 
orthogonal to the base and containing respectively q1i and q1j . In this position also 
q4i and q4j , which are always parallel to q1i and q1j , belong to the planes δi and δj. 
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Fig. 1 – The 3-UPU TPM. 
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Fig. 2 – Singularity loci for the architecture 1. A of the 3-UPU TPM. 
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This condition is represented in Fig.  2 when vectors q41 and q43 project on q11 and 
q13 respectively. In this position, point Op of the platform projects on point Op′ in 
the base plane π. Similar conditions occur when considering vectors q41 and q42, 
and vectors q42 and q43 , which lead to define similar points Op′ and Op′′ in the base 
plane π. Analytically, it can be proved that a singularity locus is a right cylinder Γ 
[4], with circular directrix γ and axis coincident with the z axis of Sb. Therefore, 
conversely, once the points Op′, Op′′ and Op′′′ are defined, the circle γ is defined and 
the cylinder Γ is defined too. The three points can be easily found by geometrical 
inspections, thus representing a simple and efficient method to easily find the 
cylinder Γ. This cylinder has radius r  = 2(b–p). 

– the base and the platform have the same size. In this case all si i  = 1, 2, 3, 
become mutually parallel for any position of the platform and, according to the 
Eqn.(1), the manipulator is in a singular position and the manipulator is structurally 
singular [4,  6,  11]. 

The second architecture (architecture 1.B) is obtained by disconnecting the 
platform of the architecture 1.A from the legs and rotating it 180 degrees about the 
z axis of Sb , then again connecting the legs to the same corresponding platform 
revolute pairs. This makes the three legs intersect at one point as shown in Fig. 3. 
This is a practical drawback. However, manufacturing solutions can overcome it. 
Indeed, some efficient manufacturing solutions are presented in [20] to avoid the 
collision of the legs. 

The singularity loci of this architecture correspond respectively to (i) the 
plane π (z  = 0 in Sb); (ii) the cylinder with axis z of Sb and with radius 
r  = 2(b+p), and (iii) the whole three dimensional Cartesian workspace when the 
base and the platform have the same size. Systems Sb and Sp are defined as in the 
previous 3-UPU TPM architecture. 

It is worth noting that, for the same size of the base and the platform, the  
3-UPU TPM with architecture 1.B has a larger cylinder of singularity than that 
with architecture 1.A, thus it allows a larger workspace free from singularity inside 
the cylinder.  

3. NEW ARCHITECTURES OF THE 3-UPU TPM 

This section presents new architectures of the 3-UPU TPM. 3-UPU TPMs 
can be classified in two main families: 3-UPU TPM with planar base and with 
skew base: named as planar and skew architectures for brevity. 

Planar architectures have the three revolute joint axes connecting the 
base/platform with the leg on a plane (for the base, plane π in Fig.  2), while the 
skew architectures have these three axes not belonging to a same plane but they are 
skewed. 
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Fig. 3 – Singularity loci for the architecture 1.B of the 3-UPU TPM. 

3.1. PLANAR ARCHITECTURES 

In this section, two new architectures of the 3-UPU TPM are presented. The 
first architecture (defined as architecture 2.A) is obtained by taking two axes of the 
base/platform revolute pairs out of the three mutually parallel. Figure 4 shows a 
case with the unit vectors q11 and q13 mutually parallel and orthogonal to the unit 
vector q12 of the third axis. The centers of the universal joints in the base/platform 
are chosen so as to have the angle between the vectors ObBi and ObBi+1, i  = 1, 2, 3, 
and respectively the vectors OpAi and OpAi+1, i  = 1, 2, 3, equal to 2π/3. Sb is defined 
as in the previous architectures. 

Singularity loci: similarly to the two previous cases (architectures 1.A and 
1.B) also this new architecture 2.A when b  = p is structurally singular. For b  ≠ p, 
the Eqn.(1) is satisfied when: (i) the unit vectors si become coplanar and belong to 
the plane π (z  = 0), and (ii) two out of three unit vectors ui become parallel. This 
latter condition occurs when Ai and Aj ( i  = 1, 2, 3, j  = 1, 2, 3, i  ≠ j) belong 
respectively to the two planes orthogonal to the base and containing respectively 
q1i and q1j (defined as in the previous 3-UPU TPM architectures). This condition is 
shown in Fig.  4 for the position of the platform when point Op projects on Op′. A 
similar position occurs when point Op projects on Op′′. 
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Fig. 4 – Singularity loci for the architecture 2.A of the 3-UPU TPM. 

