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Abstract: The calculus of the torsor of the inertia forces for a rigid solid body in general 
motion is a very important matter for its next dynamic study. In other words if we aim 
to perform the dynamic survey of a rigid solid body we must determine first the torque 
of its inertia forces about an arbitrary point. For this reason the present paper deals with 
the calculus of its elements: the resultant force vector and the resultant moment vector. 
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NOMENCLATURE 

C – the domain occupied by the rigid solid body 
T1(O1x1y1z1) – the body fixed reference frame 
O1 – the origin of the body fixed reference frame 

1Or  – column matrix associated to the position vector 1Or  

1Or~  – anti-symmetric matrix associated to the column matrix 1Or  
T(Oxyz) – the fixed reference frame 
O – the origin of the fixed reference frame 
A – an arbitrary point of the rigid solid body 
x1, y1, z1 – coordinates of the arbitrary point “A” relatively to the body fixed 

reference frame T1(O1x1y1z1) 
r  – position vector of the point A relatively to the fixed reference frame T(Oxyz) 
r  – column matrix associated to the position vector r  
r~  – anti-symmetric matrix associated to the column matrix r  

Ar  – column matrix associated the position vector Ar  relatively to the body fixed 
reference frame T1(O1x1y1z1) 

Ar~  – anti-symmetric matrix associated to the position vector Ar  
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C1 – mass center of the rigid solid body 
ξ1, η1, ζ1 – coordinates of the mass center C1 relatively to the body fixed reference 

frame T1(O1x1y1z1) 
1Cr  – position vector of the point “C1” in projections on the axes of the body fixed 

reference frame T1(O1x1y1z1) 

1Cr  – column matrix associated to the position vector 1Cr  in its projections on the 
axis of body fixed reference frame T1(O1x1y1z1) 

1Cr~  – anti-symmetric matrix associated to the column vector 
1Cr  

m1 – the mass of the rigid solid body 
I3 – unit matrix of the third order 

1OS  – column matrix associated to the polar static moment vector 1OS  

1OS~  – anti-symmetric matrix associated to the polar static moment vector 1OS  

1Ov  – velocity vector of the point “O1” in its projections on the T1(O1x1y1z1) 

1Ov  – column matrix associated to the velocity vector 1Ov  

1Ov~  – anti-symmetric matrix associated to the column matrix 
1Ov  

1Oa  – acceleration vector of the point “O1” in its projections on the T1(O1x1y1z1) 

1Oa  – column matrix associated to the acceleration vector 1Oa  

Aa  – acceleration vector of the arbitrary point “A” of the rigid solid body in its 
projections on the body fixed reference frame T1(O1x1y1z1) 

Aa  – column matrix associated to the acceleration vector Aa  

1ω  – angular velocity vector of the rigid solid body in its projections on the axes of 
the body fixed reference frame T1(O1x1y1z1) 

1ω  – column matrix associated to the angular velocity vector 1ω  of the rigid solid 
body 

1ω~  – anti-symmetric matrix associated to the angular velocity vector 1ω  

1ε  – angular velocity vector of the rigid solid body in its projections on the axes of 
the body fixed reference frame T1(O1x1y1z1) 

1ε  – column matrix associated to the angular acceleration vector 1ε  of the rigid 
solid body 

1ε~  – anti-symmetric matrix associated to the angular acceleration vector 1ε  of the 
rigid solid body 

d iF  – elementary inertia force vector 
dFi  – column matrix associated to the elementary inertia force vector 
dm – elementary mass of small infinite value of the arbitrary point “A” of the rigid 

solid body 
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i
R  – resultant force vector of the inertia forces in projections on the axes of the 

body fixed reference frame T1(O1x1y1z1) 

Ri  – column matrix associated to the resultant force vector of inertia forces 
i

R  

1OMi  – column matrix associated to the resultant moment vector of inertia forces 

1Oτ i  – the torque of inertia forces relatively to the point O1 
 T – indicates the transposition matrix operation 

1. INTRODUCTION 

We will consider the rigid solid body in general motion as it is shown in 
Fig. 1. 

