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Abstract. This paper deals with the Abaqus/Explicit implementation of a constitutive 
model for orthotropic thin sheet metals subjected to forming procedures dominated by 
stretching and bending effects. The metallic sheet is assumed to behave as an 
elastoplastic shell body, its mechanical response being described by Hooke’s law 
combined with a plastic potential and the associated flow rule. The constitutive model 
is kept in a general form so that it can easily accommodate different expressions of the 
plastic potential. Such a particularization involving the BBC2005 effective stress 
combined with two analytically defined hardening laws has been implemented by the 
authors as a VUMAT subroutine of the Abaqus/Explicit finite element programme. 
The predictive capabilities of the constitutive model will be analysed in the second 
part of the paper. 

Keywords: sheet metals, orthotropic plasticity, constitutive modelling, finite element 
analysis. 

1. INTRODUCTION 

The material model presented in this paper operates with components of the 
Cauchy stress and logarithmic strain tensors expressed in a corotational frame. The 
rate-type constitutive equations involving plain time derivatives of such quantities are 
always objective [1]. The corotational frame also characterizes the orthotropy of cold-
rolled metallic sheets [2], being initially coincident with the frame defined by the 
rolling direction (axis 1), transverse direction (axis 2), and normal direction (axis 3). 

Throughout the text, Latin and Greek lower-right indices are used to 
individualize tensor components expressed in orthonormal bases. Whenever not 
explicitly mentioned, the following sets of admissible values are assumed for these 
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qualifiers: Latin indices { }, , , 1,2,3 ;i j k …∈  Greek indices { }, , , 1,2 .α β γ …∈  The 
summation rule of the repeated lower-right index is also adopted in tensor 
relationships. 

The following symbols denote strain and stress quantities involved in the 
constitutive model: 

ij jiε ε=  corotational components of the logarithmic strain tensor additively 
separable into elastic ( ) ( )e e

ij jiε ε=  and plastic ( ) ( )p p
ij jiε ε=  parts, i.e. 

 ( ) ( )e p
ij ij ijε ε ε= +   (1) 

ij jiσ σ=  corotational components of the Cauchy stress tensor 
0σ ≥   effective stress defined as a first-degree homogeneous function 

 ( )11 22 22 33 33 11 12 21 23 32 31 13, , , , ,σ σ σ σ σ σ σ σ σ σ σ σ σ σ= − − − = = = (2) 

( ) 0pε ≥   effective plastic strain emerging from the equivalence principle 

 ( ) ( )p p
ij ijσ ε σ ε=   (3) 

 > 0Y   yield stress defined by a non-decreasing function

 ( )pY Y ε⎡ ⎤= ⎣ ⎦   (4) 

(the so-called hardening law).
The orthotropic plasticity of sheet metals is described by means of the 

effective stress .σ  Several researchers focused their efforts on elaborating 
anisotropic expressions of .σ  An exhaustive literature review surveying this topic 
can be found in [2]. In what follows, only the significant contributions will be 
mentioned. 

One of the earliest σ  functions of orthotropic type was proposed by Hill in 
1948 [3]. Due to its quadratic form, straightforward identification and 
computational efficiency, the Hill1948 expression of the effective stress is still 
widely used in the numerical simulation of sheet metal forming processes, despite 
the fact that it poorly approximates the plasticity of aluminium alloys [2]. With the 
aim of overcoming this drawback, Hill developed a series of non-quadratic σ  
functions [4-6]. Although the newer expressions of the effective stress proposed by 
Hill perform better, their predictions are sometimes in disagreement with crystal 
plasticity models. 

Barlat and his co-workers elaborated another class of orthotropic σ  functions 
having non-quadratic expressions. The formulations called Yld1989 [7] and 
Yld2000 [8] are the most extensively used in practice. It is worth mentioning that 
Barlat's models generally provide more realistic predictions than Hill's [2]. 

Using the non-quadratic formulation Yld1989 [7] as a basis, Banabic and his 
team developed a family of more flexible σ  functions by adding extra material 
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coefficients [2]. Among the σ  expressions obtained in this manner, the 
formulation called BBC2005 [2] is the most used in the numerical simulation of 
sheet metal forming processes. 