 
Fig. 5 – Singularity cylinder and singularity plane of the 3-UPU TPM. 
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The third point, analogous to Op′′′ of the previous architectures goes to 
infinite since q13 and q11 are parallel. Therefore, the circle γ, directrix of the 
singularity cylinder Γ, becomes a line passing through points Op′ and Op′′. As a 
consequence, the singularity cylinder becomes the plane π2, orthogonal to π and 
passing through the two points Op′ and Op′′. The equation of this plane can be 
represented as follows:  

( ) ( )2

2

2 2cos sin , ,
3 3

y x b p b p zλ π π    = − − + − ∀ ∈    κ     
 (2) 

where κ2 and λ2 are respectively the x and y components of the vector q12 in the 
reference system Sb, and x, y and z are the coordinates of the point Op in the 
reference system Sb. 

Let α be the angle between the axes of the two revolute pairs connecting the 
first and the third leg to the base, i.e. the angle between the unit vectors q11 and q13 , 

( )11 13,α = q q . In Fig.  4, α is 180 degrees. Figure 5 that reports the intersection of 

the singularity loci with the plane π (x, y plane of Sb) for different values of the 
angle α shows the changing of the singularity loci from a cylinder to a plane 
according to the value of the angle α, i.e., when the value of the angle α is equal to 
zero or 180 degrees, the singularity loci corresponds to a plane. If this condition 
does not occur, the singularity loci correspond to a cylinder. 

It is worth noting that 3-UPU TPMs with architecture 2.A have a workspace 
consisting of a volume, plane π2 apart, free from singularity. 

Similarly to what was done for the transition from architecture 1.A to the 
architecture 1.B (changing the location of the legs), a further 3-UPU TPM 
architecture can be devised. Indeed, by disconnecting the platform from the legs, 
rotating it 180 degrees about z axis, then reassembling it to the same corresponding 
platform revolute pairs, still keeping the same direction of the base revolute pairs, a 
new architecture defined as architecture 2.B can be found as shown in Fig.  6. This 
architecture leads to the intersection of the three legs at one point. 

By the same procedure as in the previous architectures, the singularity loci of 
this architecture is found and it corresponds to the two planes π and π2′. 

The equation of π2′ can be represented analytically as follows:  

( ) ( )2

2

2 2cos sin , ,
3 3

y x b p b p zλ π π    = − + + + ∀ ∈    κ     
 (3) 

where κ2 and λ2 are respectively the x and y components of the vector q12 in the 
reference system Sb, which is defined as in the previous 3-UPU TPMs 
architectures. 
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Similarly to the previous case (architecture 2.A), it is worth noting that         
3-UPU TPMs with architecture 2.B have a workspace consisting of a volume, 
plane π2 apart, free from singularity. 
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Fig. 6 – Singularity loci for the architecture 2.B of the 3-UPU TPM. 

3.2. SKEW ARCHITECTURES 

By considering a skew relative position of the axes of the base/platform 
revolute joints, new architectures were found and presented in [20]. Their 
schematics are reported in Figs. 7–10. In this section a complete (original) study on 
the singularity loci is presented. 

For the first architecture (Fig.  7) defined as architecture 3.A, the axes of two 
revolute pair on the base are on the plane π. The axis of the third revolute pair is 
orthogonal to the plane π as shown in Fig.  7. The singularity loci [20] correspond 
to: 

– the plane π; 
– the structural singularity, i.e., the base and the platform have the same size; 
– three lines δij , i  = 1, 2, j  = 2, 3, i  ≠ j, which represent the locus of the 

reference point Op when, according to the method reported in section 2, two axes of 
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the revolute pairs of the platform (q4i, q4j) projects on the two corresponding axes 
of the base (q1i, q1j), providing the projection direction is along the unit vector vij of 
the shortest distance among the two axes. A geometrical inspection shows that the 
lines δ23 and δ13 are on the plane π. While the line δ12 is orthogonal to the plane π. 

In [20] only some information on the singularities is reported based on 
geometric inferences, then a complete study is reported here based also on 
analytical tools. 
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Fig. 7 – Singularity loci for the architecture 3.A of the 3-UPU TPM. 

By substituting the expression of the vectors si and ui in Eqn.(1) and equating 
the numerator to zero, it is possible to find: 

( )2 2 0,z Ax   Bxy   Ay   Dx  Ey  F+ − + + + =  (4) 

where x, y and z are the coordinates of the point Op in the system Sb and the 
coefficients A, B, D, E and F depend on the x and y coordinates of the point Op in 
the system Sb, on the direction of the revolute joint of the base and on the radii b, p 
(the full expression of A, B, D, E and F are reported in Annex A). 