 
Fig. 1 – Solid rigid body in general motion. 

We aim to perform the calculus of the torque of the inertia forces which acts 
upon it during its motion. 
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2. CALCULUS OF THE RESULTANT OF INERTIA FORCES 

We will consider an arbitrary point belonging to the rigid solid body. This 
point will be denoted with “A”. The elementary mass of the material point “A” is 
“dm”. The elementary inertia force which acts on the arbitrary point A, according 
to d’Alembert principle may be written in matrix form as following [1–3, 9–17]: 

 i Ad d .= − ⋅F a m  (1) 

The resultant force vector could be determined by performing the triple 
integral on the domain “C” occupied by the rigid solid body [8]: 

 i
i A

C C

d d .= = − ⋅∫ ∫R F a m  (2) 

In the relation above the acceleration of the point “A” may be written using 
the Euler’s equation for the distribution of accelerations as following [1–3]: 

 ( )
1A O 1 A 1 1 A .= + ⋅ + ⋅ ⋅a a ε r ω ω r  (3) 

Taking into account (3), relation (2) becomes: 

 ( )
1

i
O 1 A 1 1 A

C C C

d d d .= − ⋅ − ⋅ ⋅ − ⋅ ⋅ ⋅∫ ∫ ∫R a ε r ω ω rm m m  (4) 

But the acceleration of the point “O1” may be written as following [9-11]: 

 
111 O1OO vωva ⋅+= ~ ,     ( )1 1O Od dt .=v v  (5) 

Taking into account the relation (5) we will obtain the following result: 

 
1 1 1

1 1

O O 1 O
C C C

d d d .
   
   ⋅ = ⋅ + ⋅ ⋅
   
   

∫ ∫ ∫a v ω v

m m

m m m  (6) 

The first integral of the relationship (4) may be written in the following form: 

 
1 1 1O 1 O 1 1 O

C

dm⋅ = ⋅ + ⋅ ⋅∫a M v ω M v  (7) 

where: 

 1 1 3m= ⋅M I ,          3

1 0 0
0 1 0 .
0 0 1

 
 

=  
 
 

I  (8) 
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The second integral of the relationship (4) may be written in the following 
equivalent form: 

 
1 1

1

T
1 A 1 A 1 O O 1

C C

O

d dm m⋅ ⋅ = ⋅ ⋅ = ⋅ = ⋅∫ ∫
S

ε r ε r ε S S ω  (9) 

where: 

 ( )1 1 1d dt .= =ε ω ω  (10) 

The third integral from relation (4) may be written as followings: 

 ( ) ( )1

1

T
1 1 A 1 1 A 1 O 1

C C

O

d d .

 
 
  

  ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ = ⋅ ⋅
    

  

∫ ∫
S

ω ω r ω ω r ω S ωm m  (11) 

Taking into account the relations (7), (9) and (11), the resultant of inertia 
forces may be written in matrix form as follows: 

 i
1 1 1 1.= − ⋅ − ⋅R N v L v  (12) 

In the relation (12) the expressions of the matrices N1 and L1 are the followings: 

 



= T

O11 1
SMN ~  (13) 

 



 ⋅⋅= T

O1111 1
SωMωL ~~~  (14) 

where: 

 
1 1

1 1

1 1

1

0

0

0

z y

z x

y x

 −ω ω 
 = ω −ω
 
−ω ω 
 

ω  (15) 

and 

 
1

1 1 1 1

O 1 1 1 1

1 1 1 1

0
0 .

0

 − ⋅ζ ⋅η
 

= ⋅ζ − ⋅ξ 
 − ⋅η ⋅ξ 

S
m m

m m
m m

 (16) 
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3. CALCULUS OF THE RESULTANT MOMENT  
OF INERTIA FORCES 

The resultant moment vector will be determined using the following matrix 
formula [9–17]: 

 
1

i
O A i A A

C C

d dm= ⋅ = − ⋅ ⋅∫ ∫M r F r a  (17) 

where: 

 
1 1

A 1 1

1 1

0
0 .

