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Abstract. To calculate the links dimensions of a parallel mechanism, is necessary to 
determine the distribution of forces from its kinematic pairs. Also, the performance of 
such a mechanism can be evaluated after calculating the driving forces and reaction 
forces as well as the reaction moments from its kinematic pairs. To determine the force and 
moment distributions within the mechanism pairs, as well as the critical positions of 
the actual areas, the virtual mechanical work principle (J. Bernoulli, 1717) is used. For 
this, the links’ positions must be determined, meaning the sizes of the pair variables of 
all the mechanism kinematic pairs. The Denavit - Hartenberg transformation matrix 
method is used in this paper for both kinematic and kinetostatic analysis of the mechanism. 
The proposed method is applied to a multi-loop multi-degree-of-freedom linkage of 
the Stewart platform. 
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LIST OF SYMBOLS 

Aij − the Denavit-Hartenberg transformation matrix of the coordinates of a 
point of the link with number j, belonging to i loop of linkage; 

Zij − the axis of the pair with number j, belonging to i loop; 
Xij − the common normal between the axes Zi,j-1 and Zij ; 
F − the force whose components on the axes 11 11 11 11O X Y Z  are F11X , F11Y , F11Z ; 

XijaΔ  − the virtual displacement of the coordinate system ij ij ij ijO X Y Z  with 
respect to , 1 , 1 , 1 , 1i j i j i j i jO X Y Z+ + + + ; 

Rxij, Ryij, Rzij, Mxij, Myij, Mzij − the components of the reaction wrench in the 
pair  with number j, belonging to i loop of linkage, caused by the force F ; 

a1,12 − the distance between the axes Z1,12 and Z11; this lengths represents one 
of the Denavit-Hartenberg parameters. The other parameters shown in Fig.  2a are 
the distance s91 and the angles α12 and θ11. 
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1. REACTION WRENCHES IN PAIRS OF PARALLEL ROBOTS. 
INTRODUCTION 

The analysis of forces in parallel linkages is one of the important problems 
for mechanical design and control. A few authors have treated this subject 
proposing different methods. A new approach using screw theory which reduces 
the number of the unknowns has been proposed by Y. Zhao, J.F. Liu and Z. Huang 
for a 3-RPS parallel mechanism [11]. A method of reaction force and moment 
calculation for a 3-RSS pure translational Delta-type parallel link robot is presented 
in [4]. Reaction forces are identified in [8] for a quadruped robot having a parallel-
serial architecture. W. Chen investigates in his thesis the force capabilities of 
robots based on parallel structures [1]. V. Kumar and C.J. Waldron came with a 
method to determine the forces distribution in closed kinematic chains [5]. 

The Stewart platform is a six degree of freedom parallel mechanism well 
known in literature, proposed by D. Stewart in 1965 [7]. Because of the parallel 
structure that has a high load capacity and distributes the payload on the kinematic 
chains, along with other interesting properties, this parallel robot has been studied 
extensively in the literature. 

The Denavit-Hartenberg method used in this paper for static forces analysis 
into the linkages is a general one. The calculation requires only the matrix 
multiplications and the solving of a linear equation system. 

To design the components of a linkage in general, of a parallel robot in 
particular, the determination of the force distribution from its kinematic pairs needs 
to be determined. The performance of any mechanism can be assessed only after 
calculating the driving forces or moments and the reaction forces and moments 
from the kinematic pairs. The principle of virtual mechanic work (J. Bernoulli, 
1717) is used to determine the distribution of the forces and moments in the 
linkage, as well as the areas where critical positions are likely to appear. Hence, the 
link positions, i.e. the variables sizes of all the kinematic pairs of the linkage must 
be determined. The Denavit-Hartenberg transformation matrices method [3] is used 
for both kinematic and kinetostatic analysis of the mechanism. 

The design of a linkage is made in two stages. The kinematic dimensions of 
the links are calculated first and then the forces and the moments are determined. 
The second stage is organological dimensioning, that depends on the distribution of 
forces in the mechanism. Further, only aspects of the static distribution of forces in 
parallel mechanisms are analysed. 

