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VALIDATION OF NEW RIGID BODY DYNAMICS 
FORMULATION USING ROTATION MATRICES ELEMENTS 

AS DEPENDENT PARAMETERS − 
DOUBLE PENDULUM CASE STUDY 

DAN N. DUMITRIU1, MIHAI MĂRGĂRITESCU2 

Abstract. The method of using the rotation matrix elements as dependent parameters 
for the 3D rotation of a rigid body is currently very rarely used in multibody dynamics. 
Nevertheless, this redundant parameterization of 3D rotations presents advantages, as 
well as disadvantages, with respect to classical independent parameters or less dependent 
parameters (e.g., quaternions). Thus, when using rotation matrix elements as dependent 
parameters, the dynamics of a rigid multibody system consists of solving an algebro-
differential equations system comprising 12 scalar differential equations plus 6 algebraic 
scalar orthogonality equations per solid, plus the algebraic equations characterizing 
the articulations between the linked solids of the multibody system. The disadvantage 
of such an increased number of parameters/equations for our method is fully compensated 
by the fact that the dynamics equations can be written in a systematic way, being 
structurally similar for each solid. This paper validates our new rigid body dynamics 
formulation on the double pendulum case study, proposing a simplified version of the 
Lagrange multipliers elimination method. More precisely, a two-step elimination 
method is proposed to solve the algebraic part of the algebro-differential equations system. 

Key words: rigid body dynamics, rotation matrix elements, orthogonality condition, 
Lagrange multipliers, algebro-differential system, double pendulum. 

1. INTRODUCTION: “ART OF PARAMETERIZATION” 

The choice of the parameters used to locate the position of the different rigid 
bodies is the first but crucial step in multibody dynamics. This “art of para-
meterization” has a major influence on solving the multibody dynamics equations. 
Obviously, there is no perfect choice of parameters, one has always to evaluate the 
pros and cons of the choice made, by taking into account several criteria: the 
number of parameters; the algebraic simplicity of the rotation matrix expression as 
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a function of the chosen parameters; the degree of nonlinearity of the dynamic 
equations obtained by using the considered parameterization; the computational 
time for solving the dynamic equations; the absence of singularities in the rotation 
matrix representation; the geometrical interpretation of the chosen parameters. 

The formulation using rotation matrices elements (full 3×3 matrices) as 
dependent parameters of a 3D rotations is used here. Considering 9 parameters for 
3 rotational degrees of freedom means redundancy, as a consequence 9−3=6 constraint 
equations per solid are necessary. Lagrange multipliers are introduced in order to 
take into account these rigidity/orthogonality constraints. Our formulation introduces 
also other Lagrange multipliers corresponding to the constraints characterizing the 
joints between the different solids composing the multibody system. 

It is usually less known, but Stuelpnagel [1] proved since 1964 that five is the 
minimum number of parameters necessary so that to a 3D rotation R corresponds a 
unique set of parameters, i.e., the rotation group SO(3) is parameterized in such a 
way that a global description without singularities is obtained. Thus, the parame-
terizations using 3 independent parameters (Euler angles, Bryant angles, rotation 
vector, Rodrigues parameters etc.) or 4 dependent parameters (quaternions, linear 
parameters) present singularities in the representation of 3D rotations. Instead, our 
formulation using rotation matrices elements as dependent parameters of a 3D 
rotations presents no singularities. Other parameterizations without singularities are: 
natural coordinates [2–4], a set of two orthonormal base vectors (the third base 
vector being the cross product of the first two orthonormal base vectors), etc. 

On the other hand, even if the number of equations is reduced when using 3 
independent parameters, the symbolic complexity of the model equations can be 
extremely high [5], which leads to numerical schemes that are too slow for a real-
time implementation. Using dependent coordinates, the rotational dynamics of 
multibody systems turns out to be represented by model equations having a low 
symbolic complexity, which simplifies and fastens the numerical resolution. 

2. “ROTATIONLESS FORMULATION”: 
REPRESENTATION OF 3D ROTATIONS BY THE 9 ROTATION 

MATRICES ELEMENTS. STATE OF THE ART 

The choice of rotation matrices elements as 9 dependent parameters for a 3D 
rotation is not widely spread in mechanics, nevertheless several authors have preferred 
to use this highly redundant parameterization. For example in the early 1960s, the 
practical problem of satellite attitude estimation conducted logically to the “TRIAD 
algorithm” [6], where the attitude is determined from two vector measurements 
(the third base vector could be the cross product of the first two base vectors). In 
fact, it had come naturally to use direction cosines of objects as observed in a satellite 
fixed frame of reference and direction cosines of the same objects in a known frame 
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of reference. This parametization is called to be “without any knowledge of the attitude 
dynamics model”, or in other words it is a “rotationless formulation”. 

This problem of attitude determination from a set of two or more vector mea-
surements was immediately set up as an optimization problem called Wahba’s 
problem or “problem 65–1” [7]. Farrell and Stuelpnagel et al. proposed a first solution 
to Wahba’s problem, by computing “a least squares estimate of the rotation matrix 
which carries the known frame of reference into the satellite fixed frame of 
reference” [8]. It was already proved by the same Stuelpnagel [1] that at least two 
vector measurements (6 parameters, greater than the minimum number of parameters) 
are necessary to avoid any singularity in the rotation representation. More recently, 
Markley [9] proposed a different solution to Wahba’s problem based on the singular 
value decomposition of a 3×3 matrix. Nowadays, Izadi and Sanyal et al. use the 
discrete Lagrange-d’Alembert principle, showing that “Wahba’s cost function for 
attitude determination from vector measurements can be generalized and cast as a 
Morse function on the Lie group of rigid body rotations. A kinetic energy-like term, 
quadratic in the angular velocity estimation errors, can be used along with this artificial 
potential to construct a discrete Lagrangian dependent on state estimation errors” [10]. 

