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ULTRA-COMPOSITES: DESIGNING STOCHASTIC COMPOSITES 
WITH LARGE MICROSTRUCTURAL VARIABILITY 

CATALIN R. PICU1,2, VINEET NEGI1, JACOB MERSON1 

Abstract. Regular composite materials are made from a small number of constituent 
phases, usually two, which are arranged spatially such to maximize the stiffness and 
strength of the material. In this article, we review results related to defining a new 
class of stochastic composite materials with large microstructural variability both in 
terms of the composition and spatial distribution of constituents. Further, new data on 
Green functions in stochastic continua is presented. The Green functions in random 
composites are stochastic and their mean is proportional to log(| |)x , where x is the 
distance to the point where the force acts, just like in the homogeneous case. However, the 
pre-logartihmic constant and hence the mean displacement field in the stochastic composite 
has larger values than the equivalent field in the homogeneous material having Young’s 
modulus equal to the mean of the distribution function of moduli of the stochastic 
composite. The difference increases with increasing variance of the moduli distribution.  
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1. INTRODUCTION 

Composite materials are ubiquitous. Man-made composites are combinations 
of two or three materials, usually with quite different properties, which are 
arranged spatially to increase the overall strength, stiffness and toughness of the 
composite. Particulate composites are typically made by dispersing a reinforcing 
phase in a matrix. For example, rubber particles are dispersed in epoxy to increase 
its toughness. The mechanism leading to this effect is cavitation in the 
incompressible rubber particles under the applied far-field load. Another example 
is that of metal-based nanocomposites in which ceramic nanoparticles are dispersed 
in a metal (e.g. Ni) at very small volume fractions but large number density to act 
as obstacles for dislocation motion and therefore to allow controlling creep under 
high temperature loading conditions. 

Composites in which the matrix is reinforced by fibers, either chopped or 
continuous, are even more common [1]. Examples are epoxy reinforced with glass 
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or carbon fibers, used for various structural applications ranging from helicopter 
blades to bicycle frames. A less common example from the same category is that of 
polymers reinforced with fibers made from the same polymer. For instance, 
polypropylene can be reinforced with polypropylene fibers which have much higher 
stiffness and strength than the bulk material. The enhanced mechanical properties 
of the fibers are due to the preferential alignment of polymeric chains during fiber 
drawing. Since the fibers and matrix are chemically identical, the interface between 
them is perfectly bonded and load transfer between matrix and fiber is optimal. 

Most biological materials are composites. Wood has a layered structure on 
the millimeter scale and is a cellular cellulosic material on smaller scales. Bone is a 
composite of (soft) collagen and (hard) hydroxyapatite exquisitely structured on all 
scales from the nanoscale to the scale of the skeleton [2]. The cornea or the human 
eye is made from layers of collagen fibers which are perfectly aligned parallel to 
each other in every given layer [3]. Collagen is oriented differently in different layers. 
This structure provides stiffness and strength while insuring transparency. 

It is interesting to observe that biological and man-made composites are different 
in fundamental ways. One such difference is the fact that most natural composites 
are structured on multiple scales. Another difference is that nature may use multiple 
constituents to construct a composite, while artificial composites are made from a 
small number of constituents – usually just a matrix and a reinforcing phase. 
Interestingly, biological composites are quite insensitive to variability, i.e. their 
properties do not change much if the properties of their constituents fluctuate. In 
fact, it may be thought that such fluctuations are actually allowed in order to 
improve the overall composite behavior and to render it less sensitive to the 
accumulation of microstructural damage. Furthermore, biological composites (e.g. 
bone) are continuously repaired and renewed. This removes the damage, but 
increases the structural variability of the material. 

The distribution of the reinforcing phase in man-made composites is either 
random or regular. Regular microstructures are only a design concept since variability 
introduced during manufacturing unavoidably leads to some degree of randomness 
of the structure even in the most controlled cases. For example, in woven composites 
fiber bundles do not contain exactly the same number of fibers and the weaves are 
not identical down to the micrometer scale. 