2. KINETOSTATIC ANALYSIS OF PARALLEL LINKAGES 

To illustrate the proposed calculation method, it is considered a Stewart 
parallel robot mechanism with six degrees of freedom [7] (Fig.1). This multi-loop 
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mechanism consist of a fixed platform (1, 12) and a mobile platform (1, 6). 
Between these two platforms, six connecting kinematic chains are mounted. The 
connecting kinematic chains are identical, both of type 2RTS, each comprising 
three links. 

The links of this parallel mechanism can be grouped into five independent 
loops (Fig .2a). In this figure, only the links of the first loop are numbered as ((1i), 
i= 1,  12 ). The numbering is made, according to Denavit-Hartenberg convention, 
with two indices. The first index indicates the loops’ number and the second, the 
link’s number in the loop. Similarly, the axes of the Denavit-Hartenberg coordinate 
systems and the kinematic pairs are numbered in the above mentioned way. 

The spherical pair is replaced with a kinematic chain composed of two 
fictional links and three revolute pairs. For the first loop, the axes of the revolute 
pairs are denoted 14 15 16,  ,  ,Z Z Z  respectively 17 18 19,  ,  Z Z Z  (Fig.  2) and are 
perpendicular two by two [2,  9,  10]. 

 

Fig. 1 − The Denavit-Hartenberg axis 
of a parallel linkage with six degrees of freedom. 

The kinematic pairs 1.3, 1.10, 2.10, 3.10, 4.10, and 5.10 are driving and their 
variables are the generalized coordinates of this linkage. 

For every loop, the Denavit - Hartenberg [1, 2] matrix equations are: 

1 11 12 12 13 13 15 15 6 6

,10 ,10 ,11 ,11 ,12 ,12)

( ) ( ) ( )... ( ) ( )... 

( ) ( ) ( ,    1,   5.
i i i

i i i i i i

q q q q q

q q q i= =

A A A A A

A A A I
 

(1) 

where klq  is the klθ  variable of the revolute pair l or the kls  variable of the 
prismatic pair l, belonging to loop k. 



 Alexandra Rotaru, Luciana Dudici 4 264 

F is a force applied to the link (1, 1), whose components on the axes of the 
11 11 11 11O X Y Z  system, attached to the fixed platform (11) are F11X , F11Y , F11Z : 

F 11 11 11 11 1111X Y ZF i F j F k= + + . (2) 

 
Fig. 2a − The first loop of the Stewart parallel linkage in undeformed state. 

 
Fig. 2b − Virtual deformation of the first loop of Stewart parallel linkage. 
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The force F is applied to the end-effector (16) of the parallel linkage, at the 
point P of the mobile platform, with the coordinates 17PX , 17PY , 17PZ . In each 
passive pair, the reaction wrench has five components. In the passive revolute pair 
(i, j), the components are xijR , yijR , zijR , xijM , yijM . In the passive prismatic 

pair (i, j), the wrench components are xijR , yijR , xijM , yijM , zijM . In each 

driving pair, the reaction wrench has all the components: zijR  is the driving force 

from the prismatic pair and zijM  is the driving moment from the revolute pair. In 
what follows, the frictional forces and moments between the links are neglected. 

To calculate the sizes of the reaction wrench components caused by this force 
in the revolute pair 1i, reaction that acts on the link (1, i) from the link (1, i+1), a 
virtual deformation of the linkage is assumed, thus of the first loop between link (1, 
i) and link (1, i+1), and has as a result a change in the geometry of the linkage, 
without affecting the values of the independent variables from the driving pairs 
(Fig. 2b). This virtual deformation is being conveniently considered in each case, 
so that the calculation of the desired component of the reaction wrench is possible. 
The kinematic pairs numbered (13) and (1, 10) of the loop 1 are driving pairs. The 
virtual deformation of the loop is expressed by a matrix iH  approximately equal to 
the unit matrix: 

i i= + ΔH I H . (3) 

With that, the closing matrix equation of the first loop of the parallel linkage 
(Fig. 2b) becomes: 