Equation (4) is satisfied when:  
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2 2

0

0, ,

z

Ax   Bxy   Ay   Dx  Ey  F  z

=


+ − + + + = ∀ ∈
 (5) 

Thus, the singularity loci correspond to the plane π (z  = 0) and, from the second 
equation of Equations (5), to two surfaces Г1 and Г2, which are ruled surfaces 
(represented in Fig. 7) that intersect the plane π on a rectangular hyperbola. 

For the second architecture, defined as architecture 4.A, two axes of the 
revolute pairs on the base are mutually parallel and belong to the plane π, while the 
third one is orthogonal to the plane π as shown in Fig. 8. 
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Fig. 8 – Singularity loci for the architecture 4.A of the 3-UPU TPM. 

The singularity loci correspond to the plane π and to a line δ13 (δ23) (locus of 
the platform reference point) on this plane obtained by the projection of the axes of 
the two revolute pairs q11 and q13 (q12 and q13) of the platform on the two 
corresponding axes of the base in the direction orthogonal to these two axes. It can 
be concluded that the singularity loci is the plane π [20]. 

Likewise the previous architecture, by substituting the expression of the 
vectors si and ui in Eqn.(1) and equating the numerator to zero, an equation similar 
to Eqn.(4) is obtained, but in this case, the coefficients A and B are equal to zero, 
therefore Eqn.(4) becomes:  
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( ) 0z Dx  Ey  F  + + = . (6) 

Thus, the singularity loci correspond to two planes: the plane π (z =0) and the plane 
π2 (orthogonal to π and containing the line δ13 as shown in Fig. 8) which has the 
following equation: 

( ) , .
D x F

y z
E
+

= − ∀ ∈  (7) 

Similarly to what was done for the transition from architecture 1.A to the 
architecture 1.B (changing the location of the legs), a further 3-UPU TPM 
architecture can be devised. Indeed, by disconnecting the platform from the legs of 
the architectures 3.A and 4.A respectively, rotating it 180 degrees about z axis, 
then reassembling it to the same corresponding platform revolute pairs, still 
keeping the same direction of the base revolute pairs, two new architectures 
defined as architecture 3.B and architecture 4.B, can be found as shown in Fig.  9 
and Fig.  10. These architectures lead to the intersection of the three legs at one 
point.  

Analogously to the architectures 3.A and 4.A, the singularity loci of the 
architecture 3.B is the plane π and two surfaces Г1′ and Г2′, and for the architecture 
4.B the two planes π and π2′. 

4. PROCEDURE TO SELECT THE BEST 3-UPU ARCHITECTURE  
FOR A GIVEN TASK 

In this section, a procedure to select the best 3-UPU TPM architecture for a 
given task among a number of 3-UPU TPM architectures is presented. In 
particular, the task is to have a given Cartesian workspace of the platform free from 
singularities. It is worth noting that the proposed procedure can be applied (in 
general) to any 3-DOF manipulator. The core of the procedure is the definition of a 
number of geometrical indices which will be used to select the best architecture of 
the manipulator according to the task. This procedure is composed of five main 
steps. 

Before proceeding to the first step, the meaning of security index Kd is 
recalled. With reference to Eqn.(1), detJ = Kd represents a closed surface in the 
Cartesian space inside/outside of which K is smaller/greater than a given value of 
K, Kd [4, 13]. Here, K is re-defined as security index, since it represents how far 
from the singularity (K  = 0) the manipulator configuration is. 
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Fig. 9 – Singularity loci for the architecture 3.B of the 3-UPU TPM. 
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Fig. 10 – Singularity loci for the architecture 4.B of the 3-UPU TPM. 
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First step: the given workspace is put inside a sphere S or inside an easy to 
define surface. Then the sphere is considered as the given workspace. The sphere is 
placed inside a surface with K  ≥  Kd, where Kd is a given security index. This 
guarantees that the manipulator has K  ≥  Kd for all points of the sphere. It is worth 
noting that, in general, the value of K, which stems from Eqn.(1), is between 0  
and 1. 

The second step is the definition of an objective function that the manipulator 
has to satisfy. The objective function can be defined by a proper weighted selection 
of one or more indices, each of them related to a specific property of the 
manipulator, such as size, kinematic manipulability, performance index, forces and 
moments applied on each leg, stiffness, and volume of the closed surface K = Kd . 
These indexes are taken from the literature but some of them are reported for 
clarity in Annex B. 