Composite design usually does not account for variability. In fact, in 
composites with periodic microstructure, such as all woven pre-pregs, variability is 
undesirable and is considered to lead to premature damage nucleation and failure. 
Therefore, standard composite design and manufacturing aims to minimize structural 
variability such to, presumably, maximize macroscopic properties. In manufacturing of 
composites with random distribution of reinforcements, it is usually sought to 
create truly random microstructures and any clustering is considered undesirable. 
For example, poor dispersion and/or distribution of fillers is considered the key 
reason for poor performance of nanocomposite materials [4]. Few example of the 
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opposite trend exist in which clustering and/or the formation of a percolated 
structure of fillers is thought to be desirable. Rubber used in automobile tires is a 
molecular network reinforced with carbon black (graphitic) nanoparticles. In order 
to obtain good toughness and wear resistance, fillers should form fractal clusters 
which percolate through the network [5]. 

This discussion, and in particular the comparison between biological and 
artificial composites, indicates the need to reconsider the role of structural and 
compositional variability in the design of such materials. Clearly, accounting for 
variability greatly broadens the design space and it is not immediately clear whether 
significant property enhancement may or may not be obtained in regions of this 
space which have not been explored to date. This consideration motivated research 
on the effect of stochasticity on the overall material properties [6–10,11]. The 
objective of the present article is to review some of these results and to add new 
data on the dependence of the Green functions on material composition in a stochastic 
composite. The importance of this new result is related to the classical use of Green 
functions in linear elasticity to construct solutions for various boundary value problems. 

Before proceeding with this discussion it should be observed that the current 
use of a small number of components in man-made composites is mostly conditioned 
technologically. It is easy to mix two constituents, but considerably harder to work 
with a large number of materials. In addition, without a theoretical basis, it is not 
immediately obvious that such complex compositions offer functional benefits. 
Recent technological advances, in particular the large growth of additive manufacturing, 
make now possible going beyond the traditional technological limits. These new 
techniques have to be guided by relevant theoretical developments. This provides 
motivation for the type of studies discussed in this article. 

2. PROBLEM SET-UP 

Let us consider a composite domain Ω, of boundary Γ, over which a boundary 
value problem is defined. In general, we are interested in the effective properties of 
the composite, so the boundary value problem is defined such to allow for the 
identification of specific “composite properties.” For example, if one is interested 
in the effective stiffness, Ee , the boundary conditions applied on Γ would represent 
a uniaxial tension test. 

Stochastic microstructures on Ω can be generated by considering that one (or 
multiple) of the constituent properties, say Young’s modulus, are defined as 
functions of position and of a stochastic variable, ξ, i.e. E(x,ξ). The associated 
distribution function of the fluctuating property, p(E), can be specified in terms of a 
set of parameters such as a finite number of its moments. Let us denote these 
moments as mE . In the case of a standard two-phase composites, p(E) is composed 
from two delta functions located at the values of Young’s modulus of phases A and 
B, respectively. In general, the distribution p(E) may have any functional form. 
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This entails, of course, that the composite is made from a combination of a range of 
materials or that the entire domain Ω has graded composition. 

Using the concept of a composite made from distinct inclusions (as opposed 
to that of a composite with graded properties), it is apparent that the size and shape 
of inclusions may be also considered stochastic variables and likewise may be 
defined by distribution functions described by a finite set of moments, mS . Particles 
may be randomly distributed in the matrix, or distributed in a spatially correlated 
way. This property can be described by using the two-point autocorrelation 
function ,( ) ( ) ( )ACF E E ξ= 〈 + 〉 xy x y x , where the average < > is taken over 

multiple origins and replicas, ξ.  Multipoint correlation functions may be also used 
for this purpose. ACF includes the information about the size and shape of 
inclusions in an average sense. If vectors x and y are sampled on a scale 
comparable with or larger than the inclusion size, ACF represents only the spatial 
distribution of inclusions and contains the information about the particle size and 
shape only in an average sense. For a random particulate composite, the ACF is a 
delta function. Most real microstructures are not perfectly random and have some 
degree of clustering. Then, the ACF function has a finite range and may be exponential 
or power law. The characteristic correlation length λ associated with ACF defines 
the mean cluster size. Such internal length scale can be defined in the case of 
exponential spatial correlations, but not in the case of power law correlated fields. 

Let us collect all variables defining these distributions and correlation 
functions into a vector, { }, ,E Sm m= λv . These variables define the space of 
stochastic variables over which composite properties can be explored and optimized. 