Other applications of the rotation matrix estimation problem are in stereo-
photogrammetry and in robotics [11]. In this context of using orthonormal matrices 
to represent rotations, Horn et al. present “a closed-form solution to the least-square 
problem of absolute orientation, one that does not require iteration” [11]. Their method 
“uses manipulation of 3×3 matrices and their eiganvalue-eigenvector decomposition, 
showing that the best scale is the ratio of the root-mean square deviations of the 
measurements from their respective centroids”. Their closed-form solution may 
seem relatively complex, but can be easily computed with nowadays CPU performance 
and availability of algebraic packages. 

More recently, a conservative time integration formulation for rigid bodies is 
developed by Krenk and Nielsen [12], based on a convected set of orthonormal 
base vectors. The base vectors are represented in terms of their absolute 
coordinates, idea which is similar to the natural coordinates concept [2–4]. “The 
equations of motion are obtained via Hamilton’s equations including the zero-strain 
conditions as well as external constraints via Lagrange multipliers” [12]. 

Simo and Wong [13] are well-known authors using in mechanics of 
deformable media the same idea of 3D rotations representation by preserving full 
3×3 matrices as parameters. They develop an unconditionally stable implicit 
algorithm “which exactly preserves energy and the total spatial angular momentum 
in incremental force-free motions”. Their second order accurate algorithm is 
“directly applicable to transient dynamic calculations of geometrically exact rods 
and shells” [13]. Of course, for deformable bodies the orthogonality constraints 
imposed to rotation matrices will no more be entirely fulfilled. 

In the same context of “rotationless formulation” of SO(3), i.e., the 
representation of 3D rotations by preserving all 9 elements of the rotation matrix as 
parameters, the work of Betsch, Steinmann, Uhlar et al. [14–18] is also well-known 



 Dan N. Dumitriu, Mihai Mărgăritescu 4 234 

in multibody dynamics. They propose “energy-momentum consistent time-stepping 
schemes for finite-dimensional mechanical systems with holonomic constraints” 
[15, 18], obeying “major conservation laws of the underlying continuous system 
such as conservation of energy and angular momentum” [14]. Starting from the 
time discretization yielding to an “index three differential-algebraic equations 
(DAEs) corresponding to the constrained mechanical system” [15], “size-reductions 
are performed by eliminating the constraint forces, to lower the computational 
costs and improve the numerical conditioning” [17]. More precisely, the “discrete 
Lagrange multipliers are eliminated by using a discrete null space matrix” [15]. 
Numerous numerical examples validate their method: double spherical pendulum, 
gyro top, cylindrical and planar pairs and a six-body link, planar revolute pair with 
torsional spring, screw joint, free floating parallel manipulator, radio telescope, 
rotary crane, etc. 

The same idea of eliminating explicitly the Lagrange multipliers associated 
with the internal zero-strain constraints is used also by Krenk and Nielsen, in order 
to reduce the size of the algebro-differential system to be solved. More precisely, 
the number of variables is reduced by six for each rigid body. “The Lagrange 
multipliers are eliminated by use of the set of orthogonality conditions between the 
generalized displacements and the momentum vector, leaving a set of differential 
equations without additional algebraic constraints on the base vectors” [12]. 

Using the same “rotationless formulation” of SO(3) special orthogonal Lie 
group, Gros et al. [19] obtain similar model equations in the form of index-3 DAEs 
of reduced nonlinearity. In the context of an optimal control problem, the most 
challenging in multibody dynamics, they propose a projection of the resulting 
Lagrange equations so as to reduce the number of states that need to be integrated 
by the Nonlinear Model Predictive Control. More precisely, Gros et al. are “using 
index-reduction techniques, where the constraints are differentiated with respect to 
time so as to obtain index-1 DAEs with associated consistency conditions” [19]. 
The re-increase of the symbolic complexity associated to this index-reduction 
technique is reasonable, thus the authors report worst case execution times less 
than 10 ms for their real-time optimal control of a tethered airplane [19]. 

At the University of Poitiers in France, Prof. Claude Vallée has guided 
several of his PhD students to work using this “rotationless formulation”, i.e., to 
represent a 3D rotation in multibody dynamics by preserving all 9 elements of the 
rotation matrix and by imposing the orthogonality constraints [20]. Firstly, Isnard 
and Vallée et al. [20–22] formulated the multibody dynamics equations when using 
full 3×3 matrices to parameterize 3D rotations. Lagrange multipliers are introduced 
in order to take into account the rigidity/orthogonality constraints, as well as other 
constraints characterizing the articulations between the linked solids of the multi-
body system. To numerically solve the formulation, two methods are used: a shooting 
method applied at each incremental time step in order to fulfill the constraints, or 
the Lagrange multipliers elimination method, where explicit dynamic equations are 
generated, ready to be directly integrated and thus to obtain the time evolution of 
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the dynamic system. Isnard et al. applied the proposed formulation to virtual reality 
realistic simulations [21,  22]. 

