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Abstract. This paper present a study of the electro-mechanical impedance 
spectroscopy method (EMIS) used in structural health monitoring with piezoelectric 
wafer active sensors, with and without wire lead connections, bonded on thin plates, 
at intermediate and high frequencies. For simple geometries like circular piezoelectric 
wafer active sensor bonded to circular plates, a simplified 2D axisymmetric analytic 
model exist, and is briefly presented. However when cracks exist the 2D model could 
not be applied. Usually the low frequencies (10kHz−150kHz) are used in the EMIS 
method. A 3D finite element method is used to analyze ability of the EMIS method to 
evaluate the distance to the crack at intermediate (150kHz−300kHz) and high 
(300kHz−450kHz) frequencies. The influence of the asymmetry position on the wire 
lead piezoelectric wafer active sensors related to the crack at intermediate and high  
frequencies is also studied. Quantifications by classical damage metrics are done. 

Key words: electromechanical impedance spectroscopy method, EMIS, EMI, E/M, 
structural health monitoring, SHM, piezoelectric wafer active sensor, 
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1. INTRODUCTION 

The active and passive SHM systems become more and more used, especially 
on aerospace vehicles with thin plates structures [1,11]. The active SHM sensing 
techniques are based on two different approaches: transient guided waves and 
standing waves [1]. In such SHM processes, a piezoelectric wafer active sensor 
(PWAS) is required to generate elastic waves. These travel along the mechanical 
structure, are reflected by different structural abnormalities, i.e., cracks, corrosions, 
delamination, and others, or from the boundary edges, and then are recaptured by 
the same sensor in a pulse–echo configuration or by other sensors of same or 
different type, even passive sensors, in pitch-catch configuration [1]; this is the so-
called method of tuned Lamb waves. If the structural damage or boundary edges 
are in the close vicinity of the active sensor, their reflections overlap the incident 
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transient wave, making impossible the interpretation. This drawback can be 
overpassed by using the ultrasonic standing waves, in the so-called 
electromechanical impedance spectroscopy method (EMIS) (also known as EMI or 
E/M method). By sweeping the frequency of the input signals to PWAS, some 
changes appear in the impedance measured by an impedance analyzer connected to 
the PWAS terminals. By monitoring the changes in the real part of the impedance 
function, which is most sensitive to structural changes, one can evaluate the 
integrity of the host structure [1-4,6,7]. 

Usually the low frequencies (10kHz−150kHz), as defined in [1], are used. They 
give in the EMIS method relative big amplitude of the real part of the elecromechanical 
impdance. However at low frequencies [8] parasitic vibrations (acoustic and system 
vibrations) can induce subarmonics and supraarmonics which can interfere with the 
vibrations generated by the PWAS. So, a study of the EMIS method at intermediate 
(150kHz−300kHz) and high (300kHz−450kHz) frequencies is usefull. 

The method is not only sensitive to structural changes, but also to 
geometrical imperfections, quality and thickness of the adhesive layer, properties 
of the piezoceramic material [3] and temperature [5,9,10]. The method is mainly 
experimental, but for simple geometries like circular PWAS bonded to circular 
plates, a simplified 2D axisymmetric analytic model exist and proven good at low 
frequencies [1,2]. So this geometry is taken as a study base in this paper. 

A numerical study based on a 2D axisymmetric finite element method 
(FEM), previously studied at low frequencies [3,4], is done to compare the 
numerical results with analytic ones at intermediate and high frequencies. 

Usually piezoelectric wafer active sensors with wire lead terminals (PWAS-
WL) are used in SHM of non-metallic plates, or in SHM of metallic plates when an 
electric decoupling is needed [3]. So, a 3D FEM is also used in a sensitivity 
analysis of the influence of the asymmetry position of PWAS-WL with respect to 
the crack position involved in this SHM method at intermediate and high frequencies. 

2. COMPUTATIONAL METHODS 

2.1. The analytical method 

For simple geometries like a circular PWAS bonded on the center of a 
circular plate, an analytical solution exists and an extended presentation is done in 
[1] and [2]. For a PWAS with radius ar  and thickness at , and a plate with radius 
a  and thickness h  (Fig.1), the electrical impedance, as a function of the angular 
frequency of the excitation electrical signal, can be expressed [1-4]: 
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Fig. 1 − Circular PWAS constrained by structural stiffness, ( )strk ω . 

The coefficient pk  represents the planar coupling factor, given usually by the 
PWAS manufacturer, and expressed by: 
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The coefficient C represents the electrical capacitance of the PWAS, 
expressed by: 
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νa represents the Poisson ratio for PWAS, expressed by the ratio of the 
mechanical compliances coefficients 11

Es  and 12
Es  at zero electric field ( 0)E = : 
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11ε , 33ε  represents the dielectric permittivity at zero mechanical stress 
( 0)T = , and 31d  represents the piezoelectric coupling between the electrical and 
mechanical variables. 

