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OPTIMAL AUXILIARY FUNCTIONS METHOD FOR THIN FILM 
FLOW OF A FOURTH GRADE FLUID 

DOWN A VERTICAL CYLINDER 

VASILE MARINCA1, NICOLAE HERISANU2 

Abstract. A new approximate analytical procedure namely the Optimal Auxiliary 
Functions Method (OAFM) is proposed and has been applied to thin film flow of a 
fourth grade fluid down a vertical cylinder. The main advantage of our approach consists 
in providing a convenient way to control the convergence of the approximate solution 
in a very rigorous way. This methods, however, does not depend upon any small or large 
parameters in comparison with other methods. A very good agreement was found 
between approximate and numerical solution which reveals that OAFM is more effective, 
very efficient, accurate and easy to use. 

Key words: Optimal Auxiliary Functions Method, thin film flow, fourth grade fluid, 
nonlinear problem. 

1. INTRODUCTION

It is well known that the subject of non-Newtonian fluids is very popular and 
is an area of active research especially in industry and engineering problems. Examples 
of non-Newtonian fluids include microchip production, performance of lubricants, 
food processing, movements of biological fluids, wire and fiber coating, paper 
production, gaseous diffusion and so on [1,  2]. These fluids are described by a 
nonlinear relationship between stress and the rate of deformation tensors and 
therefore several models have been proposed. It is very difficult to suggest a single-
model which exhibits all properties of non-Newtonian fluids. As a consequence several 
fluid models have been proposed to predict the non-Newtonian behaviour of various 
types of materials. Fourth grade fluid is one of the important fluids and its equation 
is based on strong theoretical foundations, where relation between stress and strain 
is not linear. Some experiments may be well described by the fluids on the order 
four. Because the exact solutions of these equations are difficult to achieve, 
approximate analytical and numerical methods are widely used to solve nonlinear 
differential equations modelling such physical phenomena. There exists some 

1 Romanian Academy – Timisoara Branch, Centre for Advanced Technical Reseraches 
2 Politehnica University of Timisoara, Romania 

Marinca, V. and Herisanu, N., 2017. Optimal auxiliary functions method for thin film flow of 
a fourth grade fluid down a vertical cylinder. Romanian Journal of Technical Sciences − 
Applied Mechanics, 62(2), pp.181−189.



 Vasile Marinca, Nicolae Herisanu 2 182 

analytical approaches such as the Lindstedt-Poincare method, the KBM method, 
the Adomian Decomposition Method, the elliptic perturbation method, the harmonic 
balance method [3–5], or some iteration procedures [6,  7]. Most of the perturbation 
methods unfortunately require the inclusion of a small parameter in the equation, 
but this parameter is not already specified in the equation and it is artificially 
introduced and finally equated to unity to obtain the solution of the original problem. 
Considerable efforts have been made to study strongly nonlinear non-Newtonian 
fluids for various geometrical configurations via analytical techniques. Some 
developments in this direction are discussed by different investigators. Among 
them Khalid and Vafai [8] discussed hydrodynamic squeezed flow and heat transfer 
over a sensor surface. Miladinova et al. [9] studied this film flow over a power law 
liquid falling from an inclined plate where it was observed that saturation of 
nonlinear interaction occur in a permanent finite amplitude wave. Sajid et al. [2] 
investigated the sleep effects of thin film flow grade fluid down a vertical cylinder 
using the homotopy analysis method. Analytic solution for thin film flow of a fourth 
grade fluid down a vertical cylinder is presented by Hayat and Sajid [10]. Gul et al. 
[11] investigated effects of sleep condition on thin film flow of third grade fluids 
for lifting and drainage problem under the condition of constant viscosity. The 
homotopy perturbation method and the traditional perturbation method are applied 
by Siddiqui et al. [12] to the nonlinear equations modelling thin film flow of a fourth 
grade fluid falling in the outer surface of an infinitely long vertical cylinder. For 
other studies see [13–17]. 