0

 −
 

= − 
 − 

r
z y

z x
y x

 (18) 

Using the relation (3) the relation (17) becomes: 

 ( ) ( )
1 1

i
O A O A 1 A A 1 1 A

C C C

d d d . = − ⋅ ⋅ − ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ ∫ ∫ ∫M r a r ε r r ω ω rm m m  (19) 

The first integral of the relationship (19) may be written as followings: 

 ( )1 1 1A O A O 1 O
C C

d dm m⋅ ⋅ = ⋅ + ⋅ ⋅∫ ∫r a r v ω v  (20) 

 ( )1 1 1 1

1 1

A O 1 O A O A 1 O
C C C

O O

d d d .
   
   ⋅ + ⋅ ⋅ = ⋅ + ⋅ ⋅
   
   

∫ ∫ ∫
S S

r v ω v r v r ω vm m m  (21) 

The relationship (21) may be written as followings: 

 ( )1 1 1 1 1 1A O 1 O O O O 1 O
C

d .⋅ + ⋅ ⋅ = ⋅ + ⋅ ⋅∫r v ω v S v S ω vm  (22) 

The second integral of the relationship (19) may be written as followings: 

 ( ) ( ) 1

T
A 1 A A A 1 O 1

C C

d dm m
 
 ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ = ⋅
 
 

∫ ∫r ε r r r ε J ε  (23) 

where: 

 ( )1

T
O A A

C

d .= ⋅ ⋅∫J r r m  (24) 
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But the right member of the previous relation may be written as follows: 

 ( )
1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

T
A A

C

d
x x y x z

x y y y z

x z y z z

J J J

m J J J

J J J

 − − 
 ⋅ ⋅ = − −
 
− − 
 

∫ r r  (25) 

 ( )1

2 2
1 1

C

dxJ y z m= + ⋅∫  (26) 

 ( )1

2 2
1 1

C

dyJ x z m= + ⋅∫  (27) 

 ( )1

2 2
1 1

C

dzJ x y m= + ⋅∫  (28) 

 
1 1 1 1

C

dx yJ x y m= ⋅ ⋅∫  (29) 

 
1 1 1 1

C

dy zJ y z m= ⋅ ⋅∫  (30) 

 
1 1 1 1

C

d .= ⋅ ⋅∫x zJ x z m  (31) 

The quantities 
1xJ , 

1yJ  and 
1zJ  defined by relations (26)–(28) represent the 

axial moments of inertia of the rigid solid body relatively to the axis of the body 
fixed reference frame T1(O1x1y1z1). 

The quantities 
1 1x yJ , 

1 1y zJ  and 
1 1x zJ  defined by relations (29)–(31) represent 

the products of inertia of the rigid solid body relatively to the pairs of planes 
belonging to the body fixed reference frame T1(O1x1y1z1). 

The third integral of the relationship (19) may be written as following: 

 ( ) ( )T
A 1 1 A 1 A A 1

C C

d d .
 
  ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅   
 

∫ ∫r ω ω r ω r r ωm m  (32) 

Taking into account the relations (24) and (25) the relation (32) becomes: 

 ( )
1A 1 1 A 1 O 1

C

dm ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ ∫r ω ω r ω J ω  (33) 

 
1 1 1

T
1 . = ω ω ω ω x y z  (34) 
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The resultant moment of the inertia forces may be written in the following 
final form: 

 1212
i
O1

vLvNM ⋅−⋅−=  (35) 

 
1 12 O O =  N S J  (36) 

 
1 12 O 1 1 O = ⋅ ⋅ L S ω ω J  (37) 

 
1

TT T
O 1 =  1v v ω  (38) 

 
1 1 1 1 1 1 1

T
O O O Ox y zv v v =  v  (39) 

 
1 1 1

T
1 1x y z = ω ω ω = ω ε  (40) 

 
1

TT T
1 O 1 =  v v ω  (41) 

 
1 1 1 1 1 1 1

T
O O O Ox y zv v v =  v  (42) 

