
Ro. J. Techn. Sci. − Appl. Mechanics, Vol. 60, Nos 1−2, P.63−81, Bucharest, 2015 

HOLE EXPANSION SIMULATION CONSIDERING 
THE DIFFERENTIAL HARDENING OF A SHEET METAL 

TOSHIHIKO KUWABARA1, KAZUHIRO ICHIKAWA2*† 

Abstract. The effects of material models on the predictive accuracy of the finite 
element analyses of hole expansion forming are investigated. The test material used is 
a zinc-coated low carbon steel sheet. Biaxial tensile tests of the test material are 
performed using cruciform specimens and the multiaxial tube expansion test method 
to determine proper material models for the test material. The material models used in 
the FEA are the isotropic hardening (IH) models based on the von Mises, Hill’s 
quadratic, and the Yld2000-2d (Barlat, et al., 2003) yield functions, in addition to the 
differential hardening (DH) model based on the Yld2000-2d yield function (Yld2000-
2d (DH)). The Yld2000-2d (DH) yield function gives the most accurate description of 
the biaxial deformation behavior of the test material. However, even the Yld2000-2d 
(DH) yield function could not accurately reproduce a tendency of the thickness strain 
( p

zε ) distribution in the vicinity of the hole edge. It is concluded that a material model 
that accurately reproduces the anisotropic deformation behavior of the test material 
for a stress range from uniaxial tension to plane strain tension along the RD, 45°, and 
TD should be used in the FEA to improve the predictive accuracy for the p

zε  distribution 
in the vicinity of the hole edge. 

Key words: sheet metal forming, hole expansion, finite element analysis, low carbon 
steel sheet, anisotropy, yield function, differential hardening. 

1. INTRODUCTION 

The establishment of trial-and-error-less manufacturing has been strongly 
desired in industry to shorten the product development period and reduce costs for 
prototype manufacturing. Improvement of the predictive accuracy for defect 
formation using finite element analysis (FEA) is a key to realize trial-and-error-less 
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manufacturing. One of the important factors that affect the accuracy of FEA is a 
material model. In sheet metal forming processes, metal sheets are subjected to 
various multiaxial stress states. Therefore, the validity of the constitutive equations 
used in the FEA should be checked by multiaxial stress tests [1]. 

There have been many studies on numerical analyses of stretch-flanging 
based on anisotropic yield functions. Parmar and Mellor [2] investigated the plastic 
deformation of an annulus of sheet metal subjected to a radial tension at its outer 
periphery using Hill’s nonquadratic yield function [3]. Takuda et al. [4] 
investigated the forming limit of hole expansion with a combined use of Hill’s 
quadratic yield function [5] and ductile fracture criterion with the assumption of 
planar isotropy. Worswick and Finn [6] carried out the FEA and experiment of 
stretch-flanging of 5000-series aluminum alloy sheet using cylindrical and square 
punches and concluded the superiority of the Yld89 yield function [7] to the von 
Mises [8] and Hill’s quadratic yield functions. However, no experimental 
validation was reported for the material models used in these numerical analyses. 
Therefore, it is still questionable how accurately these numerical analyses capture 
the real deformation behavior that occurs during stretch-flanging and hole 
expansion forming. 

Kuwabara and coworkers developed a biaxial tensile testing method for sheet 
metals using cruciform specimens [9,  10]. It has been verified that the material 
models determined using this testing method are effective for improving the 
predictive accuracy of the FEA simulations for automotive outer panel forming 
[11], hydraulic bulge forming [12], and hole expansion forming [13,  14]. However, 
one of the drawbacks of this testing method is that the maximum plastic strain 
ranges for which biaxial stress-strain curves of sheet samples can be measured are 
several percent at most. In order to measure the biaxial stress-strain curves of sheet 
metals for higher strain ranges the author’s research group has developed the 
multiaxial tube expansion testing method (MTET). A sheet material is bent into a 
cylindrical shape and the sheet edges are laser-welded together to fabricate a 
tubular specimen, and then combined internal pressure and tension are applied to 
the tubular specimen using a servo-controlled tube bulge testing machine 
developed by Kuwabara et al. [15]. The MTET was successfully applied to a 
measurement of the work hardening behavior of a pure titanium sheet to a 
maximum plastic strain of 0.085 [16]. The MTET was also effective to measure the 
forming limit stresses and strains of a cold rolled ultralow carbon steel sheet [17] 
and a high strength steel sheet [18] under precisely controlled linear stress paths. 
Yanaga et al. [19] proposed a method of making a differential hardening (DH) 
model for reproducing the deformation behavior of a 6016-T4 aluminum alloy 
sheet under biaxial tension from the data of contours of plastic work measured 
using the MTET and verified that the new constitutive model is effective for 
improving the accuracy of a FEA for a hydraulic bulge forming. 
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The objective of this study is to further advance knowledge on the effect of 
material modelling on the predictive accuracy of FEA. Biaxial tensile tests of a 
zinc-coated low carbon steel sheet were performed using cruciform specimens and 
the MTET to determine isotropic hardening (IH) models and a DH model proper to 
the test material. These material models were then applied to FEAs of hole expansion 
forming to compare calculated results with experimental data. The effects of the 
material models on the predictive accuracy of the FEA of hole expansion forming 
were discussed. 

