
Ro. J. Techn. Sci. − Appl. Mechanics, Vol. 62, N° 2, P. 119−134, Bucharest, 2017

ON ENVIRONMENT MATHEMATICAL MODEL 
AND ON IMPROVED STABLE EVOLUTION 

IN THESE HYPOTHESES * 
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GRIGORE SECRIERU2, VICTOR VLĂDĂREANU1, NICOLAE POP1, ALEXANDRU 
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Abstract. The subject of the paper is focused on the mathematical characterization of 
the environment through the mathematical model of the dynamic systems in general 
case when depend on parameters. A lot of results on the Liapunov stability of the 
dynamic system that depends on parameters, performed by us, are selected and explicitly 
accepted as properties that must describe the dynamic system of the environment. The 
property of separation between stable and unstable regions, in the domain of free 
parameters, on the matrix attached to the linear dynamic system mathematical model 
or to the “first approximation” of the nonlinear dynamic system was analysed. Our 
study is referred, as example, on particular case of biped walking robot model described by 
us in the paper that opened a way to perform the walking robot problems. Existence of 
the stable regions in the free parameters domain assures the possibility to realize 
stability control on each such region using a compatible criterion. A method for improved 
stable evolution of the environment’s dynamic system is proposed and analyzed on our 
case of biped walking robot where an important problem is selection of the parameters 
domain such that the dynamic system there exists and another important problem is 
optimization of stable evolution. 

Key words: environment, dynamic/kinematics system, free parameters, stability 
        control, biped walking robot, dynamic/kinematics analyze. 

1. INTRODUCTION

Environment mathematical model is described by the dynamic systems in 
general case as function of relevant parameters [1–19], without specifying its 
values, as geometrical parameters that describe the system, physical parameters (in 
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particular mechanical parameters), possible chemical, economical, biological 
parameters etc. A phenomenon of the environment can be approached by the linear 
or non linear dynamic system mathematical model, discussed and here together 
with the fundamental notion on the stability, in sense of Liapunov, of the dynamic 
system evolution [12–15]. The linear dynamic system is defined through the matrix 
that has the component functions of the matrix assumed to be with real values, and 
the matrices that intervene in the exposure of the stability analysis method are also 
assumed with real values components [20,  21]. We called in the last papers on the 
subject the hypothesis that the matrices from description of the mathematical 
model have the complex values such that the real values are taken into account as 
special cases of complex values [22]. This hypothesis assures a simplified method 
of analysis, in the complex domain, on the linear dynamic system stability. For the 
stability analysis of the non linear dynamic system we called the linear dynamic 
system of “first approximation” or indirect method of non linear dynamic system 
analysis [1,  2]. 

The mathematical property that characterizes the evolution of all dynamic 
systems models from the literature that approaches phenomena of the environment 
is property of separation between stable and unstable regions of the free parameters 
domain [3,  7,  8]. We formulated, for the first time, the conditions imposed on the 
functions that defined the dynamic system, which assure the separation between 
stable and unstable regions from the free parameters domain [18]. The application 
of the theory is focused on our biped walking robot model that opened a new 
possibility to simplify the solving of the walking robot problems.   

2. ON THE CONTINUITY 
OF THE REAL MATRIX EIGENVALUES 

The real matrix from the discussion is considered matrix that defines the 
linear dynamic system or “first approximation” of the nonlinear dynamic system 
depending of parameters. The components of the real matrix are assumed continue 
on piecewise referred to system parameters (including time parameter). 

The property of the continuity transmissibility from the real matrix 
components to the real matrix eigenvalues is discussed in this paragraph. 