The third step is to compute the selected indexes for a section W of the given 
workspace. The computation should indeed be performed on the whole workspace. 
However, this is a time consuming step that is not worth  in most cases, thus, quite 
often, it can be avoided by limiting the computation to a significant subset of the 
workspace; for instance, a chosen section of it. As a rule of thumb, the chosen 
section may contain the center of the sphere and is parallel to the plane π. 

The fourth step is to normalize the n selected indexes computed in the 
previous step, in order to find a criterion of comparison, as follows: 

     W

W

d

, 1, ..., ,
d

i

i

t W

T i n
W

= =
∫

∫
 (8) 

where ti and n are respectively the ith index value and the number of indexes, W is 
the selected subset of the workspace and Ti is the normalized ith index value. There 
is no closed-form solution for Eqn. (8), then the integral of the ith index, is 
calculated numerically, which can be approximated by a discrete sum: 

    
W

1 , 1, ..., ,i i
v v

T t i n
N ∈

≈ =∑  (9) 

where v is one of the Nv points, which are uniformly distributed in W. 
The previous four steps have to be completed for all the available 

investigated architectures. 
The fifth step is to select the 3-UPU TPM architecture which best satisfies 

the selected objective function (see second step above). 
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It is worth noting that the proposed procedure is not an iterative procedure, 
although it could be organized as such. Indeed, the five steps are all straightforward 
and lead to the selection of the best architecture among the ones considered. The 
best one provides a workspace free from singularities and in addition satisfies the 
objective function represented by either one single index or a weighted average of 
a number of them. 

5. CASE STUDY 

This section reports the application of the procedure presented in the previous 
section for the selection of the best architecture of the 3-UPU TPMs among the 
four ones (1.A, 1.B, 2.A, 2.B) reported in sections 2 and 3.1. The best architecture 
is selected based on each individual index taken as an objective function (a proper 
selection of weighted indexes as objective function would provide of course 
different results). The given data are: the radius p =45 mm; the security index 
Kd  = 0.6; the diameter d of the sphere S, d = 200 mm; and the same for each leg: 
the offset e = 30 mm; the external radius Rext= 8 mm; the internal radius 
Rint=5.5 mm; Young and Coulomb modules (Aluminium) E = 69 000N/mm2; 
G = 26 000 N/mm2. 
The directions of the revolute pairs on the base, measured in Sb , are taken as: 

• architectures 1.A and 1.B: q1i ( i  = 1, 2, 3) are along the line tangent to the 
circle defined by points Bi ( i  = 1, 2, 3). 

•  architectures 2.A and 2.B: q11=q13=[0.5  –0.866   0]T; q12=[0.866   0.5   0]T 
In order to avoid the collision of the legs for the architectures 1.B and 2.B, 

the second of the three manufacturing solutions presented in [20] has been chosen. 
The value of the offset will be used only for these architectures in order to avoid 
the leg collision. 

In the following subsections, according to the definition (8), the normalized 
indexes of kinematic manipulability TKM, of performance index TPI, of force TF, 
of moment TM, and of stiffness Tsfi , i  = 1, 2, 3, 4, are computed and the final best 
architecture is chosen according to each of them taken as objective function.  

5.1. SIZE OF THE MANIPULATOR 

By applying the procedure presented in [13], the coordinates of the center of 
the sphere S expressed in Sb in [mm] for the architectures (1.A, 1.B) and (2.A, 2.B) 
are respectively (0,0,177.39) and (50,–90,218.125). Then, the computed rate b/p, 
taken as size index, is given in Table 1 for each architecture. Therefore, the 
architecture 1.B is the best one according to the size of the manipulator criterion. 
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Table 1 

 The value of b/p for each architecture 

Architecture 1.A 1.B 2.A 2.B 
b/p 5.81 3.81 7.25 5.25 

5.2. KINEMATIC MANIPULABILITY 

The distribution of the kinematic manipulability KM, as defined in [24], of a  
3-UPU TPMs in the section W of the workspace (section W at z = 177.39 mm and 
z  = 218.125 mm respectively for the architectures (1.A, 1.B) and the architectures 
(2.A, 2.B)) is shown in Fig.  11. This distribution is the same for the architectures 
1.A and 1.B (respectively 2.A and 2.B). Indeed, architectures 1.A and 1.B 
(respectively 2.A and 2.B) have the same manipulability since the manipulability 
depends on K = detJ, which is a function of the directions of the unit vectors si and 
ui , i  = 1, 2, 3, that are the same for these two architectures for the same platform 
position. Then, the corresponding values of the normalized kinematic 
manipulability index, TKM , are computed in Table 2. The best architecture 
corresponds to the maximum value of TKM . According to the values of Table 2, the 
architectures (1.A, 1.B) are better than the architectures (2.A, 2.B). 