2. EXPERIMENTAL METHODS 

2.1. TEST MATERIAL 

The material used was a 0.66 mm thick zinc-coated low carbon steel sheet 
(SPCD). The work hardening characteristics and r-values at 0, 45 and 90° to the 
rolling direction are listed in Table 1. Hereafter, the rolling direction (RD), transverse 
direction (TD), and thickness direction of the test material are defined as the x-, y-, 
and z-axes, respectively. 

Table 1 

Mechanical properties of the test material 

Tensile direction from 
RD / ° 0.2σ  / MPa c * / MPa n * α* r-value** 

0 158 541 0.25 0.004 1.3 

45 162 550 0.26 0.005 1.1 

90 159 535 0.26 0.005 1.5 
*Approximated using p( )ncσ = α + ε  for pε =0.002 ~ 0.248 (0°), 0.254 (45°), 0.259 (90°). 
**Measured at a nominal strain of 0.1. 

2.2. SPECIMENS FOR BIAXIAL STRESS TESTS 

Two types of biaxial tensile tests were performed to measure the plastic 
deformation behavior of the test material from yielding to fracture. Figure 1a 
shows a schematic of the cruciform specimen used for the biaxial tensile tests of 
the as-received sheet sample. The geometry of the specimen was the same as that 
developed by Kuwabara et al. [9,  10], and has been adopted as an international 
standard [20]. The specimen arms were parallel to the RD and TD of the material. 
Each arm of the specimen had seven slits, 60 mm long and 0.2 mm wide, at 7.5 mm 
intervals, to exclude geometric constraint on the deformation of the 60×60 mm2 
square gauge area. The slits were fabricated by laser cutting. Normal strain 
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components (εx ,εy) were measured using uniaxial strain gauges (YFLA-2, Tokyo 
Sokki Kenkyujo Co.) mounted at ± 21 mm from the center along the maximum 
loading direction. According to a FEA of the cruciform specimen with the strain 
measurement position shown in Fig. 1a, the stress measurement error was estimated to 
be less than 2% [21,  22]. Details of the biaxial testing apparatus and testing 
method are given by Kuwabara et al. [9,  10]. 
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Fig. 1 – Schematic diagrams of specimens used for the biaxial tensile tests (dimensions in mm): 
a) cruciform specimen; b) tubular specimen. ↔  indicates the RD of the as-received sheet sample. 

Figure 1b shows a schematic of the tubular specimen used for the multiaxial 
tube expansion tests. The specimens were fabricated by bending the sheet samples 
into a cylindrical shape and laser-welding the sheet edges together to produce an inner 
diameter of 54 mm and a gauge length (distance between the clamping jigs) of 170 mm. 
Two types of tubular specimens were fabricated; type I specimens had the RD in 
the axial direction and type II specimens had the RD in the circumferential 
direction. Type I specimens were used for tests with σx < σy and type II for tests 
with σx ≥ σy ; the maximum principal stress direction was always taken to be in the 
circumferential direction. Details of the multiaxial tube expansion testing apparatus 
and testing method are given in Kuwabara and Sugawara (2013) [17]. 