The main objective of this paper consists in describing the Abaqus/Explicit 
implementation of a constitutive model for thin sheet metals subjected to forming 
procedures dominated by stretching and bending effects. Section 2 briefly presents 
the relationships that reflect the mechanical behaviour of sheet metals: 

• Hooke’s law defining the elastic response 
• Plastic potential and the associated flow rule defining the inelastic 

response. 
Section 3 details the Abaqus/Explicit implementation of the material model. 

After rewriting the constitutive relationships in an incremental form, the authors 
gather a set of nonlinear equations that defines the current state of the metallic 
sheet. The numerical procedure used to solve the set of nonlinear equations is also 
explained. The incremental constitutive model is kept in a general form so that it 
can be easily particularized for different expressions of the σ  and Y  functions. 
Such a particularization involving the BBC2005 effective stress combined with two 
analytically defined hardening laws (Swift and modified Voce formulations) is 
described at the end of Section 3. 

2. GENERAL DESCRIPTION OF THE CONSTITUTIVE MODEL 

From the total strain accumulated by metallic sheets during typical forming 
processes dominated by stretching and bending effects, the recoverable part usually 
represents only a few percent. Under these circumstances, the elastic response of 
such materials can be described with sufficient accuracy by the inverted rate-
version of Hooke’s isotropic law 

( ) 1 ,
2 3 2

e
ij ij ij

λε σ δ σ
μ λ μ
⎛ ⎞

= −⎜ ⎟+⎝ ⎠
 (5) 

in which ijδ  is Kronecker’s symbol 

0, if ,
1, if ,ij

i j
i j

δ
≠⎧

= ⎨ =⎩
 (6) 

while 

( )( ) ( )1 1 2
,

2 1
E Eνλ μ

ν ν ν
= =

+ − +
 (7) 

are Lamé’s constants deduced from Young’s modulus E  and Poisson’s ratio .ν  
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The plastic part of the constitutive model is based on the potential function 
.Yφ σ= −  (8) 

A stress state is admissible if and only if 0.φ ≤  In general, 

0 individualizes all elastic states, while
0 (the so-called yield criterion) individualizes all elastoplastic states.

φ
φ
<⎧

⎨ =⎩
 (9) 

The second ingredient of the plastic constitutive model is the flow rule 

( ) ( ) ( ) ,p p p
ij

ij ij

φ σε ε ε
σ σ
∂ ∂

= =
∂ ∂

 (10) 

in which 
( )

( )

0, if 0,
0, if 0.

p

p

ε φ
ε φ
⎧ = <
⎨

≥ =⎩
 (11) 

Any σ  function defined in accordance with Eq. (2) has a traceless gradient, i.e. 
/ 0.σ σ∂ ∂ =  By means of Eq. (10), this property is transferred to the plastic part 

of the strain-rate tensor: ( ) 0.pε =  

3. IMPLEMENTATION OF THE CONSTITUTIVE MODEL IN THE 
ABAQUS/EXPLICT FINITE-ELEMENT PROGRAMME 

The numerical simulation of forming processes follows a sequence of small 
time steps .t t t→ +Δ  At each time step, the configuration of the metallic sheet 
corresponding to the moment t  acts as a reference state, its parameters being 
known quantities. In the particular case of the constitutive model presented in the 
previous section of the paper, these parameters are the stress components t

ijσ  and 
the effective plastic strain ( ) .t pε  When the metallic sheet is assumed to behave as a 
shell body, the generalized plane-stress condition 33 0tσ =  should be met. 
Unfortunately, the numerical schemes used to update the corotational frame do not 
guarantee the rigorous fulfilment of this constraint. Such an aspect cannot be 
ignored when implementing constitutive models for shell bodies. If not taken into 
account and compensated, the inaccurate fulfilment of the generalized plane-stress 
condition leads to numerical errors that tend to grow in an uncontrollable manner 
during the simulation of the forming process. 