 
1 1 1

T
1 x y z = ω ω ω ω  (43) 

 
1 1 1

T
1 . = ε ε ε ε x y z  (44) 

Taking into account the relationships (12) and (35) the torque of the inertia 
forces may be written in the following matrix form: 

 
1 1

i
O O 1 1 1.= − ⋅ − ⋅τ M v Ω v  (45) 

The quantities involved in relation (45) have the following expressions: 

 1

1

1 1

T
1 O

O
O O

 
 =
 
 

M S
M

S J
 (46) 

 1

1 1

T
1 1 1 O

1
O 1 1 O

.
 ⋅ ⋅
 =
 ⋅ ⋅  

ω M ω S
Ω

S ω ω J
 (47) 
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4. GENERAL EQUATIONS OF MOTION  
OF A SOLID RIGID BODY 

Using the mathematical expression of the torque of inertia forces given by the 
relation (45), the general equations of motion for a rigid solid body in general 
motion may be deduced. Thus, by performing the algebraic sum between the torque 
of inertia forces and the torque of the active forces we will obtain the following 
matrix equation [5–8]: 

 [ ]
1 1

Ti a
O O

6 1

0 0 0 0 0 0 .
×

+ = =τ τ 0  (48) 

By replacing the relation (45) in relation (48) we will obtain the following 
matrix relation: 

 
1 1

a
O 1 1 1 O .⋅ = − ⋅ +M v Ω v τ  (49) 

The general equations of motion for a rigid solid body subjected to constraints 
may be written as following: 

 [ ]
1 1 1

Ti a c
O O O

6 1

0 0 0 0 0 0 .
×

+ + = =τ τ τ 0  (50) 

Replacing the relation (45) in relation (50) we will obtain: 

 
1 1 1

a c
O 1 1 1 O O .⋅ = − ⋅ + +M v Ω v τ τ  (51) 

In relations (48–51), a
O1

τ  represents the torque of the active forces relatively 

to the point O1 and c
O1

τ  represents the torque of the constraint forces relatively to 

the same point O1. When we study the dynamics of a solid rigid body we have to 
determine the position of the solid rigid body at certain moment “t”. Therefore, we 
will add to the differential equations of motion (49) and (51) the following dif-
ferential equation written in matrix form: 

 1 1.= ⋅x A v  (52) 

In the relation (52) the quantities involved have the followings matrix 
expressions: 

 
1 1 1

T
1 O O O 1 1 1x y z = ψ θ ϕ x  (53) 

 
1 1 1 1 1 1 1 1 1

T
1 O O Ox y z x y zv v v = ω ω ω v  (54) 
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=

×

×
T0

0R
A

33

33
1

 (55) 

 1111 ΦΘΨR ⋅⋅=  (56) 

 
1 1

1 1 1

cos sin 0
sin cos 0

0 0 1

 ψ − ψ
 

= ψ ψ 
 
 

Ψ  (57) 

 1 1 1

1 1

1 0 0
0 cos sin
0 sin cos

 
 

= θ − θ 
 θ θ 

Θ  (58) 

 
1 1

1 1 1

cos sin 0
sin cos 0

0 0 1

 ϕ − ϕ
 

= ϕ ϕ 
 
 

Φ  (59) 

 ( ) -1
1

-1
2

1
21 TTTTT ⋅=⋅= −  (60) 

 
1 1

1 1 1

sin cos 0
cos sin 0

0 0 1

 ϕ ϕ
 

= ϕ − ϕ 
 
 

T  (61) 

 
1

2

1

sin 0 0
0 1 0 .

cos 0 1

 θ
 

=  
 θ 

T  (62) 

In relations (57–62), 1ψ , 1θ  and 1ϕ  represent Euler’s angles. 