2.3 BIAXIAL STRESS TESTS 

Both cruciform and tubular specimens were subjected to proportional loading 
paths with the true stress ratios σx :σy = 4:1, 2:1, 4:3, 1:1, 3:4, 1:2 and 1:4. Standard 
uniaxial tensile specimens (JIS 13 B-type) were used for the uniaxial tensile tests 
with σx :σy = 1:0 and 0:1. For the biaxial stress tests true stress increments were 
controlled and applied to the specimens so that the von Mises equivalent plastic 
strain rate became approximately constant at 5×10−4 s−1 for all stress paths. Two 
specimens were used for each stress ratio. 
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The concept of the contour of plastic work in the stress space [23,  24] was 
used to quantitatively evaluate the work hardening behavior of the test material 
under biaxial tension. The stress-strain curve obtained from a uniaxial tensile test 
in the RD was selected as a reference datum for work hardening; the uniaxial true 
stress σ0 and the plastic work per unit volume W0 , associated with a particular 
value of a true plastic strain p

0ε , were determined. The uniaxial true stress 90σ  in 
the TD and the biaxial true stress components (σx ,σy) were then determined at the 
same plastic work as W0 . The stress points (σ0 ,0), (0,σ90) and (σx ,σy) thus plotted 
in the principal stress space form a contour of plastic work associated with p

0ε . 

When p
0ε  is taken as sufficiently small, the corresponding work contour can be 

practically viewed as a yield locus. 
Slight differences in flow stress between the tubular and cruciform specimens 

were observed for all stress ratios, due to the prestrain applied to the sheet sample 
during tube fabrication. The prestrain distributes linearly in the thickness direction, 
where it is 0 at the mid thickness and takes the maximum and minimum values, 

0 0 0/ ( )t D t± − , at the outer and inner surfaces of the tube, respectively; these were 
±0.012 for the specimen geometry shown in Fig. 1b. From this reason, the s-s 
curves measured from the multiaxial tube expansion tests were shifted along the 
strain axis to find a connecting point at which both s-s curves smoothly connect to 
those measured using a cruciform specimen for the same stress ratio. Details of the 
shifting method are given in Kuwabara and Sugawara [17]. 

3. RESULTS OF THE BIAXIAL STRESS TESTS 

Figure 2a shows the measured stress points forming the contours of plastic 
work for different levels of p

0ε . Each stress point represents an average of two 
specimen data; the difference of the two measured data was less than 2% of the 
flow stress for all data points. The maximum value of p

0ε  for which the work 

contour has a full set of nine stress points was p
0ε =0.289. The work contours for a 

strain range of 0.002 ≤ p
0ε  ≤  0.04 were determined from the data obtained using 

cruciform specimens, and the work contours for a strain range of 0.04< p
0ε ≤0.289 

were determined from the data obtained using the MTET. For σx :σy = 1:1 fracture 
occurred at weld lines of tubular specimens at p

0ε =0.13; therefore, the equibiaxial 

stress-strain curves were measured using the hydraulic bulge tests for p
0ε ≥0.13 (see 

Kuwabara and Sugawara [17] for the detail of the hydraulic bulge testing method). 
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In Fig. 2b all stress values forming a work contour for a value of p
0ε  are normalized 

by the associated value of σ0. The normalized work contours showed a tendency of 
expansion, exemplifying the DH [23, 24]. 

4. MATERIAL MODELING 

As described in section 5, the effect of material models on the accuracy of the 
hole expansion simulation is investigated for selected yield functions: the von 
Mises [8], Hill’s quadratic (Hill’48) [3] and the Yld2000-2d [25,  26] yield 
functions. The isotropic hardening (IH) model was applied to the von Mises and 
Hill’48 yield functions, while both IH and DH models were applied to the 
Yld2000-2d yield function. The procedures for determining unknown parameters 

 
(a) 

 

(b) 
Fig. 2 – Measured stress points forming contours of plastic work: a) comparison with the theoretical yield 

loci based on selected yield functions; b) those normalized by the uniaxial tensile stresses σ0 associated with 
different levels of p

0ε . It is noted in (a) that the yield loci based on the Yld2000-2d (IH) yield function are 

similar for all the levels of p
0ε  as the isotropic hardening is assumed. 
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of Hill’s quadratic and the Yld2000-2d yield functions are described in this section. 
Hereafter, the r-value and tensile flow stress measured at θ from the RD, are 
referred to as rθ and σθ , respectively, and the ratio of the plastic strain rates 

p pd / dy xε ε  and the flow stress at σx :σy = 1:1 are referred to as rb and σb , 
respectively. 