QR algorithm for Hessenberg form of the real matrix: 

Let the matrix n n×∈A \  be with the real elements ija , 1,...,i n= ; 1,...,j n= . 
We assume that the real matrix A  has the distinct eigenvalues, real or complex. 
The matrix A  has a Hessenberg form if its elements 0ija =  in the cases 
2 ,  1i n j i< ≤ < − . A real matrix A  can be substituted by a similar matrix of 
Hessenberg form. 
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For each column 2,..., 1r n= −  of the matrix A, to deduce the Hessenberg 
form of the matrix, we can substitute the matrix A with the similar matrix 

1
r r

−M A M , using the elementary matrices as above. 
The notations from the matrices rM , 1

r
−M  signify the expressions: 

, , 1 , 1k r k r r rm a a− −= − ; , 1 0r ra − ≠ , 2,..., 1r n= − ; 1,...,k r n= + ; ( 1) ( 1)r r− × −I  signify 
the unity matrix of order 1r − ; ( -1) ( - 1)r n r× +0  signify zero matrix of order 

( 1) ( 1)r n r− × − +  and 1
r
−M  represents the inverse matrix of the matrix rM . 

Another operation that can intervene in deducing the Hessenberg form of the 
matrix A  is permutation of two matrix lines, assumed i  and j  lines. The matrix A  
is substituted in this goal by the similar matrix ij ijP AP  where the matrix ijP  is 
deduced from the unity matrix by permutation of i  and j  lines. The inverse of the 
matrix ijP  is also ijP . In the matrix ij ijP AP  the lines and the columns i  and j  
from the matrix A  have been permuted. 

The QR algorithm [20–23] is formulated in hypothesis that the matrix A  has 
Hessenberg form to facilitate that the complex eigenvalues α ± iβ, if there exists, to 
be represented in real final Schur form of the matrix A, explained below, deduced 

by QR algorithm convergence, using the real matrix of second order 
    

  
α β⎡ ⎤

⎢ ⎥−β α⎣ ⎦
 

situated on the diagonal for each distinct complex conjugate eigenvalues and each 
distinct real eigenvalue situated also on the diagonal of the real final Schur form of 
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the matrix A, similar with initial matrix. We justify the similar Schur form of the 
matrix A  by the following reason. 

Let λ be a real eigenvalue and 1n×∈x \  the corresponding real eigenvector of 
the matrix A  so that ,  0= λ ≠Ax x x . Let [ ],=Q x Y , 1n×∈x \ , ( 1)n n× −∈Y \  be an 
orthogonal base of vectors in n\  that include the eigenvector 1n×∈x \  so that 

T
n=QQ I . 

We have the relations T 0=Y x , T ( 1)n n− ×∈Y \  and also the below relations: 

[ ] ( ) ( )T T, ′= λ = = =AQ x AY QQ AQ Q Q AQ Q A ; 

[ ]
( )
( )

TT
T

T T

   
,  = 

   

⎡ ⎤λ⎡ ⎤
⎢ ⎥′ = = λ ⇒⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦
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In the relations (2) the matrices T 1 ( 1)n× −∈x AY \ , ( 1) 1n− ×∈0 \ , T= ∈B Y AY  
( 1) ( 1)n n− × −∈\  are used where the dimension 2n > . 

In the matrix ′A  on the diagonal the real eigenvalue λ of the matrix A  that 
represents an intermediary Schur form of the matrix A  appears. The eigenvalues of 
the matrix B  are also eigenvalues of the matrix A  because if ,  0= γ γ ≠B X X  then 

T( ) = γY A Y X X  and  ( ) ( )= γA YX YX . The value γ can be real or complex and 
the corresponding vector X can also be real respectively complex. The eigenvalues 
of the matrix B  are the same as for the matrix A  excepting the assumed real 
eigenvalue λ of the matrix A . 

In the case in which the matrix B  and implicit matrix A  admit two complex 
conjugate eigenvalues α ± iβ for these eigevalues are associated two complex 
conjugate vectors i±u v  of the matrix B  with ( 1) 1, n− ×∈u v \  linear independent 
real vectors. We can write: 

( ) ( )( ) [ ] [ ]     
i i i       

  
α β⎡ ⎤

± = α ± β ± ⇒ = ⎢ ⎥−β α⎣ ⎦
B u v u v B u v u v  

[ ]* * *     
  ,      

   
α β⎡ ⎤

= = ⇒ =⎢ ⎥−β α⎣ ⎦
X u v M B X X M  (3) 