5. EQUATIONS OF MOTION OF A SOLID RIGID BODY  
IN THE PARTICULAR CASE OF PLANE MOTION 

In this paragraph we will present the form of the general equations of motion 
in the case of plane motion. As it was shown, the relations (49) and (52) represent 
the most general equations of motion for a free solid rigid body written in matrix 
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form. Further on we will write these equations in the case of the plane motion of a 
solid rigid body. When a solid rigid body describes a plane motion the following 
relationships between kinematical parameters may be written: 

 
1 1O 0zv =  (63) 

 
1 1

0x yω = ω =  (64) 

 
1 1O 0zv =  (65) 

 
1 1

0x yω = ω =  (66) 

 
1O 0z =  (67) 

 1 1 0ψ = θ =  (68) 

 
1O 0z =  (69) 

 1 1 0.ψ = θ =  (70) 

Taking into account the relationships (63–70) the relations (49) and (52) become: 

 a
O111O 11

τqLΩqLM +⋅⋅−=⋅⋅ ττ  (71) 

 1qLAαL ⋅⋅=⋅ ττ  (72) 

 

T
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1

τ

 
 

=  
 
 

L  (73) 

 
1 1 1

T
1 O Ox y xv v = ω q  (74) 

 
1 1 1

T
1 O Ox y zv v = ω q  (75) 

 
1 1

T
1 O O 1 . = ϕ α x y  (76) 

We will multiply the equations (71) and (72) to the left by the matrix T
τL  and 

we will obtain: 

 a
O

T
11

T
1O

T
11

τLqLΩLqLML ⋅+⋅⋅⋅−=⋅⋅⋅ τττττ  (77) 

 T T
1 1.τ τ τ τ⋅ ⋅ = ⋅ ⋅ ⋅L L α L A L q  (78) 
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In the relations (77) and (78) the following notations will be introduced: 

 ττ ⋅⋅= LMLM
11 O

T
O

~  (79) 

 ττ ⋅⋅= LΩLΩ 1
T

1
~  (80) 

 ττ ⋅⋅= LALA T~  (81) 

 
1 1

a T a
O O .τ= ⋅τ L τ  (82) 

Using the notations (79–82) the relations (77) and (78) may be written as follows: 

 a
O111O 11

τqΩqM ~~~ +⋅−=⋅  (83) 

 1 1.= ⋅α A q  (84) 

By performing the calculus we will obtain: 

 
1

1

1 1 1

O 1 1 1

1 1 1 1

0
0

z

m m
m m

m m J

 − ⋅η 
= ⋅ξ 
 − ⋅η ⋅ξ  

M  (85) 

 
1 1

1 1

1 1

1 1 1

1 1 1 1

1 1 1 1

0

0

0

z z

z z

z z

m m

m m

m m

 −ω ⋅ −ω ⋅ ⋅ ξ 
 = ω ⋅ −ω ⋅ ⋅η
 
ω ⋅ ⋅ ξ ω ⋅ ⋅η 
 

Ω  (86) 

 
1 1

1 1

cos sin 0
sin cos 0

0 0 1

 ϕ − ϕ
 

= ϕ ϕ 
 
 

A  (87) 

 
1 1 1 1 1

Ta a a a
O O . =  τ x y zR R M  (88) 

If the solid rigid body is subjected to constraints the equation of motion (83) 
becomes: 

 
1 1 1

a c
O 1 1 O O .⋅ = − ⋅ + +M q Ω q τ τ  (89) 

In the equation (89) c
O1

τ~  represents the torque of the constraint forces. In general 
it has the following expression: 

 
1 1 1

Tc c c
O 0 . =  τ x yR R  (90) 
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6. NUMERICAL APPLICATION 

In this paragraph we will present a numerical example namely the dynamic 
analysis of the physical pendulum in order to illustrate how the general equations 
of motion can be applied to a very simple case. Whereby make it our task  to study 
the dynamics of physical pendulum. It can be regarded as a solid rigid in plane motion 
subjected to constraints. We will consider the physical pendulum presented in the 
figure below (Fig. 2). Its motion is described by differential equations as presented in 
the previous paragraph. The torque of the active forces may be written as follows: 

 [ ]
1

Ta
O 1 1 1 1 1 1 1cos sin sin .= ⋅ ⋅ ϕ − ⋅ ⋅ ϕ − ⋅ ⋅ ξ ⋅ ϕτ m g m g m g  (91) 

 
Fig. 2 – Physical pendulum. 