Dumitriu et al. [23–27] continued this work, trying to take more advantage 
from the algebraic simplicity of the “rotationless formulation” of the motion 
equations, by an efficient use of tensor calculus. Thus, for a rigid body rotating 
about its centre of mass, Vallée and Dumitriu proved that “the negative of the 
Lagrange multipliers matrix Λ associated to the rigidity/orthogonality constraint 

T
3I=R R  is a positive matrix and, at each instant of time, an orthonormalized basis 

exists in which new components of the matrix Λ are constant, which gives six first 
integrals of the equations of motion. It is proved that the three eigenvalues of the 
matrix Λ do not change with time and, moreover, they can be found in explicit 
form” [23,  24]. Atchonouglo [28–30] and Monnet [30–32] applied this redundant 
parameterization method to the identification of mechanical parameters, more 
precisely to the identification of kinematic and body segment inertial parameters in 
biomechanics [30–32]. In their case studies, the use of the matricial/tensor formulation 
using rotation matrices elements as rotational parameters, brought some advantages 
(numerical precision) with respect to traditional (bio)mechanical parameters 
identification methods. 

Other authors using the “rotationless formulation” are Seguy [33] and Samin 
and Fisette [34], both focused on modular and symbolic modeling of multibody 
systems. In fact, the “rotationless formulation” is perfectly suited for object-oriented 
programming of multibody system dynamics, since the dynamic equations can be 
generated in a systematic/automatic/symbolic way. In this framework of tensor 
symbolic modeling, Samin and Fisette propose a variational approach based on 
Jourdain’s principle of virtual powers [34], while Seguy [33] uses the “rotationless 
formulation” equations of motion both in Lagrange formulation and in Newton-
Euler formulation, achieving an object-oriented programming applied to virtual reality 
purposes. Similarly, Ruf and Horaud [35] use a “projective approach to close the 
loop between articulated motion and stereo vision”. Also in 3D vision, for camera 
calibration and for the modelization of moving scenes in the three dimensional 
Euclidean space, Ma and Soatto et al. [36] are other authors who preferred to represent 
the orientation of a moving frame relative to a fixed frame using the coordinates 
the three orthonormal vectors, then using the singular value decomposition and the 
least-square estimation and filtering as complementary tools. 

In Romania, the matricial systematic modeling in multibody dynamics was 
developed mainly by Prof. Staicu. Using the virtual powers principle, he established 
the intrinsic recursive matricial expressions describing the dynamics of mutibody 
systems. This matricial formulation is validated on numerous serial or parallel robotic 
systems, performing direct as well as inverse dynamics, with the calculation of 
active forces and torques needed to realize the desired motion. Only a few papers 
of Staicu et al. are cited here [37–42]. 
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3. ROTATIONAL DYNAMICS FORMULATION  
USING AS PARAMETERS THE 9 ELEMENTS 

OF THE ROTATION MATRIX 

The multibody dynamics formulation preferred in this paper uses as 3D 
rotational parameters the 9 elements of the 3×3 rotation matrix Ri, while for 
translations a pseudo-translation vector *

iT  is used instead of the classical 
translation vector Ti [20–32]: 
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Everything in this formulation is expressed with respect to an orthonormal inertial 
reference frame 0 0 0(O; , , )x y zG G G , having its origin in O and 0xG , 0yG , 0zG  as axis.  Gi0 is 
the initial position of the center of mass Gi of the solid Si . 

Besides preserving all 9 elements of the 3×3 rotation matrix Ri, the use of 
this pseudo-translation vector *

iT  given by (1) instead of the classical translation 
vector Ti represents another particularity of our formulation, which brings further 
simplicity in writing the dynamical equations. 

This assignment of a total of 12 parameters concerns each solid Si 
( i=1,…,N)  of a multibody system composed of N solids. In order to preserve the 
rigidity of each solid Si , the rotation matrix Ri has to be an orthogonal matrix: 

 T
3i i =R R I . (2) 

Due to its symmetry, the orthogonality constraint (2) involves in fact only 6 scalar 
conditions to be fulfilled by the 9 elements of the 3×3 rotation matrix, leaving  
3=9−6  degrees of freedom for the rotational motion of solid Si . Thus, the degree 
of redundancy of this parameterization of rotations is 6. 

Let Mi be some point of the solid Si and Mi0 the initial position of this point. 
Then the position of point Mi at time t is given by: 

 0 0 0 0
definition (1)

*
0 0 0

OM OG G M OG G M OG OG OM

       ( OG ) OM   OM .

i i i i i i i i i i i i i

i i i i i i i i
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⎯⎯→ ⎯⎯→ ⎯⎯→
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= − + = +

R R R
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 (3) 

As shown by definition (3), the proposed method consists in characterizing the 
motion of each rigid body of an articulated system by using a pseudo-translation 
vector *

iT  and a rotation matrix Ri, which fully describe the position at time t of Si . 
At the initial time t=0, it follows from (3) that: 
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 3(0)i =R I   and  *(0) 0i =T . (4) 

Deriving (3) with respect to time, one obtains the velocity of point M i  in the 
inertial reference frame 0 0 0(O; , , )x y zG G G : 

 *
0(M ) OMi i i i

⎯⎯→
= +V T R� � . (5) 

Let iΩ  denote the instantaneous rotation vector of solid Si at time t ,  
expressed in the orthonormal basis 0 0 0( , , )x y zG G G , it is given by:  

 Tj( )i i i=Ω R R� , (6) 

where d
d

i
i t
=

RR�  and j( )i  is the skew-symmetric cross-product matrix defined by 

j( )u v u v= ∧ , for ∀u ,v  and with ∧  denoting the classical cross-product between 
two 3×1 vectors. From (6), the derivative iR�  with respect to time of Ri can be 
expressed as: 

 j( )i i i=R Ω R� . (7) 