3. BRIEF BACKGROUND ON HOMOGENIZATION 

Finding the effective properties of a composite, such as the effective elastic-
plastic behavior or effective moduli, is the subject of homogenization theory. 
Reviews on the homogenization of random composites are presented in [12,13,14]. 
Remarkable results have been obtained regarding the bounds of the elastic moduli 
of such composites. These expressions are generally given in terms of the volume 
fraction of the constituents. The closest bounds for the bulk and shear moduli 
which take into account only the volume fraction have been derived by Hashin and 
Shtrikman [15]. The bounds apply equally to two and multi-phase composites. 

A family of higher order bounds, that take into account statistical measures of 
the microstructure geometry, have been proposed more recently with the purpose 
of reducing the separation between the upper and lower bounds [e.g. 16,17–20,21]. 
The n-point bounds are written in terms of n-point microstructural correlation 
functions which define the probability that n points with specified relative positions 
are all located in a certain phase of the composite. A review of the higher order 
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bounds and the geometric parameters required for their evaluation is provided in [13]. 
As these formulations account for more details of the microstructure geometry and 
composition, the bounds become closer and hence are more useful in design.  

Except in few specific periodic cases in which the filling fraction is small, the 
exact values of the homogenized material parameters (e.g. linear elastic or tangent 
moduli) cannot be found analytically and a numerical procedure is required. In the 
case of random composites several methods can be used to find the homogenized 
behavior. The most basic one is based on Monte Carlo sampling of the phase space 
of the composite structure, i.e. constructing replicas of the composite microstructure by 
sampling the relevant distribution functions, followed by numerical homo-
genization of each such replica. The statistics of the resulting fields are obtained in 
an approximated way by considering a sufficiently large number of replicas, or 
equivalently by sufficient sampling of the composite configuration space. This 
method has been used to obtain all results presented in this article [6,  11]. 

Another method that produces the first two moments of the distribution 
function of the solution fields is the Stochastic Finite Element method (SFEM) [22]. In 
this method the classical finite element formulation is used to write the balance 
equations in the weak form and in terms of the (unknown) displacement field, u. 
The constitutive behavior of the composite continuum is expressed in terms of a 
deterministic position variable, x, and a stochastic variable, ξ. Therefore, the 
solution, u, is also a function of x, and ξ. The constitutive parameters and the 
solution are written as products of deterministic functions of x and stochastic 
functions of ξ. The deterministic functions are expressed in terms of the shape 
functions used in the finite element representation. The stochastic functions are 
expanded in a chaos polynomials series. The chaos polynomials (Hermite 
polynomials of Gaussian variable ξ) can be used to approximate any arbitrary 
stochastic process of finite second moment. Then, finding the solution amounts to 
finding the coefficients of this expansion. The constitutive parameters are also 
expanded in a series which can be of the same type, i.e. a polynomial chaos series 
or of Karhunen-Loeve (KL) type [23,  24]. The KL expansion allows accounting 
for spatial correlations of the respective field and should be used in all cases in 
which the material parameters are spatially correlated. If the material parameters 
field is uncorrelated, using the KL expansion is precluded by the requirement to 
consider an infinite number of terms in the series in order to properly capture the 
delta function correlation of the respective process. With these two stochastic fields 
expressed as series expansions, the stochastic weak form is transformed (by pre-
averaging over all terms that contain Gaussian stochastic variables) in a deterministic 
form with unknowns the coefficients of the polynomial chaos expansion of u. The 
solution leads to the first two moments of u at all points of the domain. This 
method is much more efficient than the Monte Carlo method because a single solve 
produces the entire statistical information about the fields. The method has its own 
limitations, mainly emerging from the approximations made when truncating the 
KL and chaos polynomials expansions. 
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Before closing this short overview, let us note that while finding the 
homogenized properties of the composite amounts to solving for the mean field, 
predicting the fracture and fatigue behavior of the material is more challenging as 
these aspects depend on the maxima of field fluctuations which are more difficult 
to capture accurately with the above methods. 