The current state parameters t t
ijσ+Δ  and ( )t t pε+Δ  are expected as output from 

the constitutive model. The procedure used to evaluate these quantities is consistent 
with the mechanics of shell bodies only if the condition 
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33 0t tσ+Δ =  (12) 

is fulfilled. The t t t→ +Δ  evolution of the state parameters is controlled by strain 
increments 

d .
t t

ij ijt

τε ε τ
+Δ

Δ = ∫  (13) 

Except for 33,εΔ  all the other components ijεΔ  are calculated in advance and 
passed as input to the constitutive model. In the case of shell bodies, the thickness 
strain increment 33εΔ  is fully defined by Eq. (12). As a consequence, the 
constitutive model must evaluate 33εΔ  together with the current state parameters 
t t

ijσ+Δ  and ( ).t t pε+Δ  
Eq. (5) constrained by Eq. (12) allows deducing the formula 

( ) ( )2 ,t t t e e
ij ij ij ijσ σ λδ ε μ ε+Δ Δ= + + Δ  (14) 

in which 

( ) ( ) d
t te e

ij ijt

τε ε τ
+Δ

Δ = ∫  (15) 

are elastic parts of the incremental strains, with ( )
33

eεΔ  acting as a dependent 
quantity defined as follows: 

( ) ( )
33 33

1 .
2

e t e
γγε σ λ ε

λ μ
⎡ ⎤Δ = − + Δ⎣ ⎦+

 (16) 

Eq. (14) and Eq. (16) are useful in the first stage of the computations, when the 
elastic or elastoplastic character of the strain increments ijεΔ  must be identified. 

Under the hypothesis of a purely elastic evolution during the time interval 
[ ], ,t t t+ Δ  i.e. ( ) ,e

ij ijε εΔ Δ=  a set of trial strain increments ( , )e trial
ijεΔ  can be defined 

(see also Eq. (16)): 

( ) ( )

( )

( , )

( , )
33 33

, if , 3,3 ,
1 .
2

e trial
ij ij

e trial t

i j

γγ

εε

ε σ λ ε
λ μ

⎧Δ = Δ ≠
⎪
⎨Δ = − + Δ⎪ +⎩

 (17) 

The corresponding trial stress components ( )t t trial
ijσ+Δ  result from Eq. (14) after 

replacing ( )e
ijεΔ  by ( , ):e trial

ijεΔ  

( ) ( , ) ( , )2 .t t trial t e trial e trial
ij ij ij ijσ σ λ δ ε μ ε+Δ + + ΔΔ=  (18) 
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As soon as the quantities ( )t t trial
ijσ+Δ  are available, Eq. (8), Eq. (2) and Eq. (4) allow 

the calculation of the associated potential 

( )
( ) ( ) .trialt t

ij ij

t t trial t pY
σ σ

φ σ ε+Δ
+Δ

=
⎡ ⎤= − ⎣ ⎦  (19) 

If ( ) 0,t t trialφ+Δ ≤  the hypothesis of a purely elastic evolution is correct. In such 
a case, the thickness strain increment and the parameters of the current 
configuration can be set as follows: ( , )

33 33 ,e trialε εΔ Δ=  ( ) ,t t t t trial
ij ijσ σ+Δ +Δ=  and 

( ) ( ) .t t p t pε ε+Δ =  The generalized plane-stress condition ( )
33 0t t trialσ+Δ =  is 

automatically satisfied when Eq. (17) and Eq. (18) are used. 
On the other hand, if ( ) 0,t t trialφ+Δ >  the sheet metal evolves through 

elastoplastic states during the time interval [ ], ,t t t+ Δ  i.e. (see Eq. (1)) 

( ) ( ) .e p
ij ij ijε ε εΔ = Δ + Δ  (20) 

The unrecoverable parts of the strain increments, denoted as ( )p
ijεΔ  in Eq. (20), are 

now different from zero. These quantities can be evaluated using backward Euler 
approximations of the time integrals 

( ) ( ) ( ) ( )d , d ,
t t t tp p p p

ij ijt t

τ τε ε τ ε ε τ
+Δ +Δ

Δ = Δ =∫ ∫  (21) 

i.e. 
( ) ( ) ( ) ( ) ( ) ( ), .p t t p p t t p t p t t p
ij ij t tε ε ε ε ε ε+Δ +Δ +ΔΔ = Δ Δ = − = Δ  (22) 

