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Abstract. For distinguishing between pressure insensitive and pressure sensitive criteria, 
the form of yield surface with invariants is preferred. It is known that when this 
function can be formulated only in terms of the stress deviator invariants, it describes a 
pressure-insensitive material behaviour. But expression of criteria in terms of invariants 
may be a difficult goal in some particular cases. In the present paper is mathematically 
demonstrated that all criteria developed for standard plastic materials, in other words 
homogeneous, isotropic, ductile (without so-called strength differential or SD effect) 
materials, loaded in plane state of stress (2D space), are insensitive to hydrostatic pressure. 

Key words: plasticity, yield criteria, pressure insensitive, biaxial state of stress, invariants. 

1. INTRODUCTION 

Strength theory of materials is an important interdisciplinary field of research. It 
includes different criteria (yield criteria, failure criteria etc.) which are widely used 
in engineering and material science. Many scientists have studied yielding or 
fracture behaviour of materials in uniaxial or multiaxial stress conditions. Under the 
complex state of stress, important changes in responses occur from one material to 
another. 

Any criterion or yield condition can be represented graphically as a yield 
surface in the stress space. Haigh and Westgaard have introduced the notion of 
limit surface in three dimensional space of principal stresses. The fundamental 
postulate concerning the yield surfaces was introduced by Drucker, Bishop and Hill 
[1]. This is an important contribution to the development of strength theories. 

When the state of stress is on the yield surface, the material has reached its 
yield point. The material is elastic for any point (corresponding to a state of stress) 
situated inside of the yield surface (the yield function 0f < ) and in elasto-plastic 
field for any point situated outside of it. 
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It is very difficult to determine experimentally the entire yield surface of any 
material. However, there are many mathematical models of yield surfaces. Mao-
hong Yu [1] classified the strength theories into three categories, according to the 
number of shear stresses taken into consideration: 

• Single shear stress (including Mohr-Coulomb, Tresca, Hoek-Brown etc.); 
• Twin shear stress (Hill, Yu); 
• Octahedral shear stress (von Mises, Burzynski, Drucker-Prager etc.). 
For some materials the stress at which the yield occurs is dependent on the 

level of hydrostatic pressure applied on the specimens, during the traction or 
compression test. Such materials are called sensitive to hydrostatic pressure. 

The yielding of solid metals is generally unaffected by hydrostatic pressure 
(there are exceptions as iron, some high strength steels and high strength alloys). 
But the behaviour of most non-metallic materials (polymers, ceramics, concrete, 
geomaterials etc.) is dependent of hydrostatic pressure [1,  2,  3,  4]. Action of 
hydrostatic pressure increases the strength of the materials. In fact isotropic 
materials do not fail under engineering hydrostatic pressure conditions [5]. 

There are specific yielding criteria for each these two categories of materials. 
All criteria which predict that yielding is independent on the hydrostatic pressure 
are based on the assumption that the yield stress in tension and compression are 
equal (materials without SD effect). This assumption is reasonable for many ductile 
metallic materials, but inaccurate for some other materials, which have a tension-
compression strength assymetry (SD effect). But the simple fact that a yielding 
criterion admits this hypothesis, does not offer the guarantee that it is insensitive to 
hydrostatic pressure. 

Many triaxial-stress experiments were developed in order to obtain the initial 
and subsequent yield surfaces determined by hydrostatic pressure and many criteria 
have been proposed. 

The equation of the yield surface can be written in different equivalent forms. 
For isotropic and homogeneous materials among the most popular are the following 
two: 

 ( )1 2 3, , 0f σ σ σ =  (1) 

and 

 ( )1 2 3, , 0f I J J = , (2) 

where 1 2 3, ,σ σ σ  are the principal stresses, I1 is the first (axiatoric) invariant of the 
stress tensor, J2 and J3 are the second and third invariants of the deviatoric stress 
tensor. 

Although the form presented in Eq.  (1) is more used then Eq.  (2), for dis-
tinguishing pressure insensitive or pressure sensitive criteria, the form with 
invariants J2 , J3 and I1 is preferred. In the case of pressure-insensitive material 
behaviour, the first invariant I1 has no influence in Eq.  (2) [6]. 
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Many mathematical models for incompressible material behavior or pressure 
insensitive criteria (e. g. von Mises, Tresca, Drucker, Yu, Schmidt-Ishlinsky etc.), as 
well as pressure-sensitive criteria (Mohr-Coulomb, Beltrami, Drucker-Prager, 
Mirolyubov, Burzynski-Yagn, Burzynski-Torre, Pisarenko-Lebedev, Christensen etc.) 
are used. According to Holm Altenbach et al. [7], in the main part, pressure-insensitive, 
pressure-sensitive and combined models are separated. But many pressure dependent 
yield criteria are based on the von Mises or Huber criterion [8]. 

The von Mises criterion can be written in the form: 

 2
2 ;   

3
yJ k k

σ
= =  (3) 

where σy is tensile yield stress, which is the same (in absolute value) for tension 
and compression. This criterion is applied to ductile metals and alloys. 