At t0=0,  the initial conditions for the derivatives *
iT�  and iR�  are deduced 

considering (7), (4) and then (5): 
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where 0iΩ  is the instantaneous rotation vector of the solid Si at the initial time, 
being expressed in the orthonormal basis 0 0 0( , , )x y zG G G . The point Mi0 is the initial 
position of point Mi of the solid Si , with V0(Mi) its initial velocity vector. Of 
course, for the case where 0(M )iV  and 0iΩ  are null, the initial conditions in terms 

of derivatives become: 
*

(0) 0

(0) 0
i
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�
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In Lagrangian formulation, the dynamics of the multibody system composed by 
N solids Si is described by the following 12×N  Lagrange equations [20–23,25–27]: 
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where ⊗ denotes the tensor product, mi is the mass of the solid Si , Gi0 is the initial 
position of the center of mass of the solid Si . Ki0 is the Poinsot inertia matrix of the 
solid Si calculated at the initial time in the point O, with respect to the orthonormal 
basis 0 0 0( , , )x y zG G G , defined by: 

 0 0 0OM OM d
i

i i i i
S

m
⎯⎯→ ⎯⎯→

= ⊗∫K . (10) 

The relationship between this Poinsot inertia matrix and the corresponding classical 

inertia matrix 2
0 0[ j(OM )] d

i

i i i
S

m
⎯⎯→

= −∫J  is as follows [21–27]: 

 0
0 3 0

tr( )
2

i
i i= −

JK I J , (11) 

where tr(•) is the matrix trace operator. 
Vector Xi and matrix Yi are the generalized efforts, composed of the external 

efforts acting on the solid Si and of the internal efforts dues to the joints between Si and 
other solids or between Si and the ground (such as the internal efforts (14) in the case of 
a spherical joint).  Λi is the symmetric Lagrange multipliers 3×3 matrix, introduced in 
order to take into account the orthogonality condition (2) of rotation matrix Ri . 

For numerical integration purposes, the ordinary differential equations (9) 
can be written in the following explicit form of *

iT��  and iR�� : 
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where G 0
G 0 3 G 0

tr( )
2

i
i i= −

JK I J  is the Poinsot inertia matrix of the solid Si 

calculated at the initial time in its center of mass Gi , with respect to the 
orthonormal basis 0 0 0( , , )x y zG G G . This is only the differential part of the algebro-
differential equations governing the motion of the multibody system. The algebraic 
part is composed by all orthogonality constraints (2) imposing the rigidity of solids 
Si , plus the constraint equations characterizing the mechanical joints between 
solids and with the ground. For example, for a spherical joint between two solids Si 
and Sj , the following constraint equation (13) has to be fulfilled imposing that the 
center Aij of the spherical joint belongs to both solids: 

 * *
,0 ,0OA OAi i ij j j ij

⎯⎯→ ⎯⎯→
+ = +T R T R . (13) 
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Denoting by sph
ijΛ  the Lagrange multipliers tridimensional vector associated to the 

constraint equation (13) characterizing the spherical joint, then the efforts sph
i j←X  

and sph
i j←Y  representing the actions of the solid Sj on the solid Si , as well as the 

reactions sph
j i←X  and sph

j i←Y  of Si on Sj are given by [21–23,25–27]: 
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Thus, the algebro-differential dynamics system is composed by a differential 
part (12), having the same form for each solid of the multibody system, plus the 
algebraic constraints formed by the orthogonality constraints (2) and the constraint 
equations characterizing the mechanical joints (representing the links between solids 
and thus between the parameters *

iT , Ri , *
iT�  and iR�  of each solid). This algebro-

differential system is numerically integrated in time starting from initial conditions 
(4) and (8). 

In other words, one can say that dynamic equations can be generated in a 
systematic/automatic way: in what concerns the dynamic part, the equations of 
motion in explicit form (12) are written separately for each solid. They are 
coupled/linked only by means of the algebraic constraint equations characterizing 
the joints/links of the multibody system. The differential equations (12) are linear 
in *

iT��  and iR�� , this low complexity is a considerable advantage from the point of 
view of numerical integration. The differential nonlinearity is thus “eliminated” 
from the differential equations of motion for the formulation using as rotational 
parameters the 9 elements of the 3×3 rotation matrix. The price to pay is an 
increased number of algebro-differential equations, for which the computational 
time might be increased. But this problem is solved with nowadays real-time 
computational speed and using size-reductions techniques performed by eliminating 
the Lagrange multipliers [15, 17, 19, 21, 23, 25–27]. Another advantage is that the 
proposed redundant parameterization approach avoids any singularity in the repre-
sentation of rotations. 

As observed in the above discussion, the dynamic equations formulation will 
contain differential equations more or less linear depending on the choice of the 3D 
rotations parameterization technique. The more one approaches a linear differential 
dynamic equations system to be solved, the more will be facilitated the numerical 
resolution of this system (as a tradeoff, an algebraic part must also be dealt with). 
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4. SIMPLE CASE STUDY FOR VALIDATION: 
THE DOUBLE PENDULUM 

The proposed formulation using as rotational parameters the 9 elements of 
the 3×3 rotation matrix is applied here on a simple example: the plane double 
pendulum. This classical example is aimed to validate the proposed method, our 
further goal being to solve the direct dynamics of a Stewart platform. 

The plane double pendulum in Figure 1 is formed by two identical 
homogenous bars S1 and S2, each of mass m, length l and rectangular transversal 
section with dimensions a and b (with b the dimension in 0zG  direction). The 
applied external forces are the weights of the two bars. 

 
Fig. 1 – Double pendulum case study [23, 25–27]. 