When combined with these approximations, Eq. (10) becomes 

( ) ( ) ( ) .
t t

ij ij

p t t p t p
ij

ij σ σ

σε ε ε
σ +Δ

+Δ

=

∂⎡ ⎤⎣ ⎦ ∂
Δ = −  (23) 

Eq. (20), Eq. (5), Eq. (23), and Eq. (12) allow deducing the relationships 

33

( ) ( )

0

( )1 , for ,
2 3 2

t t
ij ij

t t

t t p t p
k

k

t t t t t e
k k k k

α
σ σα

σ

α α γγ α

σε ε ε
σ

λσ δ σ ε α
μ λ μ

+Δ

+Δ

+Δ

=
=

+Δ +Δ

∂⎡ ⎤Δ = − +⎣ ⎦ ∂

⎛ ⎞
− − ≤⎜ ⎟+⎝ ⎠

 (24) 

and 
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( )
33

( ) ( ) ( )
33 33

33
0

,
2 3 2t t

ij ij
t t

t t p t p t t t e
γγ

σ σ
σ

σ λε ε ε σ ε
σ μ λ μ+Δ

+Δ

+Δ +Δ

=
=

∂⎡ ⎤Δ = − − −⎣ ⎦ ∂ +
 (25) 

in which 

( ) 1
2 3 2

t e t t
ij ij ij

λε σ δ σ
μ λ μ
⎛ ⎞

= −⎜ ⎟+⎝ ⎠
 (26) 

are components of the elastic strain tensor associated to the reference 
configuration. It is not difficult to notice that Eq. (25) expresses 33εΔ  as a function 
of ( )t t t t

k k kα ασ σ α+Δ +Δ= ≤  and ( ).t t pε+Δ  The strain increment 33εΔ  and the normal 
stress 33 0t tσ+Δ =  can be thus removed from the set of primary unknowns which 
reduces to ( )t t

k kασ α+Δ ≤  and ( ).t t pε+Δ  
The quantities ( )t t

k kασ α+Δ ≤  and ( )t t pε+Δ  must satisfy Eq. (24) together 
with the yield criterion (see Eq. (9) and Eq. (8)) 

33

( )

0
0.t t

ij ij
t t

t t pYσ σ
σ

σ ε+Δ

+Δ

+Δ
=

=

⎡ ⎤− =⎣ ⎦  (27) 

The nonlinear system consisting of Eq. (24) and Eq. (27) is solved numerically using 
a forward-difference Newton scheme combined with a simplified line-search strategy 
[9]. The reference state parameters ( )t

k kασ α ≤  and ( )t pε  define the start point of 
the solution procedure. This initial guess ensures a rapid convergence of the Newton 
iterations for sufficiently small strain increments ( )k kαε αΔ ≤  passed as input to the 
constitutive model. The performances of the solution procedure tend to degrade 
when the carrying capability of the metallic sheet suffers a drop due to necking and 
the continuous decrease of the material strength leads to an accelerated strain 
accumulation. The solution procedure is able to overcome almost all the convergence 
difficulties that may occur in such cases by activating an adaptive subincrementation 
mechanism. The principle of this mechanism consists in splitting the input values 

( )k kαε αΔ ≤  into smaller fractions. The quantities ( )k kαε αΔ ≤  are successively 
halved until the convergence of the Newton scheme is achieved or the total number 
of subincrementation attempts becomes too large (for example, greater than seven). 
In the latter case, the numerical simulation is stopped after issuing an error message. 
If the Newton scheme has converged, the strain increment fraction is doubled and the 
previously obtained state parameters are used to define the initial guess for a new 
iterative solution of Eq. (24) and Eq. (27). This procedure ends when the process of 
adding small fractions restores the full input values ( ).k kαε αΔ ≤  Having 