Let an orthogonal base * * *,⎡ ⎤= ⎣ ⎦Q X Y  be from 1n−\  where * [ , ]= ∈X u v  

( 1) 2n− ×∈\ , * ( 1) ( 3)n n− × −∈Y \  and * *T
1 n−=Q Q I . Then 



5 On environment mathematical model and on improved stable evolution in these hypotheses 123 

( ) ( )* * * * * * *T * * *T * * *, ,⎡ ⎤ ⎡ ⎤= = = = =⎣ ⎦ ⎣ ⎦BQ B X Y X M BY Q Q BQ Q Q BQ Q B    (4) 

( ) ( )
( )

*T **T
* *T * * *

*T *T *

  
,

0    

⎡ ⎤⎡ ⎤
⎢ ⎥⎡ ⎤= = =⎢ ⎥ ⎣ ⎦ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

M X BYX
B Q BQ X M BY

Y Y BY
 (5) 

The matrix A with the real eigenvalue λ and two complex eigenvalues α ± iβ 
has the form: 

( ) ( )
( )

*T *T
T * *T

*T *

     
,    

              

⎡ ⎤⎡ ⎤λ ⎢ ⎥= =⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

M X B Yx AY
A Q Q B Q Q

0 Y B Y0 B
 (6) 

The matrix A with distinct eigenvalues is, in conclusion, similarly with the 
matrix in Hessenberg form with the real eigenvalues on the diagonal and with the 
matrices of order two on the diagonal corresponding to each complex conjugate 
eigenvalues of the matrix A. This form is the mentioned Schur form of the matrix A. 

The QR algorithm [20], by the Wilkinson’s manner, is described below 
where the initial real matrix A is denoted A1 in the algorithm: 

1,    ,   1,2,...;   s s s s s s s s+= = = →∞A Q R A R Q  

1 1 1 1 1;    ,   2,3,...;s s s s s s s− − − − −= = =A R Q A Q R  
1 1

1 1 1 1 1 1;   ,   2,3,...;s s s s s s s s− −
− − − − − −= = =R Q A A Q A Q  

( ) 11 1
1 1 1 1 1 1 1 1 1 1... ... ... ... ,   2,3,...;s s s s s s−− −
− − − −= = =A Q Q A Q Q Q Q A Q Q  

1 1 1 1 1 1 1 1 1 1... ... ;   ... ... ;  2,3,...;s s s s s s s s− − − −= = =Q Q A A Q Q Q Q Q R A Q Q  

1 1 1 1 1 1 1 1 1... ... ... ... ,   2,3,...;s s s s s s s− − − −= =Q Q Q R R R A Q Q R R  

1 1 1 1 1... ... ,   1,2,... .− − = =s
s s s s sQ Q Q R R R A  (7) 

The matrices kQ , 1,2,...k =  are orthogonal and the matrices kR  are upper 
triangular, invertible. The matrices 1, ,k k+A A 1,2,...k =  are also of Hessenberg 
form and similar.  

The convergence of QR algorithm for the matrix A to the Schur form of the 
matrix, where the real matrix A is considered in the Hessenberg form, is described 
by Parlet [22]. 

The matrix − λA I , where λ is real or complex value, is also a matrix in 
Hessenberg form. The value λ defines “the shift of origin” for the matrix. The shift 
of origin for the matrix is important because allows the transposition of the real 
matrix that defines the dynamic system in the complex domain through the 
complex value λ. 
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The QR algorithm for the matrix A with the shift of origin is described by the 
relations [22]:  

T T
1 ( ) ,    ,   1,2,...s s s s s s s s s s sk k s+− = = + = =Q A I R A R Q I Q A Q  (8) 

In the above relations by 1A  is denoted initial matrix A of the system in 
Hessenberg form, sk  is the shift of origin, sQ  is orthogonal matrix, sR  is upper 
triangular matrix, ,  2s s ≥A  is also in the Hessenberg form. 

The shift of origin, with the initial value λ sufficient close to one initial 
matrix eigenvalue, real or complex, imposes acceleration of the QR algorithm 
convergence to respectively eigenvalue on the similar diagonal form of the matrix. 
This is another important motivation for using QR algorithm with the shift of 
origin. 