4.1. IH MODEL 

The unknown parameters of Hill’48 yield function were determined using r0, 
r45 and r90 shown in Table 1, and σ0 . Those of the Yld2000-2d (IH) yield function 
were determined using r0, r45 , r90 (see Table 1), and rb, σ0, σ45 , σ90 and σb 
determined from the work contour for p

0ε = 0.289 (see Fig. 2): 45 0/σ σ = 1.003, 

90 0/σ σ = 0.982, b 0/σ σ = 1.125, and rb= 0.919. The value of an exponent M 
(=4.28) was selected to minimize the root mean square error δr  between the work 
contour for p

0ε = 0.289 and the calculated yield locus (see Eq. (3)). The yield loci 
calculated using the von Mises, Hill’48, and the Yld2000-2d (IH) yield functions 
based on the IH model are shown in Fig. 2. 

4.2. DH MODEL 

In order to reproduce the differential hardening behavior of the test material, 
the contours of plastic work were measured for every p

0ε  at an increment of 0.01. 
Then, αi (i =1~8) and M of the Yld2000-2d (DH) yield function were determined 
for respective work contours for 0.002 p

0≤ ε ≤ 0.289 to minimize the root mean 
square error between the measured work contour and the calculated yield locus, see 
Eq. (5). Figure 3 shows the variations in αi and M with p

0ε . The variation of 

αi (i =1~8) and M are relatively large for a strain range of 0.002 p
0≤ ε ≤ 0.05, while 

they are almost constant for 0.05 p
0< ε . 

Moreover, the variations in αi and M with p
0ε  were approximated by the 

following equations (see ANNEX for the details on the calculation procedures): 

 { }p p
1 2 3 4 20 0( ) ( ) / 1 exp ( ) /M A A A A A⎡ ⎤ε = − + ε + +⎣ ⎦ , (1) 

 ( )p p p
0 0 0( ) exp /i A B C Dα ε = − − ε + ε . (2) 
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Fig. 3 – Variations of M and αi with p
0ε , and those approximated using Eqs. (3) and (4). 

The parameters A1 , A2, A3 and A4 for M , and A, B, C, and D for αi (i =1~8) 
are listed in Table 2. The approximation curves for αi (i =1~8) and M based on 
Eqs. (3) and (4) are also shown in Fig. 3. In the FEA of the hole expansion forming 
the values of αi (i =1~8) and M for the work contours at 0.002 p

0> ε  were assumed 

to be identical to those for the work contour at p
0ε = 0.002, so that zero division can 

be avoided in Eq. (4). It is confirmed from Fig. 3 that the variations of αi (i =1~8) 
and M  with an increase of p

0ε  are correctly reproduced by Eqs. (3) and (4). 
Table 2 

Parameters of the Yld2000-2d yield function for the DH model 

 M  α1 α2 α3 α4 

1A  76.82151 A 0.65589 1.3757 1.05933 0.88623 

2A  4.28845 B −0.44394 0.53476 0.24348 −0.06033 

3A  0.02028 C 84.36394 119.55826 105.04006 24.48797 

4A  0.00532 D −0.00006 0.0002 0.00025 0.00003 

 α5 α6 α7 α8 
A 0.94017 0.52442 0.97626 1.138 
B −0.02893 −0.27252 −0.03193 0.1748 
C 12.02196 21.76577 7.95456 100.1 

 

D 6.863×10-7 0.00037 −0.00005 −0.00005 

*Approximated using { }p p
0 1 2 0 3 4 2( ) ( ) / 1 exp ( ) /M A A A A A⎡ ⎤ε = − + ε + +⎣ ⎦  

for 0.002 p
0≤ ε ≤ 0.289. 