( )t t t t
k k kα ασ σ α+Δ +Δ= ≤  and ( )t t pε+Δ  determined, Eq. (25) allows the calculation of 

the strain increment 33.εΔ  
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The constitutive model presented above can easily accommodate full plane-
stress yield criteria. Their specificity consists in the fact that only the in-surface 
components of the stress tensor are used to define ,σ  i.e. [2] 

( )11 22 12 21, , .σ σ σ σ σ σ= =  (28) 

Eq. (28) is able to replace Eq. (2) as soon as the following hypotheses are added to 
the constitutive model: 

• Through-thickness shear strains are purely elastic, i.e. 
( ) ( )

3 3 0.p p
α αε ε= =  (29) 

• The plastic part of the strain tensor is traceless, i.e. 
( ) ( )
33 .p p

γγε ε= −  (30) 

Both assumptions are in good agreement with the mechanics of sheet metal 
forming processes dominated by stretching and bending effects. 

In the particular situation defined by Eq. (28), Eq. (29) and Eq. (30), one 
should reorganize Eq. (24), Eq. (25) and Eq. (27) (see also Eq. (26)): 

( ) ( )

( )1 , for ,
2 3 2

t t

t t p t p

t t t t t e

αβ αβ

αβ
αβ σ σ

αβ αβ γγ αβ

σε ε ε
σ

λσ δ σ ε α β
μ λ μ

+Δ

+Δ

=

+Δ +Δ

∂⎡ ⎤Δ = − +⎣ ⎦ ∂

⎛ ⎞
− − ≤⎜ ⎟+⎝ ⎠

 (31) 

3 3 32 ,t t t
α α ασ σ μ ε+Δ = + Δ

 
(32) 

( )
( ) ( ) ( )

33 33 ,
2 3 2t t

t t p t p t t t e

αβ αβ

γγ
γγ σ σ

σ λε ε ε σ ε
σ μ λ μ+Δ

+Δ +Δ

=

∂⎡ ⎤Δ = − − − −⎣ ⎦ ∂ +
 (33) 

and 
( ) 0.t t

t t pY
αβ αβσ σ

σ ε+Δ
+Δ

=
⎡ ⎤− =⎣ ⎦  (34) 

One may notice by examining Eq. (31), Eq. (32), Eq. (33), and (34) that 33,εΔ  

33 0t tσ+Δ =  and 3 3
t t t t

α ασ σ+Δ +Δ=  can be removed from the set of primary unknowns 
which now reduces to ( )t t

αβσ α β+Δ ≤  and ( ).t t pε+Δ  The nonlinear system 
consisting of Eq. (31) and Eq. (34) must be solved to determine the quantities 

( )t t
αβσ α β+Δ ≤  and ( ).t t pε+Δ  The numerical procedure described previously is still 
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usable for this purpose. Having ( )t t t t
αβ βασ σ α β+Δ +Δ= ≤  and ( )t t pε+Δ  determined, 

Eq. (33) allows the calculation of the strain increment 33,εΔ  while Eq. (32) 
evaluates the shear stresses 3 3 .t t t t

α ασ σ+Δ +Δ=  In general, Eq. (32) overestimates the 
shear stiffness of shell elements. A formula that performs better is 

3 3 32 ,t t t
α α ασ σ κμ ε+Δ = + Δ

 
(35) 

with 5 / 6κ =  acting as a correction factor. 
A particular form of the constitutive theory presented above has been 

implemented as a VUMAT subroutine of the Abaqus/Explicit finite-element 
programme [10]. The particularization is individualized by the following 
characteristics of the plasticity model: 

• BBC2005 formulation of the effective stress [2] 
• Analytical description of the hardening law. 

The BBC2005 effective stress is expressible in the form [2] 
 

( ) ( ) ( ) ( )
1

2 2 2 2 2 ,k k k k ka a b bσ ⎡ ⎤= Λ + Γ + Λ − Γ + Λ +Ψ + Λ −Ψ⎣ ⎦
 

(36) 

with 
 

( )

( )

11 22

2
11 22 12 21

2
11 22 12 21

,

,

.