The matrix A with distinct eigenvalues is similarly with the matrix in 
Hessenberg form and QR algorithm with the shift of origin can facilitate the 
convergence of the initial matrix to similar diagonal form of the matrix with real or 
complex eigenvalues on the diagonal.  

The above study is performed in hypothesis that all eigenvalues of the real 
matrix are distinct. For the extension of the results in the case of real matrix 
multiple eigenvalues [1], we call to the results from matrix theory described as 
follows. 

Definition 1. Let ( )nL \  be the set of matrices of dimension n, or, similar, 
the linear maps set from n\ . The distance between the matrices of dimension  n  is 
introduced using the distance between the vectors in n\ , where the matrices of the 
set ( )nL \  are considered as vectors from the set m\  with 2m n= . 

The normed space ( )nL \ , using the distance defined above, is verified that 
is a linear normed space. 

Hirsch, Smale and Devaney have demonstrated, on the matrix set ( )nL \ , the 
below theorem [1]. 

THEOREM 1. The set of matrices with distinct eigenvalues from linear 
normed space ( )nL \  is open and dense set in linear space ( )nL \ . 

The above theorem creates the possibilities to justify the transmission of 
some properties from the real matrices set with distinct eigenvalues to the real 
matrices set including multiple eigenvalues that can intervene in stability analysis 
of linear (can be of  “first approximation”) dynamic systems.  
Transmissibility of the continuity from the matrix elements to the eigenvalues: 

The components of the real matrix A that define the linear dynamic system 
depending on parameters are assumed continue on piecewise referred to the free 
parameters. We formulate below our theorem on the continuity transmissibility. 
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THEOREM 2. If the components of the matrix A are continuous on piecewise 
and the sequence of Hessenberg form matrices ,  1,2,...s s =A  from QR algorithm 
that started with the matrix A is uniform convergent to the Schur form of the matrix 
A then the eigenvalues of the matrix A are continuous on piecewise. 

The above property is capitalized in our study using the following property of 
continuous functions, formulated here for functions of one variable. 

THEOREM 3. Let the function :f E →\ , E ⊂ \  be a continuous function 
in the point 0x E∈  and the function value 0( )f x  so that the inequalities 

0( ) ;   ,f xα < < β α β∈\  are satisfied; then there is a neighbourhood of the point 

0x E∈  where the function values respect the same inequalities. 

Remark. Theorem 3 assures that the function f , continuous in the point 
0x E∈  preserve, in the neighborhood of 0x , the function sign from 0x . 

Sufficient mathematical conditions that assure the separation between stable 
and unstable regions for the linear dynamic system are deduced using also the 
classical property formulated below. 

THEOREM 4. Let the linear dynamic system be defined by the differential 
equation of the form  d d ( )t t=y A y , T

1( ) ( ( ),..., ( ))nt y t y t=y , ( )ija=A , 
 1,...,i n= ; 1,...,j n= , the symbol T  signifying transposition of the matrix and 
where the values ija  are assumed constants. If the real part of all eigenvalues of 
the matrix A is strictly negative then the solution of the differential equation is 
asymptotic stable in origin. If the real part at least one eigenvalue of the matrix A 
is strictly positive then the solution of the differential equation is unstable in origin. 
If the real part of the eigenvalues of the matrix A is strictly negative with the 
exception of at least one eigenvalue that has null real part then the stability of the 
dynamic system in origin is unknown (possible stable or unstable). 

3. ON THE SEPARATION 
OF THE DYNAMIC SYSTEM STABLE REGIONS 

The possible structure of the stable and unstable points from the dynamic 
system free parameters domain is described by the following cases: 

– If the dynamic system is stable in one point from the domain of free 
parameter then there is a neighborhood around this point where the dynamic 
system is also stable in each point from the neighborhood. This neighborhood 
represents a stable region of the dynamic system that can be extended up to 
maximal stable region from the domain of free parameters. The analog possible 
case can be described for one unstable point of the free parameters domain. 
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– We denote that a maximal stable or unstable region from the free parameter 
domain can be compounded only by one isolate stable or unstable point in the 
unstable respectively stable neighborhood. With other words we underline the 
possibility of singular (isolate) stable or unstable point existence in the free 
parameters domain. 