**Approximated using  ( )p p
0 0α exp /i A B C D= − − ε + ε   for 0.002 p

0≤ ε ≤ 0.289. 
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4.3. VALIDATION OF THE MATERIAL MODELS 

The theoretical yield loci based on the von Mises (IH model), Hill’48 (IH 
model) and the Yld2000-2d yield function (IH and DH models) are superimposed 
in Fig. 2a. To quantitatively evaluate the difference between the shapes of the 
theoretical yield loci and the measured work contours, the root mean square error 
δr  was calculated using the following equation: 

 
{ }2( ) ( )i ii

r
r r

N

′ ϕ − ϕ
δ =

∑ , (3) 

where ϕi (i =1 to N (=9)) is the loading angle of the i-th stress path from the x-axis 
in the principal stress space, r(ϕi) is the distance between the origin of the principal 
stress space and the i-th stress point, and r'(ϕi) is the distance between the origin of 
the principal stress space and the theoretical yield locus along the loading direction 
ϕi (see the schematic in Fig. 4). Figure 4 shows the values of δr  for the work 
contours at p

0ε = 0.01, 0.10, and 0.289. It is clear that the Yld2000-2d (DH) yield 
function gives the most accurate description of the work hardening behavior of the 
test material, although there is not much difference in δr  between Hill’48, the 
Yld2000-2d (IH), and the Yld2000-2d (DH) yield functions. 
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Fig. 4 – The root mean square error δr  of the calculated yield loci 

from the measured work contours associated with p
0ε = 0.01, 0.10, and 0.289. 
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Fig. 5 – Variation of the directions of the plastic strain rates with p

0ε . 

In order to validate the normality flow rule for the yield functions, the 
directions of the plastic strain rates were measured for each linear stress path. 
Figure 5 shows the variation of the directions β of the plastic strain rates with an 
increase of p

0ε  for each linear stress path. β is defined as 0° when it is parallel to 
the RD, and the increment of β in the anticlockwise direction is defined to be 
positive. β is almost constant for σx :σy = 4:1, 2:1, 1:1, 1:2, and 1:4, while β 
gradually decreases for σx :σy = 4:3 and increases for σx :σy = 3:4 with an increase 
of p

0ε . 
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0ε = 0.01 and 0.289, compared with 

those calculated using selected yield functions. 
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Figure 6 compares the measured directions of the plastic strain rates 
measured at p

0ε = 0.01 and 0.289 with those calculated using selected yield 
functions based on the IH model and the Yld2000-2d (DH) yield function.  

To quantitatively evaluate the difference between the measured directions of 
the plastic strain rates and those predicted using the selected yield functions, the 
root mean square error βδ  was calculated using the following equation: 

 
{ }2( ) ( )i ii

Nβ

′β ϕ − β ϕ
δ =

∑ , (4) 

where β(ϕi) (i =1~N (=9)) is the direction of the plastic strain rate measured for the 
i-th stress path, and β'(ϕi) is that predicted using a selected yield function for the i-
th stress path (see the schematic in Fig. 7). Figure 7 shows the values of δβ for the 
work contours at p

0ε = 0.01, 0.10, and 0.289. The Yld2000-2d yield function (DH) 

gives the most accurate prediction of β(ϕi) at p
0ε = 0.01, while there is not much 

difference in δβ between Hill’48, the Yld2000-2d (IH), and the Yld2000-2d (DH) 
yield functions at higher strain levels of p

0ε = 0.10 and 0.289. 
Figure 8 compares the measured uniaxial tensile stresses σθ (normalized by 

σ0) and the r-values rθ corresponding to p
0ε = 0.095, for a loading angle of θ from 

the RD, with the calculated values using the yield functions examined in this study. 
The Yld2000-2d yield function has a good agreement with the experimental values 
for both σθ and rθ, while the values of σθ predicted by Hill’48 show some 
deviation from the measurement. 
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Fig. 7 – The root mean square error δβ of the calculated directions of the plastic strain rates based 

on the normality flow rule for the calculated yield locus from those measured. 
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Fig. 8 – Variation of: a) flow stresses; b) r-values with tensile directions, compared with 
those calculated using the selected yield functions. 

5. HOLE EXPANSION FORMING: EXPERIMENT 
AND FINITE ELEMENT SIMULATION 

5.1. EXPERIMENTAL METHOD 

Figure 9 shows the experimental apparatus used for the hole expansion 
forming. The punch was 100 mm in diameter and the die and punch profile radius 
was 15 mm. The initial hole diameter was 30 mm, fabricated at the center of a 
circular blank using a wire-electrical discharging machine. The periphery of the 
blank was clamped using a triangular draw-bead. The interface between the blank 
and punch head was lubricated with Vaseline and 0.3 mm thick Teflon sheet. The 
punch speed was approximately 0.1 mm/s, and the punch stroke was 30 mm. A 
grid pattern, with an increment of 10° in the circumferential direction and 2 mm in 
the radial direction, was scribed on each blank. The grid was used to identify the 
initial position of each material element in the original sheet when the thickness 
strain distribution in the sheet was measured after a hole expansion forming. 