The main objective of the present research is to study the fourth grade fluid 
type applying the optimal auxiliary function method in order to analyse the 
nonlinear behaviour of thin film flow down a vertical cylinder. The results obtained 
by means of the OAFM where compared with those obtained by numerical simulation 
and was observed to be in very good agreement. Our procedure is not valid only for 
small parameters but also provides us with a convenient way to control and adjust 
the convergence of approximate analytical solution and demonstrates the validity and 
great potential to solve a large number of nonlinear problems in science and 
engineering. 

2. GOVERNING EQUATIONS OF THIN FILM FLOW 
OF A FOURTH GRADE FLUID DOWN A VERTICAL CYLINDER 

In what follows we consider a non-Newtonian fluid of fourth grade falling on 
the outside surface of an infinitely long vertical cylinder of radius R. The flow is 
considered in thin, uniform axisymmetric film with thickness δ, in contact with 
stationary air. The velocity field is of the form [10,  12–17]: 

[0,0, ( )]v u r= . (1) 

In cylindrical coordinates we have 
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where p≠p(z) is the pressure. From Eq. (3) it is clear that 
322 2
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The corresponding boundary conditions are  

d( ) 0, ( ) 0
d
uu R R
r

= + δ = . (6) 

Defining 
3

2 3
2 4 2

( ), , , , 1 .μ β +β δ
η = = = β = = +

ν ν ρ
r R gRf u k d
R RR

 (7) 

Eq. (5) and (6) reduces to 

3 22 2

2 2
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d d dd d
f f f f fk

⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥η + + η+ β + η =⎜ ⎟ ⎜ ⎟η η η⎢ ⎥η η⎝ ⎠ ⎝ ⎠⎣ ⎦
 (8) 

(1) 0, ( ) 0f f d′= = . (9) 

The dynamical system described by Eqs. (8) and (9) will be solved using the 
optimal auxiliary functions method [18]. 

2. BASIC IDEAS 
OF THE OPTIMAL AUXILIARY FUNCTIONS METHOD 

We consider the most general form of a nonlinear differential equation as 

 [ ] [ ]( ) ( ) 0L f N fη + η =  (10) 
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in which L is a linear operator, f (η) is an unknown function, N is a nonlinear 
operator and D  is the domain of interest. The initial/boundary conditions are 
known as 

d ( )( ), 0
d
fB f

⎛ ⎞η
η =⎜ ⎟η⎝ ⎠

. (11) 

For Eqs. (10) and (11) we demand an approximate solution ( )f η  which 
contains only two components: 

0 1( ) ( ) ( , ) , 1,2...,if f f C i nη = η + η =  (12) 

where Ci , i=1, 2,…,n  are unknown parameters at this moment. 
Substituting Eq. (12) into Eq. (10) we obtain 

[ ] [ ] [ ]0 1 0 1( ) ( , ) ( ) ( , ) 0i iL f L f C N f f Cη + η + η + η = . (13) 

The initial approximation 0 ( )f η  can be determined from the linear equation 

[ ] 0
0 0

d ( )( ) 0, ( ), 0
d
fL f B f⎛ η ⎞

η = η =⎜ ⎟η⎝ ⎠
 (14) 

and the first approximation is obtained from the remaining equation 

[ ] [ ] 1
1 0 1 1

d ( )( , ) ( ) ( , ) 0, ( ), 0
di i
fL f C N f f C B f

⎛ ⎞η
η + η + η = η =⎜ ⎟η⎝ ⎠

. (15) 

In general Eq. (15) is a nonlinear differential equation which is often very 
difficult to solve. At this stage, the nonlinear term from Eq. (15) is expanded in the 
form  

[ ] ( )1
0 1 0 0

1

( , )( ) ( , ) [ ( )] [ ( )]
!

k
ki

i
k

F CN f f C N f N f
k≥

η
η + η = η + η∑ , (16) 

where ( ) d
d

k
k

k
NN =
η

. In order to avoid the difficulties that appear in solving the 

nonlinear differential equation (15) and to accelerate the convergence of the first 
approximation and implicitly of the approximate solution ( , )if Cη , instead of the 
last term arising in Eq. (15) we propose another expression, such that Eq. (15) can 
be written in a new form 

( ) ( )1 1 0 0 2 0[ ( , )] ( , ) [ ( ( ))] ( ), 0,i j kL f C A f C P N f A f Cη + η η + η =  
(17) 
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⎛ ⎞η
η =⎜ ⎟η⎝ ⎠

 

where A1 and A2 are arbitrary auxiliary functions depending on the initial 
approximation 0 ( )f η  and several unknown parameters Cj and Ck , j=1, 2,…,p , 
k=p+1, p+2,…,n ,  i= j+k .  0[ ( ( ))]P N f η  means a part of the operator 0( ( ))N f η . 
The auxiliary functions A1 and A2 called optimal auxiliary functions are not unique 
and can be chosen of the same form like 0 ( )f η  or of the form of 0( ( ))N f η  or 
combinations of 0 ( )f η  and 0( ( ))N f η . 