5.3. PERFORMANCE INDEX 

According to [21], the characteristic length L is chosen in order to minimize 
the condition number a of the manipulator via an optimization procedure. The 
value of a with respect to the characteristic length L in every position of the 
workspace and for all the four architectures of the manipulator is decreasing. 
Hence, there is no minimum of the condition number. However, it is possible to 
proceed in another way [22] by taking L as the average magnitude of vectors OpAi , 
i  = 1, 2, 3. Thus, the values of the normalized performance index, TPI , based on 
[22,  23] and taking into account [25], are computed and reported in Table 3. 
According to the values of Table 3, the best architecture is the architecture 1.A. 

5.4. FORCES AND MOMENTS APPLIED ON EACH LEG  
OF THE MANIPULATOR 

By using the rate b/p given in Table 1, it can be inferred that the directions of 
the three legs of the manipulator are the same for the architectures 1.A and 1.B 
(respectively 2.A and 2.B) as schematically shown in Fig.12. Thus, the values of 
the normalized force index, TF , reported in Table 4 are the same for the 
architectures 1.A and 1.B (respectively 2.A and 2.B). 



17 The potential of the 3-UPU topology for translational parallel manipulators 21 

Table 2 

The value of TKM for each architecture 

Architecture 1.A 1.B 2.A 2.B 
TKM 0.9034 0.9034 0.7845 0.7845 

 
Fig. 11 – Manipulability distribution of a 3-UPU TPM in the section W of the workspace. 

The best architecture corresponds to the minimum value of TF (minimum of 
the forces applied on each leg). According to the values of Table 4, the 
architectures (1.A, 1.B) are better than the architectures (2.A, 2.B). 

For the values of the normalized moment, TM , the characteristic length L is 
introduced. According to [21], the characteristic length is chosen in order to 
minimize the square root of the determinant of the product of M2 (see Annex B) by 
its transpose via an optimization procedure. The value of this determinant with 
respect to L in every position of the workspace and for each architecture of the 
manipulator is decreasing. However, another way [22] can be adopted by taking L 
as the average magnitude of vectors OpAi , i  = 1, 2, 3. 

Thus, the value of TM is computed and reported in Table 4. The best 
architecture corresponds to the minimum value of TM (minimum of the moment 
applied on each leg). According to the values of Table 4, the architecture 2.A is the 
best. 

5.5. STIFFNESS OF THE 3-UPU TPM 

The values of the normalized stiffness index, Tsfi , i  = 1, 2, 3, 4, are computed 
and reported in Table 5. According to Tsf2 , Tsf3 , and Tsf4 (Annex B), the architecture 
1.B is the best. On the contrary, if the comparison is done according to Tsf1 , the 
architecture 1.A is the best. 



22 Ahmed Hachem Chebbi, Vincenzo Parenti-Castelli 18 

Table 3 

The value of TPI for each architecture 

Architecture 1.A 1.B 2.A 2.B 
TPI [10-5] 4.82 3.77 2.71 1.82 

Table 4 

 The value of TF and TM for each architecture 

Architecture 1.A 1.B 2.A 2.B 
TF 1.066  1.066 1.102 1.102 
TM 1.874  2.167 1.765 2.096 

Table 5  

The value of Tsfi , i  = 1, 2, 3, 4, for each architecture 

Architecture 1.A 1.B 2.A 2.B 
Tsf1  [N2/mm2 ·1012] 15.04 10.06 6.73 5.32 
Tsf2  [N2/rd2 ·1014] 6.74 1.24·104 2.52 5.32 ·103 

Tsf3  [N2 ·106] 1.97 7.23 ·1011 0.92 3.02 · 1011 
Tsf4  [N2mm2/rad2 ·1020] 6.58 8.54·102 3.07 3.09 ·102 

 

 

a 
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b 

Fig. 12 – Architectures 1.A and 1.B (a); and 2.A and 2.B (b), of the 3-UPU TPM for the 
correspondent rate b/p in a position of the workspace. 