After the hole expansion forming, the sheet thickness along the hole edge (at 
positions 2 mm distant from the hole edge on the undeformed blank) and along the 
radial lines at  0, 45, 90, 135, 180, 225, 270, 315° from the RD were measured 
using a digital micrometer with a minimum readout of 0.001 mm. 

5.2. FINITE ELEMENT ANALYSIS 

FEAs of the hole expansion forming were carried out using Abaqus/Standard 
Ver.6.12 [27]. Figure 10a shows the finite element mesh used for the analysis. The 
increment of element divisions in the circumferential direction was 2.5°. The 
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increment of element division in the radial direction was 1 mm for 15 R≤ ≤ 69 mm, 
1.5 mm for 69 R≤ ≤ 82.5 mm, and 2 mm for 82.5 R≤ ≤ 97.5 mm, where R is the 
radial coordinate on the undeformed blank. One quarter of a blank was analyzed, 
due to the orthotropic material symmetry. The reduced 4-node shell elements (S4R) 
with 5 integration points in the thickness direction were used for the blank.  

 
Fig. 9 – Experimental apparatus for the hole expansion forming. 

    
(a) (b) 

Fig. 10 – Finite element analysis of the hole expansion forming: a) initial mesh division of a blank; 
b) the FEA model for the hole expansion forming. 

The initial hole diameter was 30 mm. The punch, die, and blank-holder were 
defined as rigid bodies, as shown in Fig. 10b. The coefficients of friction were 
assumed to be 0.03 between the punch and blank and 0.15 for other contact areas 
of the blank. The displacement of the blank edge (a diameter of 195 mm) was fixed 
at the bead position. Swift’s power law in the RD shown in Table 1 was used as the 
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work hardening equation of the material. The material was unloaded when the punch 
stroke reached 30 mm, and the FEA was terminated. 

The material models used in the FEA were the IH models based on the von 
Mises, Hill’48 and the Yld2000-2d (IH) yield functions (see Fig. 2a). In addition, 
the DH model (the Yld2000-2d (DH)) as formulated in section 4.2 was also used. 

5.3 RESULTS AND DISCUSSION 

Figure 11 compares the measured logarithmic thickness strains p
zε  along the 

hole edge (the positions 2 mm away from the hole edge on the undeformed blank) 
at a punch stroke h = 30 mm with the FEA predictions calculated using selected 
yield functions. One data point indicates an average value of three specimens. In 
the figure, the hole expansion ratio λ is defined as 
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Fig. 11 – Thickness strains along the expanded hole edge compared with those calculated 

using selected yield functions. The punch stroke in the experiment and the FEA was 30 mm. 
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where C0 and C are the total length of the hole edge before and after the hole 
expansion forming. The experimental data had local maxima at θ = 0, 90, 180 and 
270° and local minima at θ = 45, 135, 225 and 315°. All the material models 
overestimate the thickness reduction along the hole edge. Taking a closer look at 
the FEA predictions, the Yld2000-2d (IH) and (DH) correctly predict the directions 
of local maxima and minima, while Hill’48’s prediction slightly deviates from the 
measurement. The difference between the maxima and minima in the experimental 
thickness strain was 0.033, while those in the FEA results were 0.022 for Hill’48, 
0.042 for the Yld2000-2d (IH), 0.041 for the Yld2000-2d (DH) and 0 for the von 
Mises yield function. 

Figure 12 shows the variation of p
zε  measured along the radial lines at the RD 

(average of θ = 0 and 180°), 45° (average of θ = 45, 135, 225 and 315°), and the 
TD (average of θ = 90 and 270°), compared with the FEA predictions calculated 
using the von Mises (a), Hill’s quadratic (b), and the Yld2000-2d (DH) (c) yield 
functions, respectively. The horizontal axis indicates the strain measurement 
position that is S mm away from the hole edge on the undeformed blank. The 
measured p

zε  takes the minimum approximately at S = 10 mm for θ = 0 and 90° and 
at S = 8 mm for θ = 45°. The calculated values using Yld2000-2d (DH) yield 
function are in fair agreement with the measurement for a range of 14 S≤ ≤ 20 mm; 

however it could not predict the trend that p| |zε  increases with an increase of S for 
a range of 2 S≤ ≤ 10 mm at θ = 0 and 90° and for a range of 2 S≤ ≤ 8 mm at 
θ = 45°. On the other hand, the calculated values using Hill’48 show a deviation of 

p
zΔε = 0.01~0.04 from the measurement, although it coincidentally predicts the 

trend that p
zε  takes the minimum approximately at S = 10 mm for the RD and TD. 