– The maximal stable or unstable regions are separated in the free parameters 
domain by the frontier compounded from stable and unstable points. 

Our theorem on sufficient conditions of separation between stable and 
unstable regions in the free parameters domain, in the case of distinct eigenvalues 
of the real matrix A that defines the linear dynamic system, is formulated below: 

THEOREM 5 (Separation theorem). If the linear dynamic system defined by 
the real matrix A, in the Hessenberg form, has the continuous on piecewise 
components of the matrix as functions of dynamic system free parameters and the 
convergent QR algorithm assures that the real part of eigenvalue functions of the 
matrix A are also continuous on piecewise, then these conditions impose the 
separation between stable and unstable regions of the dynamic system in the 
domain of free parameters.  

Remark. We discuss on the necessity to substitute in practice the infinite QR 
algorithm by finite one because the infinite process is not perceived by one 
observer from the environment and so that the conditions needed for the Theorem 5 
applications will be simplified. 

The separation studied by nonlinear system “first approximation”: 

The stability study for no null solution of nonlinear equation of the form 
d d ( , )t t=y h y , 0≠y , can be similar to one corresponding to null solution. 

In this goal we consider ( ) 0t ≠y�  solution of the equation d d ( , )t t=y h y  and 
equation d d ( , )t t=x f x  with transformed function ( , ) ( , ( )) ( , ( ))t t t t t= + −f x h x y h y� � . 
The function ( ) 0t ≡x  is a solution of the transformed equation d d ( , )t t=x f x . If 
the equation d d ( , )t t=y h y  has the solution ( )ty  then the equation d d ( , )t t=x f x  
has the solution ( ) ( ) ( )t t t= −x y y� . Analogue if the equation d d ( , )t t=x f x  has the 
solution ( ) ( ) ( )t t t= −x y y� , with ( )ty�  defined above, and then ( ) ( ) ( )t t t= +y x y�  is a 
solution of the equation d d ( , )t t=y h y . The study of the stability for the fixed 
solution ( )ty�  of the equation d d ( , )t t=y h y , 0≠y  is equivalent with the study of 
the stability for the solution ( ) 0t ≡x  of the equation d d ( , )t t=x f x . This is the 
aspect for which is analyzed only the stability for null solution of nonlinear 
dynamic system. Another assumption is that the equation of the dynamic system is 
of the autonomous form d d ( )t =x f x . Many of the dynamic systems from the 
literature are of the autonomous form.  
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The function ( )f x  is assumed with the variable T
1( ,...,  )nx x=x  and with the 

function value denoted T
1( ) ( ( ),...,  ( ))nf f=f x x x . The components  ( )if x , 

1,...,i n= , are assumed that can be developed in series around origin as follows: 

         ( )1 =0
( ) ( ) ( )n

i i i j jj
f f f x x

=
= + ∂ ∂ +∑

x
x 0 x  

( )2
1 1 =0

( ) ...,      1,...,n n
i j k j kj k

f x x x x i n
= =

+ ∂ ∂ ∂ + =∑ ∑
x

x . (9) 

Above assumptions permit us to consider ( ) 0if =0 , 1,...,i n=  and using the 
notations for the derivatives of the first order 

0
( )ij i ja f x

=
= ∂ ∂

x
x ; , 1,...,i j n=  we 

can formulate the equation: 

d d ( );    , 1,...,ijt a i j n⎡ ⎤= + =⎣ ⎦x x g x  (10) 

The linear system of “first approximation” deduced from (10) is of the form: 

d d ;    , 1,...,ijt a i j n⎡ ⎤= =⎣ ⎦x x  (11) 

The following Liapunov theorems are mentioned: 

THEOREM 6. The evolution of non linear dynamic system (10) is asymptotic 
stable in origin if the real part of all eigenvalues of the matrix ija⎡ ⎤= ⎣ ⎦A , 

, 1,...,i j n= , is strictly negative. 