5.6. VOLUME OF THE CLOSED SURFACE K = KD 

The volume of the closed surface K = Kd corresponding to the architectures 
2.A and 2.B is greater than the ones corresponding to the architectures 1.A and 1.B. 
Figure 13 shows a section of these two volumes . Then, it can be concluded that the 
architectures 2.A and 2.B are better than the other two architectures. 

 
Fig. 13 – Section (z = 200 mm) of the closed surface K = Kd,  

respectively for the (1.A and 1.B) and the (2.A and 2B) architectures of the 3-UPU TPM. 
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6. CONCLUSION 

This paper recalls the most relevant features of the 3-UPU TPMs, a very well 
known 3-DOF translational manipulator presented in the literature in the late 
nineties by Tsai [3]. 

The investigation on the influence that some geometric parameters of the 
manipulators, such as the direction of the base and platform revolute axes, have on 
the singularity surfaces and, consequently, on the performances of the manipulator, 
made it possible to devise new manipulator architectures, which exhibit interesting 
kinematic and static features showing the potential of the 3-UPU topology. 

A procedure to select the best 3-UPU TPM architecture among a number of 
them for a given task has been presented. The procedure is based on a proper 
selected number of performance indexes taken from the literature. 

Finally, a case study is reported that shows the efficiency of the proposed 
procedure on one hand and highlights the potential of the 3-UPU TPM topology on 
the other hand. 

Acknowledgements. The financial support of MIUR, INAIL, and BRAVO project is gratefully 
acknowledged. 

ANNEX A 

The expressions of A, B, D, E and F are the following: 

( ) ( )2 2

2 2 2 2
1 2 1 1 2 1A = κ κ λ + λ − λ λ κ + κ , (A.1) 

( )2 2

2 2 2 2
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, (A.5) 
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where κ1, λ1, κ2 and λ2 are respectively the x and y components of the vectors q11 
and q12 in the system Sb. 

ANNEX B 

Normalized forces and moments indexes, TF and TM 

In this section, indexes for both forces and moments applied on each leg of 
the manipulator are defined. 

In order to obtain the full 6×6 matrix that maps the platform wrench to the 
external load applied on the platform, the static equilibrium equations are given by 
[19]: 

[ ]
1

T
1 2 3 1 2 3 1 1 1

,f f f m m m
−

− − −

   
=    

−    

S 0 F
MU RS U

 (B.1) 

where fi , i  = 1, 2, 3, and mi , i  = 1, 2, 3 respectively are the force and moment 
acting on the ith leg, 

[ ]1 2 3=S s s s , (B.2) 

p1 1 p2 2 p3 3 = × × × R r s r s r s , (B.3) 

[ ]1 2 3=U u u u , (B.4) 

with pi p iO A=r , i = 1, 2, 3; F is the resultant force of the external load applied to 
the platform at point Op  and M is the resultant moment with respect to point Op of 
the external load applied to the platform. 

The determinant of the matrix 6×6 given by Eqn.(B.1) cannot be taken as an 
index because the components of this matrix do not have the same units [25]. One 
possible solution, is the partition of this matrix in two matrices (3×6) M1 and M2 . 

Now, the force index, TF , is taken as the square root of the determinant of the 
product of M1 by its transpose. The same strategy is chosen for the moment index, 
TM, (the square root of the determinant of the product of M2 by its transpose) 
taking into account the characteristic length [21] in order to make the matrix M2 
dimensionless. 

Stiffness indexes of the 3-UPU TPM 

The stiffness indexes, sfi , i  = 1, 2, 3, 4, are proposed in [26] and their major 
features are reported for clarity in the following. These indexes are based on the 
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stiffness matrix H that provides the relation between a wrench, [F M]T, applied at 
the reference point Op of the platform and the displacement, [t r]T, of the platform 
itself:  

   
=   

   

F t
H

Μ r
, (B.5) 

where t and r are respectively the translation and the rotation of the platform. t and 
r have to be intended as ‘small’ (infinitesimal) displacements. 

According to the static analysis [10, 19], when the external wrench is applied 
on the platform of a 3-UPU TPM, the ith leg is loaded by a torque mti , i  = 1, 2, 3, 
by an axial forces fi , i  = 1, 2, 3, and a pure bending moment mbi , i  = 1, 2, 3. The 
rate bending/torque (mbi /mti) on the ith leg is small (≤ 0.3) in the whole workspace 
when the axes of the revolute joints of the base and the platform respectively are 
coplanar [27]. For this reason, the bending moment mbi will be ignored. 