It is clear from Fig. 12 that all the material models could not accurately 
reproduce the p| |zε  distribution in the vicinity of the hole edge, i.e., in the area of 
0 S≤ ≤ 12 mm. The stress states of the material elements existing in this area 
change from uniaxial tension (at S = 0) to plane strain tension (in the vicinity of 
S = 12 mm. Actually, the directions of the plastic strain rates at σx :σy = 4:1, 2:1, 
1:2, and 1:4 predicted by the Yld2000-2d yield function (DH) deviate from the 
measurement by several degrees as shown in Fig. 6. Therefore, in order to improve 
the predictive accuracy for the thickness distribution in the vicinity of the hole edge, 
a material model that accurately reproduces the anisotropic deformation behavior 
of the test material for a stress range from uniaxial tension to plane strain tension 
along the RD, 45°, and TD should be used in the FEA. The development of such an 
accurate material model will be an objective for a future study. 
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Fig. 12 – Measured thickness strains along the radial lines parallel to the RD, 45°, and TD of the 
blank at a punch stroke of 30 mm. Also depicted in these figures are those calculated using: a) the von 

Mises; b) Hill ’48; c) the Yld2000-2d (DH) yield functions, respectively; d) a law of deformed 
elements at h =30 mm. The numerals indicate the initial distance S (mm) from the hole edge. 

6. CONCLUSIONS 

FEAs of hole expansion forming of a zinc-coated low carbon steel sheet 
(SPCD) were performed using the material models that were precisely determined 
using the data from the biaxial tensile tests using cruciform specimens and the 
MTET. The material models used in the FEA were the IH models based on the von 
Mises, Hill’48 and the Yld2000-2d yield functions and the DH model based on the 
Yld2000-2d yield function. Calculated thickness strain distributions in the vicinity 
of the hole edge were compared with experimental data, and the cause of the 
discrepancy between the experiment and the FEA was discussed. The following 
conclusions were obtained. 
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(1) The DH model based on the Yld2000-2d yield function gives the most 
accurate description of the biaxial deformation behavior of the test material in 
terms of contours of plastic work and the normality flow rule, although it does 
not have much difference in accuracy at a higher strain range from the IH 
models based on Hill’48 and the Yld2000-2d yield functions. 

(2) Even the DH model based on the Yld2000-2d yield function could not 
accurately reproduce a tendency of p

zε  distribution that p| |zε  increases with an 
increase of the distance S from the hole edge for a range of 2 S≤ ≤ 10 mm at 
θ = 0 and 90° and for a range of 2 S≤ ≤ 8 mm at θ = 45°.  

(3) In order to improve the predictive accuracy for the thickness distribution in 
the vicinity of the hole edge, a material model that accurately reproduces the 
anisotropic deformation behavior of the test material for a stress range from 
uniaxial tension to plane strain tension along the RD, 45°, and TD should be 
used in the FEA. 

ANNEX 

In order to formulate the differential hardening model for the test material, 
the material parameters αi (i =1~8) and exponent M of the Yld2000-2d yield 
function were determined as functions of p

0ε  by the following calculation 
procedures: 
(i) αi (i =1~8) and M of the Yld2000-2d yield function were determined for 

respective work contours for 0.002 p
0≤ ε ≤ 0.289 to minimize the root mean 

square error between the measured work contour and the calculated yield 
locus, see Eq. (3). 

(ii) Approximate the variation in M  with p
0ε  using Eq. (1). 

(iii) Recalculate αi (i =1~8) using the value of M determined in (ii) for the 
measured work contours corresponding to particular values of p

0ε . 

(iv) Approximate the variations in αi (i =1~8) with p
0ε  obtained in (iii) using 

Eq. (2). 

Received on  June 29, 2015 
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