4. RESULTS 

This section presents results on the elastic-plastic behavior of two types of 
“ultra-composites”. Composites of the first type are made from two phases - matrix 
and inclusions – with inclusions being distributed either randomly or in a spatially 
correlated way. Composites of the second type are made from multiple phases of 
properties sampled from distribution functions. We are interested primarily in the 
effect of variability on the effective material behavior of the composite, in particular on 
the effective elastic modulus, yield stress and strain hardening. To isolate this 
effect, the mean of the distribution functions of local material properties is kept 
constant and the coefficient of variation of the distribution is kept as a parameter. 

4.1. EFFECT OF SPATIAL CORRELATIONS 

The results reviewed in this section have been published in [6]. Consider 
composites of the first type described above, i.e. they are composed from two 
constituents (matrix and inclusions), all inclusions have same size, shape and 
constitutive parameters, but the spatial distribution of inclusions is either random or 
spatially correlated. The matrix constitutive behavior is bilinear, with Young’s 
modulus E1 and constant tangent stiffness in the plastic range equal to 1 10E . 
Inclusions are linear elastic and have Young’s modulus six times larger than that of 
the matrix 2 1 6E E = . For simplicity, but without limiting generality, the matrix 
and inclusions are considered to have the same Poisson ratio, equal to 0.3. 
Inclusions are distributed in an uncorrelated (random) or in a correlated way, with 
the spatial correlation function ACF(r) being exponential. 

Figure 1 shows two realizations of the uncorrelated (a) and correlated (b) 
filler distributions for composites with filling fraction f = 0.13. With the inclusion 
size denoted by d, the model size is more than two order of magnitude larger than 
d, i.e. L = 243d. The distribution of fillers in Fig.1(b) is exponential and the 

exponential function has a characteristic length of 4d, i.e. ( )( ) exp 4
rACF r d−∼ . 



 Catalin R. Picu, Vineet Negi, Jacob Merson 7 62 

 
Fig. 1 – Two types of composite microstructures studied: 

a) random distribution of inclusions; b) microstructure with an exponential correlation 
of inclusion positions having the same volume fraction and filler size d as that in a). 

The computed effective stress-strain curve of the composite is bilinear. This 
feature is inherited from the fact that the matrix is bilinear. Let us denote the 
effective composite stiffness by Ee and the strain-independent strain hardening (slope 
of the stress-strain curve of the composite beyond the yield point) by Ep . Then, the 
homogenized behavior can be characterized using Ee /E1 and Ep /E1, where E1 is the 
elastic modulus of the matrix. Figure 2 shows the variation of these quantities with 
the volume fraction of fillers, f. At least 50 realizations are used for each set of 
conditions. Since the composite is stochastic and models of finite size are considered, 
the values of these parameters corresponding to multiple realizations form a 
distribution. Figure 2 reports the mean of this distribution. The error bars indicating 
the standard deviation are smaller than the size of the symbols. 

The continuous line in Fig.2 corresponds to random composites similar to 
that shown in Fig.1a. The dashed line and cross symbols correspond to composites 
with spatial correlations having microstructure similar to that in Fig.1b. The two 
thick orange lines in Fig. 2a represent the 2D Hashin-Shtrikman bounds. The bounds 
are functions of the filling fraction f exclusively. It is seen that spatial correlations 
lead to modest increases in both parameters shown in Fig.2. The difference between 
the random and correlated cases is visible and larger than the sum of the standard 
deviations of the distribution functions corresponding to the two cases, but remains 
rather small. It increases with increasing filling fraction. In [6] it was shown that 
the weak stiffening effect observed here (Fig.  2a) is also reproduced by the higher 
order bounds [13] that take into account, beyond f, the presence of correlations. 
The bounds for the microstructure with correlations are both shifted up relative to 
the same bounds for the random microstructure. The effect is associated with the 
stronger interaction of inclusions in the case of spatially correlated filler 
distributions. 
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Fig. 2 – Variation of: (a) the mean elastic modulus (Ee /E1); (b) mean strain hardening rate (Ep /E1) 

with the volume fraction, for microstructures with randomly distributed inclusions 
(open symbols and continuous thin line) and microstructures with correlated distribution 
of inclusions (crosses and dashed line). The two thick orange lines in (a) correspond to 

the Hashin-Shtrikman bounds. 