The unknown parameters Cj and Ck can be optimally identified by means of 
different methods. Among them is minimizing the square residual error 

2

( )

( , ) ( , , )di k i k
D

J C C R C C= η η∫ , (18) 

where ( , , ) [ ( , )] [ ( , )]j k i iR C C L f C N f Cτ = η + η ,  i= j+k ,  j=1, 2,…,p,  k=p+1,…,n .  
The condition of the minimization of the residual are 

1 2
... 0

n

J J J
C C C
∂ ∂ ∂

= = =
∂ ∂ ∂

. (19) 

By this novel approach the approximate solution (12) is well determined. 
Also, the parameters Ci (called convergence-control parameters) can be obtained 
by means of Ritz method, Galerkin method, Kantorowich method, the collocation 
method, and so on [16, 17]. 

Our novel procedure proves to be a powerful tool for solving nonlinear 
problems not depending on small or large parameters. It should be emphasized that 
our method contains the optimal auxiliary functions A1 and A2 which provides 
provide us with a simple way to adjust and control the convergence of the 
approximate solutions after only one iteration. 

4. APPROXIMATE SOLUTION OF THE EQS (8) AND (9) 

To apply our procedure to obtain an approximate solution of Eqs. (8) and (9) 
we consider the linear operator for the Eq. (8) in the form 

[ ( )] ( ) ( )L f f f k′′ ′η = η η + η + η , (20) 

where ( ) d / df f′ η = η  and the nonlinear operator 

 3 2[ ( )] 2 ( ) 3 ( ) ( )N f f f f⎡ ⎤′ ′ ′′η = β η + η η η⎣ ⎦ . (21) 
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The initial approximation 0 ( )f η  is determined from Eq. (14) which becomes  

0 0 0 00, (1) 0, ( ) 0f f k f f d′′ ′ ′η + + η = = = . (22) 

The solution of Eq. (22) is  

2

0 ( )
2
k df
⎛ ⎞

′ η = − η⎜ ⎟⎜ ⎟η⎝ ⎠
. (23) 

The nonlinear operator (21) for the initial approximation (23) becomes  

6
3 4 2 2 4

0 2
1[ ( )] 3 3
4

dN f k d d
⎛ ⎞

′ η = β − + η − η⎜ ⎟⎜ ⎟η⎝ ⎠
 (24) 

or 

3
0 0[ ( )] 2 ( )N f f′ ′ ′η = β η . (25) 

Equation (17) can be written in the form  

3
1 1 1 0 2 1 1( ) ( ) 2 ( ) 0, (1) 0, ( ) 0f f k A P f A f f d⎡ ⎤′′ ′ ′ ′ ′η η + η + η+ β η + = = =⎣ ⎦  (26) 

Equation (26) can be rewritten as  

( ) ( )2 3
1 1 0 2

1 2 0
2

f k A f A
′ ′⎛ ⎞′′ ′η + η + β η + =⎜ ⎟

⎝ ⎠
, (27) 

if we consider 3 3
0 02 ( ) 2 ( )P f f⎡ ⎤′ ′ ′ ′β η = β η⎣ ⎦ . 