The coefficient aϕ  depends on the geometrical dimensions and the 
longitudinal wave speed Pc  of the PWAS and is expressed by: 
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Of course, when mechanical, piezoelectric and dielectric losses cannot be 
neglected complex values of those coefficients must be taken into account:  

( ) ( ) ( )11 11 33 331 ,   1 ,   1s s i s i C C i= − η ε = − δ = − μ . (6) 

The coefficient ( )χ ω  in Eq.(1) represents the ratio of the mechanical 
stiffness of the structure to be monitored and the stiffness of the PWAS: 
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The stiffness of the PWAS, when the frequency spectrum taken into account 
in the SHM procedure is far from the PWAS resonances (radial, edge, thickness 
extensional and thickness shear) it can be expressed: 
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But the stiffness of the structure is different. The frequency spectrum of the 
excitation signal, is in the range of radial and flexural resonance of the structure. As 
shown in [1-4] it can be described, as the sum of two terms, the first one modelling 
the radial mode of vibration, while the second term is modeling the flexural mode of 
vibration of the circular plate with the bonded PWAS, and can be expressed: 
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where H  represents the Heaviside step function, while the mode shapes ( )kR r , for 
radial vibration mode, and ( )mY r , for flexural vibration mode, expressed by: 

( )0( )k k kR r A J r= λ , (10) 

( ) ( ) ( )0 0m m m m mY r B J r C I r⎡ ⎤= λ + λ⎣ ⎦ , (11) 



5 The electromechanical impedance spectroscopy method  87 

form an orthonormal function sets that satisfy the orthonormality conditions 
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For axial vibration of the plate, the coefficients kλ  from Eq. (10) are 
/k kz aλ =  where kz  are the solutions of the equation ( )0 1( ) 1 ( ) 0z J z J z− − ν =  

that describe the axial vibration of a circular plate in term of Bessel functions and 
Poisson ratio. The coefficients kA  in Eq. (10) are ( ) ( ) ( )2

1 0 2k k k kA J z J z J z= − . 
For flexural vibration of the plate, the coefficients mλ  from (11) are /m mz aλ =  

where mz  is the solution of equation ( )
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coefficients mB , mC  from Eq. (11) are to be determined numerically from the 
orthonormality conditions. 

The angular frequencies kω , mω  that correspond to the radial and flexural 
vibrations are: 
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In all the above equations, 0J  and 1J  represent the Bessel functions of first 
kind and first and second order, and respectively, while 0I  and 1I  are the modified 
Bessel functions of first kind and first and second order. 

2.2. The numerical method 

The numerical model used in this paper is the finite element method, 
implemented in the software Comsol 4.3. A coupled field frequency analysis based 
on piezoelectric constitutive equations that include structural losses has been taken 
into consideration, for the stress-charge formulation, with the following symbol 
notation, according to Comsol 4.3 User Guide: 
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where σ  denotes the stress matrix, ε denotes strains matrix, D  denotes electric 
charge matrix, Ec  denotes the elasticity matrix, Es  denotes the compliance matrix, 
e  denotes the piezoelectric coupling matrix, rε  the relative permittivity matrix. In 
Comsol Multiphysics the ~  symbol denotes complex values where the imaginary 
part defines the dissipative function of the material: ( )1 XX X j= ± η  where 

( ) ( )imag / realX X Xη =  is the loss factor. 
The piezoceramic materials belong to the 6 mm class symmetry [12], and 

have compliance, piezoelectric coupling and relative permittivity matrices in the 
stress-charge form (16): 
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2.3. Damage metrics 

Damage metrics are used for damage quantification from the EMIS signature 
changes. Damage metrics (DM) are used to obtained the differences between the 
pristine and the damaged specimens.To calculate a DM value, one compares the 
current spectrum with a baseline spectrum (e.g., the spectrum of a pristine specimen). 
Commonly used DM calculations [1] are based on simple formulae that perform a 
point-by-point comparison of the two spectra and compute an assembly value, e.g., 
root mean square deviation (RMSD) and correlation coefficient deviation (CCD). 
RMSD and CCD are expressed in term of real part of impedance as: 
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where CC represents the correlation coefficient, N  is the number of frequencies in 
the spectrum and 0 exponent represents the structure without crack. Z  and 0Z  
denote averages and Zσ  and 0Zσ  represents the standard deviation. 