4.2. EFFECT OF COMPOSITIONAL FLUCTUATIONS 

We discuss next the effect of variability in the material parameters of the 
phases forming the composite. This problem is discussed in detail in [11]. Here we 
review only one of the three types of composites studied in this reference. 
Specifically, we consider composites with uncorrelated distribution of fillers 
(Fig.1a). The matrix is homogeneous and elastic-plastic with a bilinear constitutive 
equation characterized by moduli E1 and 2

110 E−  for the elastic and plastic 
branches of the constitutive law, respectively. The yield stress of the matrix is 

2
1 110y E−σ = . Inclusions are linear elastic, of modulus E2 sampled from a log-

normal distribution function, p(E2). The mean of this distribution is kept constant at 
2 110E E= , while its variance is a parameter. The second moment is represented by 

the coefficient of variation cE (ratio of the standard deviation to the mean) of p(E2). 
All components have the same Poisson ratio, ν = 0.3, and plane strain conditions 
are considered throughout. Hence, this study outlines the effect on the overall 
composite mechanical behavior of allowing the filler properties to vary from filler 
to filler. 

The effective behavior of the filled composite is approximately bilinear and 
hence it is characterized here using the two mean tangent moduli of the elastic and 
plastic parts, Ee /E1 and Ep /E1, as well as the effective mean yield stress. Figure 3 
shows the variation of Ee /E1 and Ep /E1 with cE . These are normalized by the mean 
of the distribution of the corresponding quantities for cases with constant inclusion 
stiffness, 0Ec = , such that the plots show the effect of the variability in filler 
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elastic constants. The bars in the figure represent the standard deviation of the 
probability distribution functions 1( )ep E E  and 1( )pp E E  for 0Ec ≠  estimated 
with 40 replicas for each case. It is seen that keeping the mean of the distribution 
function of filler moduli constant and increasing its variance, and hence cE , leads to 
elastic softening, while variability in filler properties has no discernable effect on 
the effective strain hardening of the composite. The effective yield stress is also 
rather insensitive to cE  for this type of composites. The effect of filler properties 
variability on the elastic modulus of the composite increases with increasing the 
volume fraction, f. This elastic softening effect was also observed for linear elastic 
heterogeneous materials with fluctuating local elastic moduli in [7,  10]. 

It is rather straightforward to evaluate the Hashin-Shtrikman bounds for the 
elastic moduli using the original results [15] for multiphase composites. It is 
observed that, for the matrix-filler contrast considered in this study, the upper bound 
is essentially insensitive to cE for the entire range 0<cE < 3 and for all 0< f <1. The 
lower bound decreases as cE increases. As also observed numerically for specific 
structures (Fig. 3), the dependence becomes more pronounced as f increases. 

The elastic softening effect shown in Fig.  3a was also observed in networks 
of fibers in which each fiber has a different elastic modulus [8]. In [8] it is shown 
analytically that softening should always occur in both discrete structures such as 
fiber networks, and in continua of the type discussed here and in [6,  7,  10], and 
that the effect becomes more pronounced as the filling fraction, f, increases. 

    
Fig. 3 – Variation of: a) the normalized mean elastic modulus (Ee /E1); 

b) normalized mean strain hardening (Ep /E1) with the coefficient of variation of the distribution 
function of inclusion moduli, cE, for two volume fractions, f = 5% (triangles) and f = 17% (circles). 

The standard deviation of the respective quantities is shown, but is smaller than the size 
of the symbols. The vertical axes are normalized with the value of the respective variable at cE = 0. 

Several other cases of composites with random spatial distribution of 
inclusions and with fluctuating filler and matrix properties are discussed in [6]. It is 
of interest to review here the general result of this study. It has been observed that: 
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(i) If either the matrix or inclusions have elastic moduli that fluctuate spatially 
(are selected from a distribution), the effective elastic modulus of the composite is 
smaller than that of the composites with no fluctuations and modulus equal to the 
mean of the respective distribution. In other words, at constant mean stiffness of 
constituents, fluctuations lead to overall softening. The effect is more pronounced 
as the variance of the distribution characterizing these fluctuations increases. 

(ii) If the yield stress of the matrix is spatially variable and takes values from 
a distribution of given mean, the effective yield stress of the composite is smaller 
than that of the composite with no fluctuations and matrix yield stress equal to the 
mean of the distribution. Such plastic softening has been observed before in [9, 25]. 