The orthonormal inertial reference frame 0 0 0(O; , , )x y zG G G  is chosen with 0yG  
horizontal axis and 0xG  as vertical unit vector orientated downwards. Due to the 
initial conditions and to the fact that all external forces act in the vertical plane, the 
motion happens only in the vertical plane of 0xG  and 0yG . Let us attach to solid S1 
the right-hand orthonormal reference frame 1 1 1 0(G ; , , )x y zG G G , with 1x

G  following the 
axis of symmetry of the bar. Similarly, to solid S2 is attached the right-hand 
orthonormal reference frame 2 2 2 0(G ; , , )x y zG G G . The bars being homogenous, the two 
centers of mass G1 and G2 are located in the middle of the bars. The bar S1 is linked 
in point O to a fixed support, by means of a spherical joint without friction, while 
S2 is linked to S1 in point H1 by means of another spherical joint without friction. In 
fact, since the motion happens only in the vertical plane, one could have considered 
cylindrical/revolute joints instead of spherical joints. But our intention is to use 
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spherical joints and to verify that the motion remains in the vertical plane, as a 
validation of our general formulation. 

The motion of S1 is fully characterized by the evolution in time of its pseudo-
translation vector *

1T  and its rotation matrix R1, while the motion of S2 is fully 

characterized by its pseudo-translation vector *
2T  and its rotation matrix R2. 

Let us denote by ϕ the angle between 1x
G  and 0xG  and by ψ the angle between 

2xG  and 0xG , with initial values 0(0)ϕ = ϕ  and 0(0)ψ = ψ . The expressions KG1,0 and 
KG2,0 of the Poinsot inertia matrices of the bars S1 and S2 at the initial time are [21, 
23, 25–27]: 
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The planar double pendulum is moving in the vertical plan defined by 0xG  et 

0yG , let us consider the case of null initial velocities. From (4) and (8), it comes: 

 
* *
1 1 3 1 1
* *
2 2 3 2 2

(0) 0 ,  (0)  ,  (0) 0 ,  (0) 0 ;

(0) 0 ,  (0)  ,  (0) 0 ,  (0) 0 .

⎧ = = = =⎪
⎨

= = = =⎪⎩

T R I T R

T R I T R

� �

� �
 (16) 

For the double pendulum, the differential part (12) of the equations of motion 
for bar S1 are absolutely similar with the ones for bar S2: 

 

1 1

1

2 2

* 1 1
1 1 1 1 1 G ,0 1,0 G ,0 1,0 1,0 1

1
1

1 1 1 1 1 1,0 G ,0

* 1 1
2 2 2 2 2 G ,0 2,0 G ,0 2,0 2,0 2

2

2 2 2 2 2

1 [( ) ]OG OG , OG
for 

( OG )

1 [( ) ]OG OG , OG
for 

(

mS

mS

⎯⎯→ ⎯⎯→ ⎯⎯→
− −

⎯⎯→
−

⎯⎯→ ⎯⎯→ ⎯⎯→
− −

⎧
= − + + 〈 〉⎪⎪

⎨
⎪

= + − ⊗⎪⎩

= − + + 〈 〉

= + −

T X Y R Λ K K X

R Y R Λ X K

T X Y R Λ K K X

R Y R Λ X

��

��

��

��
2

1
2,0 G ,0.OG )

⎯⎯→
−

⎧
⎪⎪
⎨
⎪

⊗⎪⎩ K

   (17) 
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As supposed by our formulation, all measures in equations (18) are expressed with 
respect to the orthonormal inertial reference frame 0 0 0(O; , , )x y zG G G . Thus: 

1,0 0 0 0 0OG cos sin2 2
l lx y

⎯⎯→
= ϕ + ϕ

G G ,   1,0 0 0 0 0OH cos sinl x l y
⎯⎯→

= ϕ + ϕ
G G , 

 2,0 0 0 0 0 0 0OG ( cos cos ) ( sin sin )2 2
l ll x l y

⎯⎯→
= ϕ + ψ + ϕ + ψ

G G . (18) 

Still in equations (17), Λ1 and Λ2 are the 3×3 symmetrical Lagrange 
multipliers matrices, associated to the orthogonality conditions (2): 

 
T
1 1 3
T
2 2 3

.
⎧ =⎪
⎨

=⎪⎩

R R I

R R I
 (19) 

Other Lagrange multipliers are gathered in vectors sph
01Λ  and sph

12Λ , being 

associated to the constraint equations of type (13), characterizing the two spherical 
joints O and H1 of the double pendulum: 

 
** 11 1

** * 2 2 1 1,01 1 1,0 2 2 1,0

00 OO
  .

( )OH 0OH OH

⎯⎯→

⎯⎯→⎯⎯→ ⎯⎯→

⎧ ⎧ == +⎪ ⎪⇒⎨ ⎨
⎪ ⎪ + − =+ = + ⎩⎩

TT R

T R RT R T R
 (20) 

Still in equations (17), the efforts X1, Y1 and X2, Y2 represent the sum of the 
external efforts dues to the weights of S1 and S2, plus the internal efforts of type 
(14) dues to the two spherical joints: 

 

sph sph sph sphext
1 1 01 0 1 2 01 12

sph sph sphext
1 1 0 1,0 1,01 0 1 2 12

sph sphext
2 2 02 1 12

sph sphext
2 2 0 2,0 1,02 1 12

OG OH
.