For the functions A1 and A2 we propose the following forms 

[ ] 2
1 1 2 2( , ) 1, ( , ) ( , )

2j k i
kA A C A A C g C

′⎛ ⎞′= η = − = η = − η η − η⎜ ⎟
⎝ ⎠

, (28) 

where ( , )ig Cη  is an unknown function at this moment. Taking into account 
Eq. (28), from Eq. (27) by integrating we obtain  

3
1 02 ( ) ( , )if f g C C′ ′η = β η + η η + . (29) 

From Eqs. (22), (26) and (29) we obtain for η=d  

0,     ( , ) 0iC g d C= = . (30) 

From Eqs. (29) and (30) it results 
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3
1 0( ) 2 ( ), ( ) 0f f g g d′ ′η = β + η = . (31) 

Having the freedom to choose 
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from Eqs. (23), (32) and (31) we have  
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(33) 

Finally from Eqs. (23), (33) and (12) we can obtain the differentiation of the 
approximate solution of Eqs. (8) and (9) in the form 

( )
2 32 2 3 2

1 2 3

4 52 2

4 5

2 4

             .

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞β⎛ ⎞′ η = + − η + − η + + − η +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟η η η⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛ ⎞
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k d d k df C C C
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 (34) 

From Eq. (34) it is easy to obtain the approximate solution of Eqs. (8) and (9) 
by integration and having in view that ( )1 (1) 0f f= = . 

5. NUMERICAL EXAMPLE 

For the case when k=1, β=8, d=1.5, we obtain 

1 2

3 4

5

0.0446457909117;           0.58304317787714;
1.5722449276332089;   0.160737450874938;

0.0214437762867209.

C C
C C
C

= = −
= − = −

=

 (34) 
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In [10] 0.3β ≥  is considered a parameter corresponding to strong non-
linearity. Therefore the explicit analytic expression given by Eq. (34) for the 
convergence-control parameters given by (35), the first order approximate solution 
becomes 

 

2

3 4

5

2.25 2.25( ) 0.5446457909117669 0.583043177877

2.25 2.25  0.4277550723667911 0.160737450874938

2.25  0.0214437762867209 .

⎛ ⎞ ⎛ ⎞′ η = − η − − η +⎜ ⎟ ⎜ ⎟η η⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
+ − η − − η +⎜ ⎟ ⎜ ⎟η η⎝ ⎠ ⎝ ⎠

⎛ ⎞
+ − η⎜ ⎟η⎝ ⎠

f

     (36) 

In Table 1 is presented a comparison between the present solution obtained 
from formula (36) and the numerical solution of Eqs. (8) and (9).  

It can be seen that the solution obtained through OAFM is near identical with 
that given by the numerical results, demonstrating a very good accuracy. 

Table 1 
Comparison of analytical and numerical results 

η ( )f ′ η , Eq. (36) ( )f ′ η , numerical ε = ( ) ( )f f′ ′η − η  

1.00 0.2782771936982422 0.27868677728446 4.09 · 10-4 

1.05 0.2613391820243754 0.2619592020457328 6.20 · 10-4 
1.10 0.243037748916253 0.243037749162644 2.46 · 10-10 

1.15 0.2237293973885208 0.223832705241852 1.03 · 10-4 
1.20 0.2031782753168658 0.203219171567154 4.08 · 10-5 

1.25 0.180723124261417 0.180659142650312 6.39 · 10-5 
1.30 0.1554016332342926 0.155372275453134 2.93 · 10-5 
1.35 0.126040063073303 0.126185641229246 1.45 · 10-4 
1.40 0.091316354263098 0.091367589247079 5.12 · 10-5 
1.45 0.0498036954997723 0.048981783573852 8.21 · 10-4 
1.50 0 0 0 

6. CONCLUSIONS 

In the present paper a new technique was proposed to solve the nonlinear 
problem of thin film flow of a fourth grade fluid down a vertical cylinder. Our 
approach is very effective and has a distinct advantage over usual approximation 
methods in that it proves to be valid not only for weekly nonlinear equations, but 
also for highly complex nonlinear ones. It was observed that we need only one 
iteration to obtain a remarkable accuracy. The results obtained by means of a 
OAFM reveal very good agreement with the numerical results. Convergence and 
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errors are remarkable and this procedure provides a convenient way to control the 
convergence of approximate solution. This is realized using the auxiliary functions 
A1(η,Cj) and A2(η,Cj) (not unique) used for adjusting and controlling the 
convergence of solutions. The convergence-control parameters Ci are determined 
by minimizing the residual square errors, which is a very rigorous and effective 
procedure. 

Received on June 26, 2017 
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