In order to define the matrix H, the following procedure is adopted. For a 
given input of the actuators, the 3-UPU TPM becomes a structure. Each leg can be 
considered as a serial chain of type UU, because the actuated prismatic pair 
variable is given. 

Due to the torque mti and the axial force fi , i  = 1, 2, 3, the ith leg undergoes a 
torsion and an axial deformation. Figure 14 depicts the elastic model of the 3-UU 
structure, where kri and kai represent the torsional and axial stiffnesses of the ith leg 
and the base and platform U joints are not represented for simplicity (the platform, 
the base and the universal joints are considered as rigid, while the legs as 
deformable). 

In order to consider the displacement of the platform produced by the 
deformation of the leg links due to the torque and to the axial force, additional 
elastic pairs are introduced for each leg. Namely: a revolute pair with the axis 
directed as the torque axis and a prismatic pair directed as the unit vector of the leg 
si, which can model respectively the torsional and the axial elastic deformation of 
the leg, given by θi

3 and di
4 respectively, Fig.15 shows this for the leg 1. An 

equivalent manipulator is thus defined, as represented in Fig.  15, which allows a 
general displacement of the platform (in 3D Cartesian space) that can be expressed 
as a function of the six variables θi

3 and di
4 , i  = 1, 2, 3. Therefore the equivalent 

mechanism can model the influence of a platform displacement on the θi
3 and di

4 
variables. 

The procedure to find the stiffness matrix H is composed of five steps. 
The first one is to express the pose of the reference system Sp fixed to the 

platform with origin at point Op with respect to system Sb itself. In other words, to 
determine the 4 × 4 matrices (Ni, i  = 1, 2, 3) which transform the homogenous 
coordinates of a point from Sp to Sb . 
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For the ith leg, the 4×4 matrix Ni can be expressed as the product of the 4×4 
matrices Cj

i, j  = 0, ..., 6, which transform the homogenous coordinates of a point 
from the system Sj (attached to the link j–1) to the system Sj+1 (attached to the link 
j), j  = 0, ..., 6, (S0 and S7 correspond respectively to Sb and Sp as shown in Fig.15, 
which shows a schematic of the leg 1). The systems Sj , j  = 1, ..., 6, are defined 
according to the Denavit-Hartenberg (D-H) notation [28]. Each matrix Cj

i is a 
function of the corresponding variable of motion between link j–1 and link j. 
Therefore the matrix Ni is a function of the joint variables θi

1, θi
2, θi

3, di
4, θi

5, θi
6 . 

The matrix Ni is then given by: 

   ( )
6

1 2 3 4 5 6
0

, , , , , , 1, 2, 3.i i i i i i i i
j

j
   d   = i

=
θ θ θ θ θ =∏N C  (B.6) 

For instance, based on the schematic of Fig.  15, the D-H parameters for the 
leg 1 can be obtained. They are reported in Table 6. 

According to Eqn.(B.5), it can be seen that the first column of the stiffness 
matrix H corresponds to the vector of force and moment applied at the reference 
point Op when a platform translation of one unit along the x axis of the reference 
system Sb is performed. 

Then, the second step is to find the six variables θi
3 and di

4 , i  = 1, 2, 3, which 
characterize respectively the torsion and the axial deformation of the ith leg  
( i  = 1, 2, 3) when a platform translation of one unit along the x axis of the 
reference system Sb is performed. In general, the homogeneous matrix Σ which 
directly transforms the homogenous coordinates of a point from Sp to Sb can be 
written as follows [29]: 

, 1, 2, ..., 4ij i j = σ = Σ  (B.7) 

with: 
σ11 = cφ2 cφ3;  σ12 = –cφ2 scφ3;  σ13 = sφ2;  σ14 = x+∆x;  σ21 = sφ1 sφ2 cφ3 + cφ1 sφ3; 

σ22 = – sφ1 sφ2 sφ3 + cφ1 cφ3;  σ23 = – sφ1 cφ2; σ24 = y+∆y; 
σ31 = – cφ1 sφ2 cφ3 + sφ1 sφ3;  σ32 = cφ1 sφ2 sφ3 + sφ1 cφ3;  σ33 = cφ1 cφ2;  σ34 = z+∆z; 

σ41 = σ42 = σ43 = 0;  σ44 = 1;  φi = βi+∆βi, 

where c(.) and s(.) stand for the cosine and the sine of the argument; β1, β2 and β3 
are the Euler angles about x, y, and z axes respectively; ∆x, ∆y and ∆z are 
respectively the small translations of the platform along x, y and z axes of Sb; and 
∆β1, ∆β2, ∆β3 are respectively the small variations of the Euler angles. Therefore 
∆γ = (∆x, ∆y, ∆z, ∆β1, ∆β2, ∆β3)T represents a small variation of the displacement 
of the platform. 