OG OH

mg x

mg x

mg x

mg x

← ←

⎯⎯→ ⎯⎯→

← ←

←

⎯⎯→ ⎯⎯→

←

⎧ = + + = − +
⎪
⎪

= + + = ⊗ + ⊗⎪
⎨

= + = −⎪
⎪
⎪ = + = ⊗ − ⊗⎩

X X X X Λ Λ

Y Y Y Y Λ

X X X Λ

Y Y Y Λ

G

G

G

G

 (21) 

By replacing the expressions (21) of the generalized efforts in the Lagrange 
equations of motion (17), one obtains the following differential part of the dynamics 
algebro-differential equations system: 
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1

1 1

1

sph* 1
1 0 G ,0 1,0 1,0 01

sph1 1
1 G ,0 1,0 1,0 1,0 1 1 G ,0 1,012

sph sph 1
1 1,0 1,0 1,0 1 1 G ,001 12

1 OG , OG

1for       OG , G H OG

OG G H

g x
m

S
m

⎯⎯→ ⎯⎯→
−

⎯⎯→ ⎯⎯→ ⎯⎯→
− −

⎯⎯→ ⎯⎯→
−

⎧ ⎛ ⎞
= − + 〈 〉 +⎪ ⎜ ⎟⎜ ⎟⎪ ⎝ ⎠

⎪ ⎛ ⎞⎪ + − 〈 〉 −⎜ ⎟⎨ ⎜ ⎟
⎝ ⎠
⎛ ⎞

= ⊗ + ⊗ +⎜ ⎟⎜ ⎟
⎝ ⎠⎩

T K Λ

K Λ R Λ K

R Λ Λ R Λ K

G��

��

2 2

2

sph* 1 1
2 0 G ,0 2,0 1,0 2,0 2 2 G ,0 2,012

2
sph 1

2 1,0 2,0 2 2 G ,012

1 OG , H G OG

for 

H G

g x
m

S

⎯⎯→ ⎯⎯→ ⎯⎯→
− −

⎯⎯→
−

⎪
⎪
⎪
⎪

⎧ ⎛ ⎞
= − + 〈 〉 −⎪ ⎜ ⎟⎜ ⎟⎪ ⎝ ⎠

⎨
⎛ ⎞⎪ = ⊗ +⎜ ⎟⎪ ⎜ ⎟
⎝ ⎠⎩

T K Λ R Λ K

R Λ R Λ K

G��

��

.   (22) 

So, the algebro-differential system describing the dynamics of the double 
pendulum is composed by 2×(3+9)=24 scalar second order differential equations 
(22) and by 2×6+2×3=18 scalar algebraic constraints (19) and (20). It must be 
numerically integrated in time starting from initial conditions (16). Due to the 
symmetry, each orthogonality condition in (19) counts only for 6 instead of 9 scalar 
constraint equations. The unknows of the problem are: *

1T , R1, *
2T , R2 and their 

derivatives, as well as the Lagrange multipliers introduced by our formulation 
(symmetric matrices Λ1 and Λ2 and vectors sph

01Λ  and sph
12Λ ). The size of this 

algebro-differential system can be reduced using a Lagrange multipliers elimination 
method in two steps, presented in next section. 

5. TWO-STEP METHOD 
OF LAGRANGE MULTIPLIERS ELIMINATION 

In the context of a quite important size of the differential-algebraic equations 
system corresponding to the dynamics formulation using as rotational parameters 
the 9 elements of the 3×3 rotation matrix (very redundant parameterization), 
several authors have proposed size-reductions techniques performed by eliminating 
the Lagrange multipliers [15, 17, 19]. Our previous work [21, 23, 25–27] performed 
also Lagrange multipliers eliminations, the method consisting in replacing the 
expressions of *

1T�� , 1R�� , *
2T��  and 2R��  given by (22) into the following differentiated 

forms obtained by differentiating twice with respect to time the original orthogonality 
constraints (19): 

 
T T T
1 1 1 1 1 1
T T T
2 2 2 2 2 2

2 0

2 0

⎧ + + =⎪
⎨

+ + =⎪⎩

R R R R R R

R R R R R R

�� �� � �

�� �� � �
 (23) 
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as well as by differentiating twice with respect to time the constraint equations (20) 
characterizing the two spherical joints O and H1 of the double pendulum: 

 
*
1

*
2 2 1 1,0

0
.

( )OH 0
⎯⎯→

⎧ =⎪
⎨
⎪ + − =⎩

T

T R R

��

�� �� ��
 (24) 

As already proved in previous work [21, 23], it is possible to use the 
differential forms (23) and (24) instead of the original constraint equations (19) and 
(20), with no major negative influence on the accuracy of the numerical integration 
of the algebro-differential system governing the motion of a multibody system 
when using the formulation described in this paper. 

Thus, by replacing expressions of *
1T�� , 1R�� , *

2T��  and 2R��  given by (22) into (23) 
and (24), one obtains 2×6+2×3=18 scalar linear equations having as unknowns the 
elements of Λ1 (only 6 of them, the matrix being symmetric), the elements of Λ2 
and the components of vectors sph

01Λ  and sph
12Λ  (3 components per vector). This 

linear equations system with 18 scalar equations and 18 unknowns can be solved 
by classical methods (using numerical methods or a symbolic package such as 
Mathematica), the only possible problem being the size of this linear equations 
system. Obviously, this size would increase for multibody systems composed of 
several solids, such as a Stewart platform. 

In order to reduce the size of the linear equations system to be solved for 
eliminating the Lagrange multipliers, a two-step method is proposed in this paper. 
More precisely, in a first step of the elimination method Λ1 and Λ2 can be separately 
eliminated, leaving to be solved in the second step a simpler linear equations system 
formed only by 18−12=6 equations, with 6 unknowns ( sph

01Λ  and sph
12Λ ). 