THEOREM 7. The evolution of the non linear dynamic system (10) is 
unstable in origin if the real part of at least one eigenvalue of the matrix 

ija⎡ ⎤= ⎣ ⎦A , , 1,...,i j n= , is strictly positive. 

The separation studied on nonlinear system by indirect method: 
The indirect method of stability analysis consists in using of the differential 

equation solution that describes evolution of the dynamic system. 
The equation d d ( )t =x f x  is considered again with the solution ( )t ≡x 0 , 

T
1( ,...,  )nx x=x  and the assumption that the functions ( )if x , 1,...,i n= ,  can be 

developed in series around origin so that the above equation can be expressed in 
the form (10) where is assumed that the function ( )tx  is of at least 2C  class so 
that the function ( ) d / dt= −g x x A x  is of at least 1C  class. 

Because the matrix A is Jacobian matrix in origin ( )t ≡x 0  of the function 
( )f x  then ( )g x  has the property that for each 0γ >  there is ( ) 0δ γ >  such that if 

( )< δ γx  then ( ) < γg x x . This property means that ( )g x  who corresponds to 
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“higher order terms” in series developing around origin becomes negligible 
reported to linear order terms for sufficient small x. 

In the following we mention a theorem on the stability regions separation of 
the nonlinear dynamic systems in the free parameters domain, calling indirect 
method and using the results performed by Halanay and Răsvan [2]. 

THEOREM 8. Let the dynamic system be defined by the equation: 

d d ( )t = +x Ax g x . (12) 

The real matrix A, of dimension n n× , is assumed that is compounded from 
constant elements, the variable T

1( ,...,  )nx x=x  is of dimension n, the function 
( )t ≡x 0  is a solution of the equation, the function ( )g x  is assumed continuous and 

with the property that for each 0γ >  there is ( ) 0δ γ >  such that if ( )< δ γx  then 

( ) < γg x x . It is also assumed that the matrix A has the property that all roots 

iλ ,  1,...,i n=  of the characteristic polynomial have the real part strictly negative 
such that Real 2 0iλ ≤ − α < , 1,...,i n= . 

Then there is 0 0δ > , 1β ≥  such that for each 0 0< δx  is true the inequality: 

0( ) / 2
0 0 0 0( ; , ) ,    t tt t e t t−α −≤ β ≥x x x  (13) 

If the dynamic system conditions of Theorem 8 are respected then we remark 
that stability in origin assures stability in neighborhood of origin and thus assures 
stable region separation in neighborhood of origin. 

4. PHYSICAL AND MATHEMATICAL MODEL 
OF BIPED WALKING ROBOT 

In the following we describe our physical and mathematical model of biped 
walking robot, with one physical model component of the robot compounded from 
a pivot point tB  assumed fixed in initial study and two legs that are simultaneously 
moved in the same plane that is firstly discussed (Fig.1). Each of the robot leg with 
an articulated extremity attached to the robot body is compounded from two arms 

tB P  and PQ also articulated in the point P denoted “knee joint” of the leg. The 
point P, in the case of fixed pivot point, describes a circle arc route in a cycled 
evolution of the robot leg and the Q  base point describes a close route 
compounded from the superior ellipse arc B AQ Q  with semi axes length a,b and 
with point EO  centre of the ellipse, and also we remark closure of the leg cycle 
evolution by horizontal segment A BQ Q  traversed by the base point Q . 
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Fig. 1 – Physical model of the walking robot leg. 

The orthogonal system of coordinates and parameters signification is 
identified from the following coordinates on the figure points: 1( , ),  ( , )t EF a h O a b , 

P( , ), ( , ), ( ,0),  ( ,0)P Q Q A A B BP x y Q x y Q x Q x . 