For a platform translation of one unit along the x axis of the reference system 
Sb, that is for ∆γ = (1,  0,  0,  0,  0,  0)T, the variables θi

3 and di
4 in the ith leg can be 

found by solving the following system: 



28 Ahmed Hachem Chebbi, Vincenzo Parenti-Castelli 24 

Ni = Σ     i  = 1, 2, 3. (B.8) 

Indeed, from system (B.8), six independent equations can be extracted (three 
from the last column of the matrices and three from the rotational part of the 
matrices). The equations have six dependent variables (θi

1, θi
2, θi

3, di
4, θi

5, θi
6), for 

given x, y, and z (coordinate of the point Op in Sb). 
Then, by writing system (B.8) for all three legs, a system of 18 independent 

equations in 18 variables is obtained, which can be solved for the dependent 
variables, thus providing the values of θi

3 and di
4 , i  = 1, 2, 3, for each leg. 

The third step is to use the axial, kai, and the rotational, kri, stiffnesses of the  
ith leg in order to compute the value of the force fi along si and the moment mi 
around ui respectively related to the rotation θi

3 and the translation di
4 of the ith leg: 

   a 4 , 1, 2, 3i
i if k d i= = , (B.9) 

   r 3 , 1, 2, 3
cos

i
i

i
i

km iθ
= =

ψ
, (B.10) 

where ψi is the angle between the unit vectors si and ui . 
By choosing an annular section of the leg, kai and kri can be computed as 

follows:  

  
( )2 2

ext, int,
a , 1, 2, 3,

i i i
i

i

E R R
k i

l

π −
= =  (B.11) 

   0
r , 1, 2, 3,i i
i

i

G Ik i
l

= =  (B.12) 

where Ei and Gi are respectively the Young and the Coulomb modules of the ith leg; 
Rext,i and Rint,i are the external and the internal radii of the annular section of the ith 
leg; I0i is the polar moment of inertia of the ith leg, and li is the length of the ith leg. 

The fourth step is to use the Eqn.(B.1) to compute the external forces F and 
moments M, to be applied at the reference point Op of the platform for the platform 
equilibrium, which will correspond to the first column of the stiffness matrix H. 
The fifth step is to repeat the three previous steps (from the second to the fourth) to 
compute, analogously to what was done for the first column, the second, the third, 
the fourth, the fifth and the sixth column of the stiffness matrix H. This can be 
performed by imposing respectively a translation of one unit and a rotation of one 
unit as well in all and around all directions, that is by imposing  
∆γ  = (0,  1,  0,  0,  0,  0)T, ∆γ  = (0, 0,  1,  0,  0,  0)T, …, ∆γ  = (0, 0,  0,  0,  0,  1)T. 
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Fig. 14 – Stiffness model of the 3-UPU. 
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Fig. 15 – Parameters of Denavit-Hartenberg on the leg 1 of the 3-UPU TPM. 
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At this stage a stiffness index can be defined. The determinant of the stiffness 
matrix H cannot be taken as a stiffness index because it has components which do 
not have the same units [25]. One of the best alternatives is to take as stiffness 
indexes Tsfi the values of sfk , k  = 1, 2, 3, 4, which correspond respectively to the 
absolute value of the determinants of the four 3×3 matrices Hk , k  = 1, 2, 3, 4, 
obtained by partitioning the stiffness matrix computed above [30], and consider 
them independently; sf1 and sf2 represent respectively the stiffness of the 
manipulator to the translation and the rotation of the platform due to the external 
force F, while sf3 and sf4 represent respectively the stiffness of the manipulator to 
the translation and the rotation of the platform due to the external moment M. 

Table 6 

Denavit-Hartenberg parameters on the leg 1  
for the architectures 1.A, 2.A 

Link j θi
j αi

j di
j ai

j 
Base (0) 0 –π/2 0 a0 

1 θ1
1 π/2 0 0 

2 θ1
2 π/2 0 0 

3 θ1
3 0 0 0 

4 0 –π/2 –d1
4 0 

5 θ1
5 π/2 0 0 

Platform (6) θ1
6 π/2 0 –a6 

Received on January 4, 2012 
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