3. RESULTS 

A comparison of the analytic method and FEM computation with 
experimental results, at low frequemcies (10kHz−150kHz) were done in [1-4]. In 
this paper only analytic and FEM are done, in order to separate the effects on small 
geometric imperfections, or temperature effects from the study of effect 
intermediate and high frequencies on the EMIS method. 

The geometry taken into analytical and numerical simulations are circular 
A2024 aluminum plate with a circular PZT-5A material for PWAS and PWAS-WL 
as in Figs.2a and 2b for 2D and 3D FEM. The active sensors taken in computations 
are piezoelectric wafer active sensor (PWAS) and piezoelectric wafer active sensor 
wire lead (PWAS-WL) as in Fig.3b, geometrical idealization of the real PWAS-
WL shown in Fig.3a. 
 
  h 

r   
r   
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b 

 

R  
θ  

 
a) b) 

Fig. 2 − a) Position and geometry of the thin plate with central hole in 2DFEM;  
b) arc-shape laser fabricated cracks and bonded PWAS in 3D FEM. 

      

Fig. 3 − a) Real PWAS-WL; b) ideal PWAS-WL taken in 3D FEM computations. 
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Fig. 4 − Positions of the asymmetry versus the crack position. 

 
 

a) 

 

b) 

Fig. 5 − Comparisons of the analytic results with the 2D FEM numerical results from low to high 
frequencies; a) in linear scale: b) in logarithmic scale. 



9 The electromechanical impedance spectroscopy method  91 

 

a) 

 

b) 

Fig. 6 − EMIS signature at low frequencies for the simulated crack @ 7 mm: a) in linear scale; 
 b) in logarithmic scale.  

 

a) 

 

b) 

Fig. 7 − EMIS signature at intermediate frequencies for the simulated crack @ 7 mm: 
a) in linear scale; b) in logarithmic scale. 
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a) 

 
 

b) 

Fig. 8 − EMIS signature at high frequencies for the simulated crack @ 7 mm: a) in linear scale;              
b) in logarithmic scale.  

The elastic properties of the Aluminum A2024 plate are taken 70 GPaE = , 
32 700 kg / mρ = , 0.33ν = . No adhesive layer is taken into simulations as it was 

shown [3,4] that for a constant temperature its effect on the EMIS signature is 
negligible. 

The piezoceramic material of the PWAS used numerical FEM computation is 
the piezoceramic material PZT5A, that have compliance, piezoelectric coupling 
and relative permittivity matrices in the stress-charge form, Eq.(16), Eq.(17): 

11 22 120.35 GPaE Ec c= = , 12 75.18 GPaEc = , 13 23 75.09 GPaE Ec c= = , 33 110.86 GPaEc = , 

44 55 21.05 GPaE Ec c= = , 66 22.57 GPaEc = , 2
31 32 5.35116 C / me e= = − , 

2
33 15.7835 C / me = , 2

15 12.2947 C / me = , 11 22 919.1r rε = ε = , 33 826.6rε = . 
The specimen A2024 with bonded PWAS has the geometry (Figs.2): 

50.0mmr = , 0.835 mmh = , 4 mmar = , 1mmbr = . For 3D FEM computations, 
the geometries of the simulated cracks (10 mm  long, 0.15 mm  wide) are as 
follows: arc crack 1, 45 mmR = , o13u = ; arc crack 2, 25 mmR = , o23u = ; arc 
crack 3, 15 mmR = , o38u = ; and arc crack 4, 7 mmR = , o82u = . 
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Table 1 
Damage metrics at low frequencies 

 pristine vs.  
crack@ 7mm 

pristine vs. 
crack@ 15mm 

pristine vs. 
crack@ 25mm 

pristine vs. 
crack@ 45mm 

 RMSD 
PWAS 1.1616 0.8259 0.6031 0.5365 

PWAS-WL a 1.1567 0.7852 0.5606 0.4893 
PWAS-WL b 1.1446 0.7250 0.5013 0.4358 
PWAS-WL c 1.1843 0.8001 0.5804 0.5088 

 CCD 
PWAS 0.9674 0.4426 0.2114 0.1622 

PWAS-WL a 0.9718 0.4000 0.1788 0.1307 
PWAS-WL b 0.9505 0.3287 0.1398 0.1018 
PWAS-WL c 0.9831 0.4205 0.1929 0.1425 

Table 2 
Damage metrics at intermediate frequencies 

 pristine vs.  
crack@ 7mm 

pristine vs. 
crack@ 15mm 

pristine vs. 
crack@ 25mm 

pristine vs. 
crack@ 45mm 

 RMSD 
PWAS 0.7438 0.5506 0.5890 0.4157 
PWAS-WL a 0.9300 0.6542 0.6134 0.4990 
PWAS-WL b 0.8838 0.6620 0.6029 0.4990 
PWAS-WL c 0.8558 0.6659 0.5963 0.5100 
 CCD 
PWAS 0.3374 0.1866 0.2118 0.0994 
PWAS-WL a 0.5550 0.2846 0.2267 0.1484 
PWAS-WL b 0.5114 0.2962 0.2164 0.1506 
PWAS-WL c 0.4943 0.2992 0.2128 0.1575 