In order to include the influence of pressure dependency on von Mises criterion, 
Hu and Pae added in Eq. (3) a second term, depending on I1 invariant [8,  9]: 
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In terms of invariants, the Drucker-Prager criterion has the following form: 

 2 1
1 2
3 3

C T C T

C T C T
J I

σ − σ σ σ
+ ⋅ = ⋅

σ + σ σ + σ
 (5) 

where σT and σC are the uniaxial tensile and compressive strengths, respectively, 
which are determined by experiments [10]. It is noticeable that this is a particular 
form of Eq.  (4) 

 2 1J A BI= +  (6) 

where the constants A and B are determined by experiments. 
Drucker-Prager criterion can be used for polymers, foams, concrete, rocks, 

soils and other pressure-dependent materials. 
The Christensen’s criterion is a linear combination of J2 and I1 invariants [10]: 

 2 1
3 1 1 1    for   0 1.T

T C T C C
J I

  σ
+ − = ≤ ≤ σ σ σ σ σ 

 (7) 

It can be used for homogeneous and isotropic materials, in order to evaluate 
the transition of fracture from brittle to ductile and viceversa. 

Both Drucker-Prager and Christensen depend on I1 and are pressure-dependent 
criteria. They are used for materials with SD effect. But both Drucker-Prager and 
Christensen criteria are reduced to von Mises criterion when C Tσ = σ  (i.e. materials 
without SD effect). 
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Mohr-Coulomb criterion is widely used in rock and soil mechanics and 
generally to describe the constitutive behaviours of granular materials. It is usually 
applied to materials for which the compressive strength far exceeds the tensile 
strength. As a function of principal stresses, this criterion can be written 

 31 1
LT LC

σσ
− =

σ σ
 (8) 

where σL is the limit normal stress (yielding or ultimate stress) and indices T and C 
refer to tension and compression, respectively. This criterion is pressure-sensitive 
and it ignores the intermediate principal stress. For ductile materials 

 LT LC yσ = σ = σ  (9) 

and consequently Mohr-Coulomb criterion is reduced to Tresca criterion 

 1 3yσ = σ −σ  (10) 

Tresca criterion can be also expressed by the deviatoric invariants [11]: 

 3 2 2 2 4 6
3 2 224 27 36 96 64 0;    

2
yJ J k J k J k k

σ
− − + − = =  (11) 

Equation (11) is much more complicated than Eq. (10) and for this reason it 
is not used for engineering calculations. But it has the important merit to demonstrate 
that Tresca criterion is insensitive to hydrostatic pressure. Thereby Mohr-Coulomb 
criterion can be considered to be a pressure-modified Tresca criterion [12]. This 
criterion is applied to ductile metals and alloys, as well as von Mises. 

2. THE YIELD SURFACE IN 2D SPACE 

Many criteria are used to describe the behaviour of different materials. To 
demonstrate that a criterion is pressure insensitive or pressure sensitive, it must be 
written in form with invariants. This work may be difficult in some particular 
cases, as it was for Tresca criterion, for example. 

Mao-hong Yu et al. [4] have determined the three principal stresses as functions 
of invariants J2 , J3 and I1. The question is if the principal stresses can be written 
only in function of deviatoric invariants, at least for biaxial state of stress (in 2D 
space). 
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The following demonstration is based on the assumptions that the material is 
homogeneous and isotropic, without SD effect (namely the yield stress in tension 
and compression are equal and they are equally treated). Another demonstration 
was featured in [13]. 

The Cauchy stress invariants I1, I2, I3 and respectively the invariants of the 
deviatoric part of the Cauchy stress J1, J2 , J3 are [14]: 

 
1 1 2 3

2 1 2 2 3 3 1

3 1 2 3

I
I
I

= σ + σ + σ

= σ σ + σ σ + σ σ

= σ σ σ

 (12) 
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Between the two groups of invariants there are the following relations [15]: 

 

1 1 1

2
2 1 2

3
3 1 2 31

0
1
3
2 1 .

27 3

J I I

J I I

J I I I I

= − =

= −

= − +

 (14) 

For biaxial state of stress ( 2 0σ = ) one can easily obtain the following 
relationships between the two groups of invariants: 

 2
2 1 2

1
3

J I I= −  (15) 

 3 2
3 1 2 1 1 21

2 1 1 2 .
27 3 3 9

J I I I I I I = − = − 
 

 (16) 

Let ( )2
1 3x = σ −σ  and define 22y x J= − . It is easily seen that 

 ( ) ( )2 2 2
1 3 1 3 1 3 1 24 4x I I= σ −σ = σ + σ − σ σ = −   

so that  

 22y x J= − =  ( )2 2 2
1 2 1 2 1 2

2 14 3 2 .
3 3

I I I I I I= − − − = −  
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One successively has 

( ) ( ) ( )