The points *
AP  and *

BP  define the extremities of the maximal domain on 
circle arc where the knee joint P is moving because in these points, geometrical 
identified by the property that the segments * *

A AP Q  and * *
B BP Q  are normally on the 

ellipse arc, the direction of movement is changed. The positions *
AP  and *

BP  of the 
knee joint identified by us on the particular case of Figure 1, are named by us the 
critical points from the leg evolution. In other cases of robot leg with fixed pivot 
point, defined by the values of the geometrical parameters or in cases where the 
pivot point is moved in the biped walking robot evolution, is important to search 
the possible existence of the knee joint critical positions where the direction of 
movement is changed and where the speed of the knee joint must to be zero for the 
continuous evolution of the knee joint. 

The mathematical model deduced from the physical model, suggested by the 
particular case represented in Fig. 1, is defined through two implicit functions 
described by the equations: 
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22 12 2 2
2 2

( )( )( ) ( ) 0;   1Q
P

y bx ax a y h a
a b

−−− + − − = + = . (14) 

Between the parameters’ values, there are conditions 1 0;  2a b b a h> > > >  
where a and b are the ellipse semi axes. The covering domain of variables from 
(14) of our problem is defined below. 

[0, 2 ],    [ ,  ),    [ , ].∈ ∈ − + ∈ −P Qx a y h a h a y b b  (15) 

Explicit functions deduced from (14), are: 

2 1/ 2 2 1/ 2
1(2 ) ;   (2 )P Q

by h ax x y ax x ba= − = ± − +∓ . (16) 

Let ( , )P PP x y  and ( , )Q QQ x y  be points on the circle arc respectively on the 
ellipse arc that correspond for one leg position from the evolution. The condition 
on the distance PQ namely 2 2 2( ) ( ) 0P Q P Qx x y y a− + − − =  appears. 

The uniform linear evolution of the variable x between 0 and 2a, excepting a 
neighbourhood around possible critical points, in the case of fixed pivot point of 
the leg, is assumed as below, where the selected constant speed ω and initial 
condition 0x  are considered: 

0( )x t t x= ω + . (17) 

One cycle of evolution for the robot leg with fixed pivot point can be started 
from the point BQ , moving on the superior ellipse arc up to the point AQ , 
respecting the evolution law of the type (17), and returns by the linear uniform 
evolution on the horizontal axle, in the point BQ , excepting a neighbourhood 
around the positions *

AQ , *
BQ , where is defined a selected evolution. 

We remark that the domain of parameters’ values 1 0,  ,  ,  ,  ,  ,  ,  P Qx y y h b x tω  
with fixed values of positive parameters 1, ,a b b , in this analyzed case, for which 
the robot leg evolution exists, is an interval for each free parameter. The domain of 
existence coincides, in these formulated cases, with the domain of stability, such 
that we can affirm that there is a separation between stable (existence) and unstable 
(inexistence) regions of the free parameters values of the described robot leg 
model. The analyzed case is a kinematics analyze. We can intuitively conclude that 
the analysis is true and for robot leg with uniform distributed mass on the leg. 

In the case of moved pivot point the leg is compounded from the superior 
component t tB Q  defined by the extremities points denoted here tB , tQ  jointed in 
pivot point tB  attached to the body of the robot and inferior component t tQ P  with 
“knee joint” tQ  and base point tP . 
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For the length of components t tB Q  and t tQ P  a constant value has been 
assumed. 

The evolution imposed for one leg , ,t t tB Q P  of the biped robot, described 
here, is inspired from the method proposed for multi-legged walking robot by 
Cononovici (2016). 

The base point tP  is moving on the ellipse arc between points IP  and FP , in 
cycling evolution of biped walking robot in vertical plane, using uniform 
accelerated displacement on the horizontal direction up to the median point MP , 
for one leg of biped robot, and symmetric displacement assured up to the final 
point FP  of the robot leg. The joint point tB  attached to the body of the robot is 
moving simultaneously with point tP , having linear route parallel to the axis Ox , 
using uniform displacement between initial point IB  up to the median point MB  in 
traverse of one leg and symmetric displacement assured between the median point 

MB  up to final point FB  through the same leg of biped walking robot. 
The trajectory of the “knee joint” point tQ , uniquely identified in the vertical 

plane, for suitable values of the biped walking robot parameters (selected so that 
the evolution of the walking robot to be possible), identified by the points 

, ,t t tB Q P  evolution, at each time t, with the length of segment t tB P  dependent on 
time t, is also studied for possible critical points identification, similarly as in two 
dimensional evolution of one leg with fixed pivot point described above (Fig.1). 
The following formulas, calling the geometrical and physical data, are used. 