(iii) If the strain hardening of the matrix fluctuates spatially, the effective 
strain hardening of the composite also decreases as the magnitude of these 
fluctuations increases. Hence, it can be generally stated that allowing a certain 
material property to have spatial fluctuations leads to a reduction of the 
corresponding effective property of the composite. This trend is opposite to that 
induced by the spatial correlations of filler distribution discussed in section 4.1. 

4.3. GREEN FUNCTIONS FOR STOCHASTIC COMPOSITES 

In this section we discuss the functional form of the effective Green functions 
for a 2D stochastic composite. Consider a two-dimensional composite material in 
which Young’s modulus is a function of position, x, and a stochastic variable, ξ, 
i.e. E(x ,ξ). The stochastic field E(x ,ξ) may be spatially correlated or not. A unit 
force, F, is applied at a point of this composite and the respective point is taken as 
the origin of the coordinate system (Fig. 4). The analysis seeks to determine the 
deformation field produced by the unit point force. Without loss of generality (due 
to the statistically isotropy of the distribution of heterogeneity), we consider the 
force to act along the x1 axis of the coordinate system in Fig.4. The displacement 
field, u, is referred to the same coordinate system. 

The problem is solved using a Monte Carlo method (section 2). To this end, 
the domain is discretized in 100 × 100 cells of size λ, each cell being 
homogeneous and isotropic. The color in Fig.4 indicates the local Young’s 
modulus, which is selected from a distribution of mean E  and of coefficient of 
variation cE . The Poisson ratio is identical in all cells, ν = 0.3. A point force of 
magnitude F = 1 is placed in the center of this domain and the outer boundary is 
fixed. For each value of cE , a large number of realizations (one hundred) are 
produced, each is subjected to the same deterministic boundary conditions and 
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loading and is solved using a finite element solver (Abaqus). The resulting 
displacement field is stochastic, u(x ,ξ). We are interested in the mean and the 
coefficient of variation of this field, ( )u x  and ( )c x . In particular, we want to 
compare ( )u x  with the displacement field produced by a unit point force loading a 
homogeneous continuum of Young’s modulus equal to the mean of the distribution 
function of moduli in the stochastic composite problem, E , and ν = 0.3. 

 
Fig. 4 – Two-dimensional domain used for the computation of Green functions 

for the stochastic composite. The color indicates the value of the local Young’s modulus. 

We note that this model is an approximation of the problem stated in the first 
paragraph of this sub-section. Specifically, E(x ,ξ) is piecewise constant and hence 
its correlation function is a step function equal to 1 for | |< λx  and 0 for | |> λx . 
Taking 0λ → , or conversely looking at the variation of ( )u x  and ( )c x  for 

| |∞ λx� �  corresponds to rendering the field uncorrelated. 
The solution for the point force problem has been derived early in the history 

of continuum mechanics. Kelvin derived the solution for the 3D linear isotropic 
case, while Boussinesq [26] and Cerruti [27] derived the solution for the infinite 
half space loaded by a point force acting on its boundary. The similar solution for 
the point force acting at a point within a half space was derived by Mindlin [28]. In 
2D, the displacements vary logarithmically with the distance from the point force: 

log(| |) ( )a= +u F x b x , where pre-logarithmic coefficient a is a function of the 
elastic constants. Let us take as reference the case of a homogeneous material with 
modulus E  and write the solution for this case as ( ) log(| |) ( )a E= +u F x b x , where 
we make explicit that the pre-logarithmic coefficient depends on E . We observed 
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from the numerical solution that the functional form of the singular term of 
the displacement field in the stochastic composite remains unchanged: 

log(| |) ( )a′ ′= +u F x b x , where coefficient a′  is now a function of E , cE  and 
possibly of the higher moments of the distribution function of E. 

The continuous curve in Fig. 5 shows the dependence of the difference 
between the coefficients corresponding to the stochastic and homogeneous cases 
versus the coefficient of variation of the distribution of E, i.e. ( )( ) ( )a a E a E′ −  

versus cE . The coefficient a increases with cE , indicating that the mean 
displacements are larger in the stochastic case compared with the homogeneous 
reference case. This result agrees with the overall softening of the composite 
associated with increasing cE  discussed in section 4.2 and shown quantitatively, 
although for a slightly different type of stochastic composite, in Fig.  3a). 