Table 3 
Damage metrics at high frequencies 

 pristine vs. 
crack@ 7mm 

pristine vs. 
crack@ 15mm 

pristine vs. 
crack@ 25mm 

pristine vs. 
crack@ 45mm 

 RMSD 
PWAS 0.9543 0.6070 0.5254 0.2811 
PWAS-WL a 0.8638 0.4363 0.3296 0.2109 
PWAS-WL b 0.8167 0.4783 0.3817 0.2331 
PWAS-WL c 0.8292 0.4683 0.3336 0.2028 

 CCD 
PWAS 0.7152 0.2419 0.1687 0.0371 
PWAS-WL a 0.6204 0.1168 0.0511 0.0184 
PWAS-WL b 0.5570 0.1472 0.0776 0.0203 
PWAS-WL c 0.5725 0.1393 0.0494 0.0124 
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First a comparison of the analytic method with 2D FEM computation of the 
EMIS method is done at a combined scale of low (10kHz−150kHz), intermediate 
(150kHz−300kHz) and high (300kHz−450kHz) frequencies. The results are shown 
in Fig.5a,b in linear respectively logarithmic scale. It can be seen that at medium 
and high frequencies the amplitude of the EMIS signature is so small that it can be 
seen distinctively only in logarithmic scale, and the analytic results are in a 
reasonable agreement with the 2D FEM numerical ones. 

Comparisons of the effect of the asymmetry of the PWAS-WL with respect 
to the crack position involved in this SHM method at low, medium and high 
frequencies are shown in Fig.6, Fig.7 and Fig.8 for the simulated crack at 7 mm. It 
can be seen that at low frequencies in logarithmic scale the differences between the 
normal PWAS and the PWAS-WL (any position) are small, while at medium and 
high frequencies the differences are bigger. This can be seen also in the DM Tables 
1, 2, 3 in RMSD and CCD coefficients for the simulated crack at 7 mm. It is related 
to the wavelength of the standing wave compared with the PWAS and PWAS-WL 
dimensions, and particularly with the PWAS-WL active part. 

It was shown both experimentally and numerically in [1-3]. that for low 
frequencies DM has the ability to works well for the quantification of the distance 
to the crack. However, numerically, at medium and high frequencies, at it can be 
seen in Table 1, Table 2 and Table 3, that only crack at 7 mm  has distinct DM 
values, while cracks at 15 mm,  25 mm  and 45 mm  have weak DM differences. 
For example at low frequencies the RMSD DM on a PWAS-WL(a) for cracks at 
7 mm,  15 mm, 25 mm,  45 mm  are 1.1567,  0.7852,  0.5606,  0.4893. The differences 
between these DM are big enough to distinguish between the cracks at any 
distances, despite the small numerical errors that can occur. At intermediate and 
high frequencies the RMSD DM on a PWAS-WL(a) for cracks at 
7 mm,  15 mm,  25 mm,  45 mm  are 0.9300,  0.6542,  0.6134,  0.4990  respectively 
0.8638,  0.4363,  0.3296,  0.2109 . At intermediate and high frequencies only the 
difference between the firsts DM values and the others are big enough to 
distinguish a crack at 7 mm  from the others. The other values show weak 
differences that mixed with numerical errors may not distinctively determine the 
distance to the crack. Combined with other geometrical small imperfections, 
described in [3], experimentally the DM may work only for cracks in the close 
vicinity of the PWAS and PWAS-WL for intermediate and high frequencies. 

4. CONCLUSIONS 

From the theoretical point of view the analytic method that predicts the EMIS 
signature is in acceptable agreement with the numerical 2D FEM computations, 
even at intermediate and high frequencies. 
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From the theoretical 3D FEM point of view the EMIS method work well, 
based on DM, both RMSD and CCD, for the low frequencies spectrum, and 
acceptable for intermediate and high frequencies for cracks in the close vicinity of 
the PWAS. 

Instead, for cracks away from the PWAS the EMIS method barely works 
acceptable for intermediate and high frequencies only theoretically.  

Combined with small geometrical imperfections and small temperature 
variations, experimentally the EMIS method on intermediate and high frequencies 
spectrum may work only for cracks in the close vicinity of the PWAS. 
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