The uniform accelerated displacement of the point tP , on horizontal 
direction, from the initial point IP  identified by abscise denoted PtIx  up to middle 

of the segment I FP P , is described by: 

2
( ) 2P P Pt tI

tx t x a= + . (18) 

The assumed uniform displacement of the pivot point tB , on parallel line 
with axis Ox , for successive evolution of each leg of biped robot, from the initial 
position identified by abscise denoted BtIx  up to middle of the corresponding one 

semi route deduced by bisection of the route I FB B , is described by the relation: 

( )B B Bt t Ix t x v t= +  (19) 

The parameter Pa  is a constant acceleration and the parameter Bv  is 
constant speed in the displacement of the points tP  respectively tB . 
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The moving of biped walking robot is considered so that to close one cycle of 
evolution, the time needed for the point tB  to traverse, for each leg, the semi route 
from the route I FB B  is equal with the time needed for the point tP  to traverse the 
ellipse arc route I FP P . This relation is a result from the hypothesis on successive 
displacement of each leg in cycling evolution. 

The necessary time for simultaneously arriving in the middle of the route 
I FP P  or in the corresponding middle of semi route from the route I FB B  by point 

tP  respectively tB , is denoted by Mt . The following relations are imposed to 
some from this biped walking robot parameters: 

2 / 4;     / 2 / 2B M I F P M I Fv t B B a t P P= = . (20) 

The mathematical model of the two dimensional legs evolution for biped 
walking robot, explained above, permits to identify possible existence of the 
critical position for the knee joint point tQ , where the direction of movement is 
changed, by calling specialized computer program that is proposed for next study. 

5. PROPOSED METHOD 
FOR SYSTEM STABLE EVOLUTION IMPROVEMENT 

The method is described on biped walking robot with some assumptions. 
The algorithm for our case of biped walking robot evolution exposed in 

previous capitol can be used for analyzing proposed method on walking robot 
stable evolution improvement. Some aspects are related in Figs. 2 and 3. 

...  
Fig. 2 − The biped with attached box of balls.           Fig. 3 − Moment of biped box gravity force. 

The first idea of the method, described on the biped walking robot, consist in 
concentration of majority mass of the robot in two equal boxes attached at inferior 
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component of legs. The evolution of the robot is analyzed in two cases, the first 
case in which mass of the boxes is compounded from balls with negligible friction 
and the second case in which the equivalent mass of boxes is of fixed form. The 
first case is exposed in Fig.2 where the first leg of the biped is denoted OB , with 
point B the leg base point, and the second leg is considered in some evolution 
positions 1 2,  ,... OB OB . For each position of second leg is evaluated the moment 
of second box gravity force reported at the leg base point B. The diagram for one 
case that describes the general tendency is exposed in Fig.3. An elaborate study is 
proposed for the future. 

6. CONCLUSIONS 

The general case of the dynamic systems that depend on parameters of the 
environment is analyzed for mathematical characterization of its. The separation 
between stable and unstable regions from the free parameters domain of the dynamic 
system is a fundamental mathematical property of the dynamic systems that 
approach a phenomenon from the reality, the property that can be accepted as first 
axiom of the environment. We mention with this occasion a classical law that a 
system of axioms sufficient expressive is incomplete. A method for stable evolution 
improvement of environment’s dynamic system by substitution the mass of the 
system by equivalent mass in evolution time, and by assistance of the environment’s 
gravitation force that action on the equivalent mass, is proposed and analyzed on 
simplified case. Our study is not exhausted the problem of stability control of the 
environments’ dynamic systems but an interesting new way of research is opened. 

Received on July 14, 2017 
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