This result may be obtained using a different method, based on SFEM. The 
stochastic Young’s modulus field E(x ,ξ) was expanded in a KL expansion which 
was then used to formulate the weak form of the problem within the Galerkin finite 
element formulation. In the weak form, the problem is expressed as a linear system 
involving the stiffness matrix K, nodal displacements and nodal forces. However in 
the stochastic finite element formulation, a series of stiffness matrices (K(n)) 
corresponding to each term in the KL expansion appear. The linear system of 
equations becomes 

0 ( )

1

M
n

n
n=

⎛ ⎞
− ξ =⎜ ⎟⎜ ⎟

⎝ ⎠
∑K K u F , (1) 

where ξn are uni-variate Gaussian identically distributed independent random 
variables (RV’s), and K(n) are the stiffness matrices. This can be re-written: 

( )
0

1
,

M
n

n
n=

⎛ ⎞
+ ξ =⎜ ⎟⎜ ⎟

⎝ ⎠
∑I Q u u  (2) 

where 0 1 ( )( ) n−=Q K K  and 0 1
0 ( )−=u K F . 

System (2) is formally inverted and the inverse matrix is written as a von 
Neumann series expansion, leading to an approximation for the unknown field u: 

( )
0

0 1
( 1) .

kM
k n

n
k n

∞

= =

⎛ ⎞⎛ ⎞⎜ ⎟= − ξ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑ ∑u Q u  (3) 

This expression is re-written symbolically as: 
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mean 0 2 4 ... ...,k= + + + +u u u u u  (4) 

where ( 1) ( 2) ( )
1 2 0

1 1 2 1 1
... ...  ...

M M M
i i ik

k i i ik
i i ik= = =

= 〈ξ ξ ξ 〉∑ ∑ ∑u Q Q Q u . 

The magnitude of the uk terms was found to decrease rapidly with index k. 
Moreover, accurate calculation of higher uk terms is computationally very 
expensive. As a result, in this analysis only the u2 term is considered. Note that the 
first term in the expansion, u0, corresponds to the homogeneous case. The mean 
displacement response so obtained was compared with the displacement field 
computed using the Monte-Carlo approach for various values of the coefficient of 
variation, cE . The result is shown in Fig. 5 with dashed line. It is observed that the 
approximation of eq.(4) is very good up to fairly large values of cE . 

5. CONCLUSIONS 

Several results pertaining to the elastic-plastic response of stochastic 
composites are discussed in this article. It is shown that in composites made from 
two materials, matrix and inclusions, the spatial distribution of inclusions influences 
the overall elastic modulus and stain hardening of the composite. Specifically, in 
presence of spatial correlations, or inclusion clustering, both the elastic modulus 
and the strain hardening of the composite increase relative to the respective parameters 
of the composite of same volume fraction and composition but without inclusions.  

In composites with randomly distributed inclusions in which the stiffness of 
the inclusion material is allowed to vary from inclusion to inclusion we observe 
that the overall composite stiffness decreases with increasing the degree of variability. 
The strain hardening parameter is largely insensitive to these fluctuations. 

 
Fig. 5 – Variation of the difference between the pre-logarithmic coefficients a of the Green’s function 

for the stochastic composite and for the homogeneous case, with the coefficient of variation of the 
stochastic field E (x ,ξ ). The continuous line corresponds to the Monte Carlo result, while the dashed 

line was obtained with the approximate stochastic finite element formulation described in text. 
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The displacement field associated with a point force acting on a 2D 
continuum − the Green functions − has been evaluated with two methods: a Monte 
Carlo technique and a procedure based on the stochastic finite element method. We 
observe again that the spatial variability of the composite elasticity leads, in average, to 
softening. Specifically, the displacement field in the stochastic composite has 
larger values than the corresponding field in the homogeneous material having 
modulus equal to the mean of the distribution of moduli in the stochastic composite 
case. The difference increases with increasing the degree of variability and can 
become important at values of cE  close to 1 or larger. 

These results indicate that stochasticity in composition may lead to unexpected 
global composite behavior and these effects may be exploited in material 
optimization. 
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