11 11 11 12 12 12 13 13 1, 1 1, 1 1, 1

1 1 1 1,10 1,10 1,11 1,11 1,11 1,12 1,12 1,12

( ) ( ) ( )... ( )
( ).... ( ) ( ) ( ) .

i i i i

i i i

q q q q q q q
q q q q q q q

− − −

+ +

+ Δ + Δ + Δ

+ Δ Δ Δ =

A A A A H
A A A A I

 
(4) 

Along a closed-loop, the product of the transformation matrices is equal with 
the unit matrix I. This unit matrix I denotes that the links are the component parts 
of the closed loops [2,  3,  9,  10]. 

Similarly, for the other four deformed independent closed-loops of the 
parallel linkage, the Denavit-Hartenberg matrix equations are: 

 
1 1 1 12 12 12 13 13 , 1 , 1 , 1

,10 ,10 ,11 ,11 ,11 ,12 ,12 ,12

( ) ( ) ( )... ( )

 ( ).... ( ) ( ) ( ) ,   2, 5.
j j j j i j i j i

ji ji ji j j j j j j j j

q q q q q q q

q q q q q q q j
− − −

+ +

+ Δ + Δ + Δ

+ Δ Δ Δ = =

A A A A

A A A A I
 

(5)
 

When the component 1X jR  of the reaction force from the pair 1i along the 

axis 1 1j jO X  is calculated, the virtual displacement 1X jaΔ  into the matrix jH  
occurs in the following manner: 
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1

1 0 0 0
1 0 0

0 0 1 0
0 0 0 1

x j
j xj

aΔ
= =H H , (6) 

or: 

1j Rx x ja= + ΔH I Q , (7) 

where the matrix operator QRx 
 
has the form [6]: 

0 0 0 0
1 0 0 0

 
0 0 0 0
0 0 0 0

Rx =Q . (8) 

In the same manner the matrix operators for other virtual deformations 
are defined, which are necessary in all the reaction wrench components 
calculation [6] 

0 0 0 0
0 0 0 0

  
1 0 0 0
0 0 0 0

Ry =Q ;   

0 0 0 0
0 0 0 0

 
0 0 0 0
1 0 0 0

Rz =Q ;   

0 0 0 0
0 0 0 0

 
0 0 0 1
0 0 1 0

Mx =
−

Q ; 

0 0 0 0
0 0 0 1

  
0 0 0 0
0 1 0 0

My =

−

Q ;   

0 0 0 0
0 0 1 0

 
0 1 0 0
0 0 0 0

Mz
−

=Q .                                     (9) 

Note that all the matrix operators Q have the property expressed by the 
equality: 

 ,  2,  4, 2,  4ij jiq q i j= − = = . 

By developing the matrix equations (4) and (5) it results a system of 30 
equations [2,  3,  9,  10]: 
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11 11 12 12 13 13 1, 1 1, 1 1 1 1,10 1,10 1,11 1,11 1,12 1,12

11 11 12 12 13 13 1 1 1,10 1,10 1,11 1,11 1,12 1,12 11

11 11 12 12 13 13

( ) ( ) ( )... ( ) ( ).... ( ) ( ) ( )

( ) ( ) ( )... ( ).... ( ) ( ) ( )

( ) ( ) ( )

i i i i

q i i

q

q q q q q q q q

q q q q q q q q

q q q

− − +

+ Δ +

+

A A A A A A A A

Q A A A A A A A

A Q A A 1 1 1,10 1,10 1,11 1,11 1,12 1,12 12

11 11 12 12 13 13 14 14 1,10 1,10 1,11 1,11 1,12 1,12 14

11 11 12 12 13 13 14 14 1,10 1,10 1,11 1

... ( ).... ( ) ( ) ( )

( ) ( ) ( ) ( ).... ( ) ( ) ( )

...
( ) ( ) ( ) ( ).... ( ) (

i i

q

q

q q q q q

q q q q q q q q

q q q q q q

Δ +

+ Δ +

+ +
+

A A A A

A A A Q A A A A

A A A A A Q A ,11 1,12 1,12 1,11

11 11 12 12 13 13 14 14 1,10 1,10 1,11 1,11 1,12 1,12 1,12

11 11 12 12 1, 1 1, 1 1 1 1,11 1,11 1,12 1,12 1

) ( )