L M

N P

Q R

σ σ

σ σ σ σ

σ σ σ σ

Γ = +

Λ = − +

Ψ = − +
 

(37) 

 
The symbols 0 ,k >∈  0 ,a >∈  0 ,b >∈  ,L∈  ,M ∈  ,N ∈  ,P∈  ,Q∈  
and R∈  denote constant parameters. The k − exponent is always set in 
accordance with the material structure, the following values being suitable for most 
practical applications: 3k =  in the case of BCC sheet metals, and 4k =  in the case 
of FCC sheet metals. As for ,a  ,b  ,L  ,M  ,N  ,P  ,Q  and ,R  these parameters 
result by identification with experimental data [2]. The partial derivatives 

/ αβσ σ∂ ∂  involved in Eq. (31) and Eq. (33) can be evaluated using the chain rule 
(see Eq. (36) and Eq. (37)) 
 

,
αβ αβ αβ αβ

σ σ σ σ
σ σ σ σ
∂ ∂ ∂Γ ∂ ∂Λ ∂ ∂Ψ

= + +
∂ ∂Γ ∂ ∂Λ ∂ ∂Ψ ∂  

(38) 
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with 
 

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

2 1 2 1
2 1

2 1 2 1 2 1 2 1
2 1

2 1 2 1
2 1

1 ,

1 ,

1 ,

k k
k

k k k k
k

k k
k

a a

a a b b

b b

σ
σ

σ
σ

σ
σ

− −

−

− − − −

−

− −

−

∂ ⎡ ⎤= Λ + Γ − Λ − Γ⎣ ⎦∂Γ
∂ ⎡ ⎤= Λ + Γ + Λ − Γ + Λ +Ψ + Λ −Ψ⎣ ⎦∂Λ
∂ ⎡ ⎤= Λ +Ψ − Λ −Ψ⎣ ⎦∂Ψ

 
(39) 

and 

( ) ( )

( ) ( )

11 22 12 21

11 22 11 22

11 22

21 12

12 21

11 22 11 22

11 22

21 12

12 21

,    ,    0,    0,

,    ,

,    ,  
2 2

,    ,

,      
2 2

L M

N N P P N P

Q Q R R Q R

σ σ σ σ

σ σ σ σ
σ σ

σ σ
σ σ

σ σ σ σ
σ σ

σ σ
σ σ

∂Γ ∂Γ ∂Γ ∂Γ
= = = =

∂ ∂ ∂ ∂

− −∂Λ ∂Λ
= = −

∂ Λ ∂ Λ

∂Λ ∂Λ
= =

∂ Λ ∂ Λ

− −∂Ψ ∂Ψ
= = −

∂ Ψ ∂ Ψ

∂Ψ ∂Ψ
= = ⋅

∂ Ψ ∂ Ψ

 
(40) 

 
Two analytical descriptions of the hardening law are currently implemented 

in the VUMAT subroutine: 
 

( )
0( )

( ) ( )

swift,

exp voce (modified).

np
p

p p

K

A B C
Y

D

ε ε
ε

ε ε

⎧ ⎡ ⎤+⎪ ⎣ ⎦⎡ ⎤ = ⎨⎣ ⎦
⎡ ⎤− − +⎪ ⎣ ⎦⎩  

(41) 

 
The symbols ,K  0 ,ε  ,n  ,A  ,B  ,C  and D  in Eq. (41) denote constant parameters 
determined by fitting experimental data. 
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4. CONCLUSIONS 

This paper describes the Abaqus/Explicit implementation of a constitutive 
model for thin sheet metals subjected to forming procedures dominated by 
stretching and bending effects. Thin metallic sheets are assumed to behave as 
orthotropic elastoplastic shells. The mechanical response of such bodies is 
described by Hooke’s law combined with a plastic potential and the associated 
flow rule. A set of nonlinear equations is obtained by rewriting the constitutive 
relationships in an incremental form. The convergence and stability of the 
numerical procedure used to solve the set of nonlinear equations is ensured by 
means of a subincrementation technique. The constitutive model is particularized 
using the BBC2005 effective stress combined with two analytically defined 
hardening laws (Swift and modified Voce formulations). The performances of the 
constitutive model will be analysed in the second part of this paper by comparing 
the theoretical predictions with experimental data obtained from deep-drawing tests. 
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