The torque of the constraint forces may be written in the following matrix form: 

 λLτ ⋅= λ
c
O1

~  (92) 

 
T1 0 0

0 1 0λ
 

=  
  

L  (93) 

 
1 1

Tc c . =  λ x yR R  (94) 

Taking into account the relation (92) the relation (89) becomes: 

 
1 1

a
O 1 1 O .λ⋅ = − ⋅ + + ⋅M q Ω q τ L λ  (95) 

The constraint forces are unknown and for this reason they must be removed 
from the equations of motion. By multiplying the relation (95) to the left with 

1

1
O
−M  

matrix we will obtain the followings: 
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 ( )1 1 1

1 a 1
1 O 1 O O .− −

λ= ⋅ − ⋅ + + ⋅ ⋅q M Ω q τ M L λ  (96) 

In the relation (96) we will introduce the following notation: 

 ( )1 1

1 a
O 1 O .−= ⋅ − ⋅ +B M Ω q τ  (97) 

The relation (96) becomes: 

 
1

1
1 O .−

λ= + ⋅ ⋅q B M L λ  (98) 

By multiplying the relation (98) to the left with T
λL  matrix we will obtain the 

followings: 

 
1

T T T 1
1 O .−

λ λ λ λ⋅ = ⋅ + ⋅ ⋅ ⋅L q L B L M L λ  (99) 

In the relation (99) we will introduce the following notation: 

 
1

T 1
O .−

λ λ= ⋅ ⋅A L M L  (100) 

Using the relation (100), the relation (99) becomes: 

 T T
1 .λ λ⋅ = ⋅ + ⋅L q L B A λ  (101) 

It is obvious that: 

 [ ]TT
1

2 1
0 0 .λ

×
⋅ = =L q 0  (102) 

Taking into account the relation (102) from the relation (101) it may be 
determined the unknown matrix λ : 

 ( )1 T .−
λ= − ⋅ ⋅λ A L B  (103) 

By replacing the relation (103) into the relation (95) and taking into account 
the relationship (84) we will obtain a system of six differential equations with six 
unknowns which can very easily solved using numerical integration methods. Using 
MatLab software a computing program has been elaborated and the results 
presented in the figures below (Fig. 3 and Fig. 4) were obtained. 

To integrate the differential equations system, the following initial conditions 
concerning the velocities are required: 

 
1 1 1 1

0 0
O O 0x yv v= =  meter/second (104) 

 
1

0 0zω =  radian/second (105) 
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Fig. 3 – Variation of the origin coordinates and velocities projections with respect to time. 

 
Fig. 4 – Variation of the angular speed and self-rotation angle with respect to time. 
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The initial conditions concerning the position parameters are the following: 

 
1 1

0 0
O O 0x y= = meter (106) 

 20
1 π=ϕ radian. (107) 

The computing program contains the following input data: 

 1 10m = kilogram (108) 

 11 =l meter (109) 

 ( )
1

2
1 11 3 3.334= ⋅ ⋅ ≅zJ m l kg·m2 (110) 

 1 1 2 0.5ξ = =l meter (111) 

 01 =η meter (112) 

 9.81=g meter/ second2 (113) 

 00 =t second (114) 

 7ft = second. (115) 

7. CONCLUSIONS 

The present paper presents a detailed deduction of the calculus formula of the 
inertia forces torque for a solid rigid body in general motion. Matrix writing of 
inertia force torque expression has the advantage of easily solving the system of 
differential equations describing the motion of the rigid solid body. 

The paper also presents the deduction of general equations of a motion of a 
free solid rigid body and a solid rigid body subjected to constraints. 

The general equations of motion for a solid rigid body may be used for the 
dynamic study of any mechanical system. 

The simple pendulum whose dynamic study has been shown in the research 
stands only as an example to illustrate the general research method used in the study. 

Received on June 14, 2018 
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