( ) ( ) ( ) ( ).... ( ) ( ) ( )

( ) ( )... ( ) ( )... ( ) ( ) ;
q

i i Rx i i i

q q

q q q q q q q q

q q q q q q x− −

Δ +

+ Δ =

= − Δ

A

A A A A A A Q A

I A A A Q A A A

 

 

1 11 12 12 13 13 15 15 6 6 ,10 ,10 ,11 ,11 ,12 ,12

1 11 12 12 13 13 ,10 ,10 ,11 ,11 ,12 ,12 11

1 11 12 12 13 13

( ) ( ) ( )... ( ) ( ).... ( ) ( ) ( )

( ) ( ) ( )... ( ).... ( ) ( ) ( )

( ) ( ) ( )...

j j j j j j j j j

q j ji ji j j j j j j

j q ji

q q q q q q q q

q q q q q q q q

q q q

+

+ Δ +

+

A A A A A A A A

Q A A A A A A A

A Q A A A ,10 ,10 ,11 ,11 ,12 ,12 12

1 11 12 12 13 13 14 14 ,10 ,10 ,11 ,11 ,12 ,12 14

1 11 12 12 13 13 ,9 1,9 ,10 1,10 ,11 ,11

( ).... ( ) ( ) ( )

( ) ( ) ( ) ( ).... ( ) ( ) ( )

...
( ) ( ) ( ).... ( ) ( ) ( )

ji j j j j j j

j q j j j j j j

j j j q j j

q q q q q

q q q q q q q q

q q q q q q

Δ +

+ Δ +

+ +
+

A A A

A A A Q A A A A

A A A A A Q A ,12 ,12 ,11

1 11 12 12 13 13 14 14 ,10 1,10 ,11 ,11 ,12 ,12 ,12

( )

( ) ( ) ( ) ( ).... ( ) ( ) ( ) .
j j j

j j j j q j j j

q q

q q q q q q q q

Δ +

+ Δ =

A

A A A A A A Q A I

(10)

 

This system, consisting of 30 equations, contains 31 unknown variables: 

11 12 14 15 16 7 8 9 ,11 ,12 1,  ,  ,  ,  ,  ,  ,  ,  ,  ,   1, 5,   i i i i i x iq q q q q q q q q q i aΔ Δ Δ Δ Δ Δ Δ Δ Δ Δ = Δ  

and it’s solved in relation to the ratios: 

15 1611 12 14
1 2 3 4 5

1 1 1 1 1

,117 8 9
5, 1 5, 2 5, 3 5, 4

1 1 1 1

,12
5, 5

1

;     ,   ,   ,    ,  

 ,   ,    ,   ,  

 ,   1,  5.

x i x i x i x i x i

ii i i
i i i i

x i x i x i x i

i
i

x i

q qq q qu u u u u
a a a a a

qq q qu u u u
a a a a
q

u i
a

+ + + +

+

Δ ΔΔ Δ Δ
= = = = =

Δ Δ Δ Δ Δ

ΔΔ Δ Δ
= = = =

Δ Δ Δ Δ
Δ

= =
Δ

 (11) 

If the components of a reaction force from a kinematic pair belonging to the 
second loop are calculated, the closing matrix equations of the five independent 
loops will be: 

21 11 11 12 12 12 13 13 2, 1 2, 1 2, 1

2 2 2 2,10 2,10 2,11 2,11 2,11 2,12 2,12 2,12

( ) ( ) ( )... ( )
( ).... ( ) ( ) ( ) .

i i i i

i i i

q q q q q q q
q q q q q q q

− − −

+ +

+ Δ + Δ + Δ

+ Δ Δ Δ =

A A A A H
A A A A I

 (12) 
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1 1 1 12 12 12 13 13 , 1 , 1 , 1