The first step of the Lagrange multipliers elimination consists in replacing 
into (23) the expressions 1R��  and 2R��  given by (22). Taking into account the 

symmetry of matrices 1Λ , 2Λ , 
1

1
G ,0
−K  and 

2

1
G ,0
−K  and some usual properties of 

tensor calculus, one obtains: 

 

1 1 1

1

2 2

sph sph1 1 T 1
1 G ,0 G ,0 1 1 1 G ,0 1,0 1,0 1,0 101 12

sph sphT 1
1 1,0 1,0 1,0 G ,001 12

1 1 T
2 G ,0 G ,0 2 2 2

2 OG G H

                                    OG G H

2

⎯⎯→ ⎯⎯→
− − −

⎯⎯→ ⎯⎯→
−

− −

⎛ ⎞
+ = − − ⊗ + ⊗ −⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞

− ⊗ + ⊗⎜ ⎟⎜ ⎟
⎝ ⎠

+ = −

Λ K K Λ R R K Λ Λ R

R Λ Λ K

Λ K K Λ R R

� �

� �
2

2

sph1
G ,0 1,0 2,0 212

sphT 1
2 1,0 2,0 G ,012

H G

                                    H G

⎯⎯→
−

⎯⎯→
−

⎧
⎪
⎪
⎪
⎪
⎪⎪
⎨

⎛ ⎞⎪ − ⊗ −⎜ ⎟⎪ ⎜ ⎟
⎝ ⎠⎪

⎪ ⎛ ⎞
⎪ − ⊗⎜ ⎟⎜ ⎟⎪ ⎝ ⎠⎩

K Λ R

R Λ K

. (25) 
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The unknowns being 1Λ  and 2Λ , the algebraic equations (25) are 
decoupled, each of them being in fact a discrete Lyapunov-like equation of type 

+ =AX XA B . Analytical and numerical solutions are available for these 
Lyapunov-like equations, providing without difficulty symbolic analytical or 
numerical solutions sph sph

1 1 1 101 12( , , , )=Λ Λ Λ Λ R R�  and sph
2 2 2 212( , , )=Λ Λ Λ R R� . At 

this point of the two-step method (after the first step), 1Λ  and 2Λ  are now 
computed/eliminated. 

In the second step of the Lagrange multipliers elimination, after replacing the 
computed sph sph

1 1 1 101 12( , , , )=Λ Λ Λ Λ R R�  and sph
2 2 2 212( , , )=Λ Λ Λ R R�  into (24), the 

remaining algebraic part consists only in 6 equations (24) which are linear with 
respect to the 6 unknowns sph

01Λ  and sph
12Λ . The size of the linear equations system 

is thus reduced compared with the initial size, thus the numerical solution is even 
more trivial. Due to its matricial formulation, this remained linear equations system 
can also be solved using a symbolic package such as Mathematica. 

In what concerns the integration over each timestep of the differential part 
(22) of the algebro-differential system, the Lagrange multipliers are considered as 
piecewise constant during each timestep. Previous work proved that this simpli-
fication has no major influence on the accuracy of the numerical solution [21, 23]. 

The two-step method of Lagrange multipliers elimination proposed here 
works properly on the case study presented in next section, but is aimed to show all 
its improvements for multibody systems composed of several solids (such as a 
Stewart platform), where the size of the algebro-differential system becomes much 
more important in the context of our very redundant paramaterization. 

6. VALIDATION RESULTS 

The case study has already been described in §4. The simulation results 
below concern the planar double pendulum from Figure 1, described by the 
following inertial and geometrical characteristics of the two bars S1 and S2: 

• mass of each bar 0,108 kgm = ; 
• dimensions of each bar: 20 cml = , 2 cma = , 1 cmb =  (with b the 

dimension in 0zG  direction). 
The only external forces applied are the weights of the two bars. The planar 

double pendulum motion starts from the following initial values of angles ϕ and ψ: 

0  rad 20
9
πϕ = = °    and   0 rad 10

18
πψ = = ° , 

with null initial velocities: 
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0 0ϕ =    and   0 0ψ = . 

The planar double pendulum was considered for validation case study, since 
an alternate numerical solution is easily available as reference for comparing our 
results. This reference is obtained by solving the following classical Lagrange 
formulation based on the non-redundant parameterization of planar rotations by the 
angles ϕref and ψref: 

 
( )
( )

2
2 2

2
2 2

5 3cos( ) sin( ) sin 0
4 2 2

1 1cos( ) sin( ) sin 0,
4 2 2

mlC ml mg l

m lC ml mg l

⎧
⎡ ⎤+ ϕ + ϕ−ψ ψ + ϕ−ψ ψ + ϕ =⎪ ⎣ ⎦⎪

⎨
⎪ ⎡ ⎤+ ψ + ϕ −ψ ϕ − ϕ −ψ ϕ + ψ =⎣ ⎦⎪⎩

 (26) 

where 
2 2

23,636 [kg cm ]
12

l aC m +
= = ⋅  is the moment of inertia with respect to the 

0zG  symmetry axis. By simple substitution in equations (26), one obtains the 

explicit expressions of refϕ  and refψ  (as functions of ϕref , ψ ref , refϕ  and refψ ), 
which can be easily integrated by means of a 4th order Runge-Kutta method 
providing the reference solution ϕref and ψref. 