3
3 2 2 3 2 2 2 2 3

2 3 1 2 1 2 2 32 2

3 2
2 32 2 2 2 2 2

1 2 1 2 2 2 1 1 2 1 2

1 13 27 2 2 3 2 27 2
3 3

1 1 2 22 6 3 3 3 0
3 9 9 27

y yJ J J I I I I J J J

I I I I I I I I I I I

   − + − = − − − ⋅ + − =   
   

   = − − − ⋅ − + ⋅ − − ⋅ − =   
   

 

Consequently, y verifies the following equation: 

 3 2 2 3
2 3 23 27 2 0.y yJ J J− + − =  (17) 

With the substitutions 
2

yz
J

=  and 
2 3
3 2

3
2

27 2J J
a

J
−

=  the equation (17) can be 

written as: 

 3 3 0z z a− + =  (18) 

One successively has 
3 2

3 2 2 3
3 1 2 1 22 1

1 2 14 27 4 27
3 27 3

J J I I I I I   ≥ ⇔ − ≥ − ⇔   
   

 

( ) ( )
2

2 21 2
2 1 2 1 3 1 3 1 39 4 4 4 0

3
I I I I ⇔ ≥ ⇔ ≥ ⇔ σ +σ ≥ σ ⋅σ ⇔ σ −σ ≥ 

 
, so that 

2a ≤ . On the other hand, 
3 2

32 3 2 3 2
3 32 23

2

4 27
4 4 27 4 27 0

J J
J J J J

J
−

≤ ⇔ − ≤ ⇔ ≥ , 

which implies that 2a ≥ − . 
Consequently, 

 2 2a− ≤ ≤ . (19) 

The real function ( ) 3 3f z z z a= − +  has a maximum value equal to 2a +  in 
1z = −  and a minimum local value equal to 2a −  in 1z = . Using (19) one 

concludes that the equation (18) has three real solutions: 1 ( , 1)z ∈ −∞ − , 2 [ 1,1]z ∈ −  
and 3 (1, )z ∈ +∞ . These are given by 

 1 2 42cos arccos ,    0, , ,    1,2,3
3 2 3 3ii i i

az z iθ
  π π   = = + θ θ ∈ =   

    
. (20) 

Consequently, ( )
2
3

1 3 2 2
2

2712 cos arccos 1 ,   1,2,3
6 22

i
i

JJ i
J

   θ
σ − σ = ⋅ − + =     

 

so that, 1 3σ −σ  can be expressed only in terms of 2J and 3J . 
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This dependence is denoted by 

 ( )1 3 2 3,I J Jσ −σ =  (21) 

Also ( ) ( )2 2 2 2
1 3 1 1 3 3 1 1 3 32σ σ = σ −σ σ + σ − σ − σ σ + σ  so that 

 ( )2
1 3 2 2 33 , .J I J Jσ σ = −  (22) 

Therefore, 1σ  and 3−σ  are the solutions of the quadratic equation: 

 ( ) ( )2 2
2 3 2 3 2, , 3 0.I J J I J J Jσ − ⋅σ + − =  (23) 

Solving (23) one obtains 

 

( ) ( )

( ) ( )

2
2 2 3 2 3

1

2
2 2 3 2 3

3

12 3 , ,
,

2
12 3 , ,

.
2

J I J J I J J

J I J J I J J

 − +
σ =


 − −
σ =


 (24) 

Values of 1σ  and 3σ given by Eq.  (24) can be substituted in Eq.  (1), written 
for 2D space 2( 0)σ = , and thus the equivalent form of the yield surface, only in 
terms of 2J and 3J , can be obtained. This is true for any function in terms 
principal stresses 1σ  and 3σ  or, in other word, for every criterion in 2D space, 
which is based on above assumptions. 

According to D.W.A. Rees [14], “... when a yielding function is formulated 
from the stress deviator invariants, it assumes that initial yielding is unaffected by 
the magnitude of hydrostatic stress.” Jacob Lubliner [11] showed that “in a 
standard material plastic volume change occurs if and only if the yield criterion 
depends on I1”. The change of volume is associated with hydrostatic pressure. 
Based on the above assertions, it can be concluded that in the space of principal 
stresses 1σ and 3σ , all yield criteria for standard plastic materials are insensitive to 
hydrostatic pressure. 

3. CONCLUSIONS 

In this paper has been mathematically demonstrated that in 2d space, all yield 
criteria dedicated to standard plastic materials are insensitive to hydrostatic 
pressure and the volume change does not occurs. In such situations, it is no longer 
necessary to express the yield function in terms of deviatoric invariants in order to 
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show that one criterion is pressure insensitive. If, however, is desired to write 
criterion in terms of deviatoric invariants, it can be done easily, using principal 
stresses presented in Eqs.  (24), which was deducted in this article. 

Testing and modelling of material behaviour under hydrostatic pressure 
conditions is very useful for a thorough understanding of the yielding and strain 
hardening of metals and other materials under combined stress. 

Received on June 5, 2018 
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