,10 ,10 ,11 ,11 ,11 ,12 ,12 ,12

( ) ( ) ( )... ( )

 ( ).... ( ) ( ) ( ) ,  1,3,5.
i i i i j i j i j

ij ij ij i i i i i i i i

q q q q q q q

q q q q q q q i
− − −

+ +

+ Δ + Δ + Δ

+ Δ Δ Δ = =

A A A A

A A A A I (13)
 

The components 1  iR  of the reaction force along the axes 1 1i iO x , 1 1i iO y , 1 1i iO z , 
have the values: 

7
1 11

1

i
x i x

x i

qR P
a

Δ
=

Δ
,   7

1 11
1

i
y i y

x i

qR P
a

Δ
=

Δ
,   7

1 11
1

i
z i z

x i

qR P
a

Δ
=

Δ
. (14) 

In an undeformed parallel linkage, the coordinates of the point P of the link 
(1, 6) in relation to the fixed system 11 11 11 11O X Y Z  are calculated with the relation: 

1711
11 11 12 12 13 13 16 16

1711

1711

11

 ( ). ( ) ( ).... ( ).  PP

PP

PP

XX
q q q q

YY
ZZ

= A A A A , (15) 

After the virtual deformation of the parallel linkage with the size xqΔ , the 
coordinates of the same point are: 

11

11

11

16

11
11 11 11 12 12 12 13 13

11

11

17
15 15 15 6 16

17

17

1

 ( ) ( ) ( )...

1

                               ... ( ) ( ).  ,

P

P

P

X

P X
X X

P Y

P Z

P
X i a

P

P

X a
q a q a q

Y a

Z a

X
q a q q

Y
Z

+ Δ
= + Δ + Δ

+ Δ

+ Δ

+ Δ + Δ

A A A

A A

 

(16) 

Hence the: 

11
11 11 12 12 13 13 16 16 11

11

11

11 11 12 12 13 13 16 16 12

11 11 12 12 15 15 16 16 15

1

 ( ( ) ( ) ( )... ( )

             ( ) ( ) ( )... ( )
             ...
             ( ) ( )... ( ) ( )

x P
a

y P

z P

a

a

q q q q q

q q q q q

q q q q q

Δ
= Δ +

Δ

Δ

+ Δ +
+ +
+ Δ +

Q A A A A

A Q A A A

A A Q A A
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17
11 11 12 12 13 13 16 16 16

17

17

1

  ( ) ( ) ( )... ( ) )   P
a X

P

P

x
q q q q q

y
z

+ Δ ΔA A A Q A  (17) 

But: 

1 1k k kq u q= Δ , (18) 

and noting: 

 11
11 11 12 12 13 13 1, 1 1, 1 1 1 16 16

11

11

1

( ) ( ) ( )... ( ) ( )... ( ) .k
k j a k k k k

k

k

x
q q q q q q

y
z

− − =A A A A Q A A U L (19) 

and 

12 12 15 16 6...+ + + + =L L L L M , (20) 

can be written: 

11
16 16

11

11

0

P

P

P

x
x

y
z

Δ
Δ =

Δ
Δ

M , (21) 

or: 

16,2 11 11P Pm x xΔ = Δ ;   16,3 11 11P Pm x yΔ = Δ ;   16,4 11 11P Pm x zΔ = Δ . (22) 

In the same manner, the components of the wrench reaction are calculated on 
the other axis of the Denavit-Hartenberg coordinate system by replacing the matrix 
operator Q. Also, by changing the position of the matrix H in the matrix equation 
(4), the reaction wrench components of all the linkages’ kinematic pairs can be 
calculated. 

3. CONCLUSION 

The proposed method for analysing the distribution of forces in the kinematic 
pairs of the parallel linkages using the Denavit-Hartenberg transformation matrices 
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and the principle of virtual work is general and relatively easy to apply. This statement 
is taking into account the fact that the operations that have to be carried out are 
only 4 × 4 matrix multiplications, to which is added the solving of a system with 30 
linear equations. The exhibited example is very intricate, in order to prove the boundless 
possibilities of application. 

Received on October 27, 2016 
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