Figure 2 compares ϕref and ψref with ϕRT and ψRT obtained by the two-step 
method of the Lagrange multipliers elimination (see §5) for the dynamics 
formulation using as rotational parameters the 9 elements of the 3×3 rotation 

matrix. ϕRT and ψRT are deduced from *
1T , R1, *

2T  and R2 as follows: 

 

1 1,0 01 0 1 0 0 0 0 0
RT

1 0 0 0 0 0
1 0 1 1,0 0

*
2 2 1 2,0 01 2 0

RT
*

1 2 0 2

OG ,OG , (cos sin ),  
arctg arctg arctg

(cos sin ),  
OG , OG ,

H G ,H G ,
arctg arctg

H G ,

yy x y y
x y x

x x

yy

x

⎯⎯→⎯⎯→

⎯⎯→ ⎯⎯→

⎯⎯→⎯⎯→

⎯⎯→

〈 〉〈 〉 〈 ϕ + ϕ 〉
ϕ = = =

〈 ϕ + ϕ 〉
〈 〉 〈 〉

〈 + 〉〈 〉
ψ = =

〈 〉 〈 +

R R
R

R

T R

T

GG G G G
G G G

G G

GG

G
2 1 2,0 0

*
2 2 0 0 0 0 0
*
2 2 0 0 0 0 0

H G ,

(cos sin ),  
                                       arctg

(cos sin ),  

x

x y y
x y x

⎯⎯→

⎧
⎪
⎪
⎪
⎪
⎪
⎪ =⎨
⎪ 〉⎪
⎪ 〈 + ψ + ψ 〉
⎪ =

〈 + ψ + ψ 〉⎪
⎪

R

T R
T R

G

G G G
G G G

,(27) 

where 1 2,0 0 0 0 0H G cos sin2 2
l lx y

⎯⎯→
= ψ + ψ

G G . 
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Fig. 2 – Results ϕRT and ψRT obtained using the two-step method 
of Lagrange multipliers elimination, compared with ϕref and ψref. 

As shown in Fig. 2, the results ϕRT and ψRT obtained using the two-step 
method of Lagrange multipliers elimination are similar with ϕref and ψref. This 
validates our method based on the dynamics formulation using as rotational 
parameters the 9 elements of the 3×3 rotation matrix. Since ϕref and ψref do not 
represent an exact solution of the double pendulum motion, being another 
numerical solution, this paper will not develop an error analysis. Further work will 
be devoted to that issue. But, a partial proof of the performance of our method 

could be the fact that 1OG
⎯⎯→

 computed from *
1T  and R1 as *

1 1 1 1,0OG OG  
⎯⎯→ ⎯⎯→

= +T R  

and 2OG
⎯⎯→

 computed from *
2T  and R2 as *

2 2 2 2,0OG OG  
⎯⎯→ ⎯⎯→

= +T R  do not develop in 

time any component in the 0zG  direction, which is an indirect proof of 
nonpropagation of numerical errors. 

Figures 3–6 present the evolutions in time of the Lagrange multipliers 
introduced by the formulation. Only the non-null elements of 1Λ  and 2Λ  are 
shown in Figs. 3 and 4, more precisely 1,11Λ , 1,12 1,21≡Λ Λ , 1,22Λ  and 

2,11Λ , 2,12 2,21≡Λ Λ , 2,22Λ , respectively. 
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Fig. 3 – Evolution in time of the non-null elements 1,11Λ , 1,12Λ , 1,22Λ  

of the symmetric Lagrange multipliers matrix 1Λ . 

 
Fig. 4 – Evolution in time of the non-null elements 
of the symmetric Lagrange multipliers matrix 2Λ . 

Figures 5 and 6 show the evolutions of the components of the Lagrange 
multipliers vectors sph

01Λ  and sph
12Λ  introduced in association with the constraint 

equations characterizing the two spherical joints O and H1 of the double pendulum. 
It is very likely that all these Lagrange multipliers have a regulation role in 

the integration scheme of the algebro-differential system corresponding to our very 
redundant parameterization. A further error analysis will try to study this aspect of 
numerical autoregulation in the context of this matricial formulation. 
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Fig. 5 – Evolution in time of the three components 

of the Lagrange multipliers vector sph
01Λ . 

 
Fig. 6 – Evolution in time of the three components 

of the Lagrange multipliers vector sph
12Λ . 

7. CONCLUSION AND FURTHER WORK 

The proposed parameterization of 3D rotations by preserving the 9 elements 
of the 3×3 rotation matrix is a very redundant one. Using 9 parameters for 3 degrees of 
freedom means that 9−3 = 6 orthogonality scalar equations per solid are necessary. 
Lagrange multipliers are introduced in order to take into account these rigidity 
constraints, as well as other constraints characterizing the articulations between the 
linked solids Si of the multi-body system. The matricial formulation based on this 
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very redundant parameterization is very systematic, the dynamics equations for 
each solid being generated in an automatic way. The differential part of the 
dynamics equations is linear in *

iT��  and iR��  for each solid Si, which is a 
considerable advantage from the point of view of numerical investigation. This is 
the main advantage of the method: it is systematic, having an increased degree of 
generality and facilitating the computer simulation of multibody system dynamics. 
For example, for a parallel robot the formulations based on traditional rotational 
parameters are difficult to implement due to nonlinearities, while our formulation is 
written without difficulty, almost automatically, the difficulty consisting only in the 
important size of the algebro-differential system to be solved. 

With respect to our previous work, in this sense of improving the numerical 
solving of such algebro-differential system, this paper proposes a Lagrange 
multipliers elimination method in two-steps. In the first step of the method are 
eliminated the Lagrange multipliers Λi associated to the orthogonality conditions, 
which take the form of discrete Lyapunov-like equations that are easily solved by 
specific methods. In the second step of the elimination method, only the constraints 
characterizing the articulations between the linked solids of the multi-body system 
remain to be solved, forming a linear equations system of smaller size than the one 
for the case where the first step would not have been performed. So, this two-step 
method of Lagrange multipliers elimination clearly improves the numerical resolution 
of the algebraic part. 

The simple case study of a planar double pendulum is presented here, its purpose 
being to show that the formulation works correctly on an example were alternate 
solution is easily available for validation. Further work intends to apply the formulation 
on a Stewart platform and compare the results with experimental ones. In such case of 
a more complicated parallel robot, the two-step method of Lagrange multipliers 
elimination will have a good opportunity to show its full numerical performance. 
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