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Abstract. A new alternative technique of the Optimal Auxiliary Functions Methods 
(OAFM) is proposed and applied to solve nonlinea rdifferential equations of the 
Blasius problem. The proposed procedure is very effective and convenient and does 
not require linearization or small parameters. The main advantage of this approach 
consists in that it provides a covenient way to control convergence of the approximate 
solution in a very rigorous way. The solution obtained using the present procedure is 
in a very good agreement with numerical results and some well-known results, which 
prove that OAFM is a power tool for ononlinear problems, very efficient and accurate. 

Keyword: Blasius equation, Optimal Auxiliary Functions Method, Nonlinear 
differential equation, Optimal parameters. 

1. INTRODUCTION 

Approximate analytical solutions of the nonlinear differential equation are 
useful when exact analytical solutions are too difficult or imposible to obtain or 
when the work to find a numerical solution cannot be justified. In science and 
engineering there exist many nonlinear differential equations and even strongly 
nonlinear problems which are still very difficult to solve.  

In general the study of nonlinear differential equations is restricted to a 
variety of special classes of equations and the method to find the solutions usually 
involves one or more techniques to active analytical approximation to the solutions. 
Therefore, many researchers and scientists have recently paid much attention to 
find and develop approximate solutions. Perturbation methods are well established 
tools to study diverse aspects of nonlinear problems [1, 2]. Howerer the use of 
peturbation theory in many important practical problems is invalid, or it simply 
breaks down for parameters beyond a certain specified range.  
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Therefore, new analytical techniques should be develop to overcome these 
short – commings. Such a new technique should work over a large range of 
parameters and yield accurate analytical approximate solution beyond the coverage 
and ability of the classical perturbation methods. 

It is noted that serval methods, have been used to obtain approximation 
solution for strongly nonlinear problems. An interesting approach which combines 
the harmonic balance method and linearisation method of nonlinear oscillation 
equations was proposed in [3]. There also exists a wide range of literature dealing 
with approximate solutions for nonlinear problems with large parameters by using 
a mixture of methodologies: the variationed iteration method [4], optimal 
homotopy asymptotic method [5, 6], some modified Lindstedt-Poincare methods 
[7], the method of weighted residuals [8], and so on. 

Many problems arising in technique are defined in unbounded domains, and 
steady flow of the non-Newtonian fluids has attracted considerable attention in the 
last years, because of its several aplications in various fields of science and 
engineering. Blasius equation is one of the basic equations of fluid dynamics. 
Blasius equation descriebed the velocity profile of the fluid in the boundary layer 
theory on a half-infinite interval. The Blasius equation is the “mother” of all 
boundary layer in fluid mechanics and describes the steady two dimensional 
laminar boundary layer that forms a semi-infinite plate which is held parallel to a 
constant uni-directional flow. A broad class of analytical solution methods are used 
to handle this problem. Adomian decomposite method is applied by Wang [9] to 
obtain an approximate solution for classical Blasius equation. Fazio [10] 
introduced a numerical parameter and require to on extended scaling group in 
involving this parameter. The method of gradient is applied by Borșa [11] in the 
study of the thin film flows. The [4/3] Padé aproximant for the derivative is 
modified by Ahmed and Al-Barakati [12] so that the resulting expression has the 
required asymptotic behavior. Momentum laminar boundary layers of an 
incompressible fluid either about a moving plate in a quiscent ambient fluid 
(Sakiads flow) and the flow induced over a resting flat-plate by a uniform free 
stream (Blasius flow) are investigated numerically by Cortell Bataller [13], for 
each case via Runge-Kutta algorithm along with shooting procedure. Parand et al. 
[14] proposed on approach based on the first kind of Bessel functions collocations 
method, reducing the solution of a a nonlinear problem to the solution of a system 
of nonlinear algebraic equations. Marinca and Herișanu [15] applied Optimal 
Auxiliary Functions Method to solve the nonlinear differential equation of Blasius 
problem. Robin [16] presented three uniform rational algebraic approximations to 
the Blasius velocity profile, along with corresponding uniform approximations to 
the Blasius function. Akgűl [17] considered the reproducing kernel method to 
determine numerical approximation for Blasius equation. Najafi [18] converted the 
nonlinear Blasius equation to a nonlinear Volterra integral equation satisfying the 
condition of the quasiliniarization scheme. The solutions of the obtained liniar 
integral equation are approximated by the collocation method.  
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2. THE GOVERNING EQUATION OF MOTION 

The governing equation of motion for the steady incompresible two-
dimensional boundary layer equation for continuity and momentum can be 
summarized as [13, 15]: 

0u u
x y
∂ ∂

+ =
∂ ∂

, (1) 

2

2
u u uu v
x y y
∂ ∂ ∂

+ = ϑ
∂ ∂ ∂

, (2) 

in which  ϑ  is kinematic viscosity. The boundary condition for the velocity field 
are 

at 0,   at  0u v a y u U u= = = = = , (3) 

 at u U y∞→ →∞ . (4) 

It δ  is the boundary-layer thickness and L  is natural length scale, then 
balancing between viscosity and convective inertia it results the scaling argument 

2

2
U U
L

≅ ϑ
δ

. (5) 

From the scaling argument it is apparent that the boundary layer grows the 
downstream coordinate x , e.q.: 

( )
1
2xx

u
ϑ⎛ ⎞δ ≈ ⎜ ⎟

⎝ ⎠
. (6) 

Introducing a similarity variable η  and a dimensionless stream function ( )f η  
as  

( )
1
2 1; ;

2
x u Uy f v f f

U U x
ϑ ϑ⎛ ⎞η = = = η −⎜ ⎟

⎝
′

⎠
′ , (7) 

where prime denotes differentation with respect to η . From Eqs. (7), we obtain: 

;  
2 2

u U v Uf f
x x x x
∂ η ∂ η

= − =
∂ ∂

′′ ′′ . (8) 
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The equation of continuity (1) is satisfied identically and follows that  

2 2

2'' ;  '''u U u UUf f
y x xy

∂ ∂
= =

∂ ϑ ϑ∂
. (9) 

After simple manipulations, we obtain Blasius equation: 

( ) ( ) ( )1''' '' 0
2

f f fη + η η = , (10) 

subject to the boundary conditions: 

( ) ( ) ( )0 0, 0 0, 1f f f= = ′ ∞ =′ . (11) 

3. AN ALTERNATIVE TO THE OPTIMAL AUXILIARY FUNCTIONS 
METHOD 

The nonlinear differential Eq. (10) with the boundary conditions (11) can be 
written in a more general form [20, 21]. 

( ) ( ) 0L f N f⎡ η ⎤ + ⎡ η ⎤ =⎣ ⎦ ⎣ ⎦ , (12) 

where L  is a linear operator and N  is a nonlinear, subject to the boundary/initial 
condition:  

( ) ( )d
, 0

d
f

B f
⎛ η ⎞

η =⎜ ⎟η⎝ ⎠
. (13) 

In order to determine an analytic approximate solution of Eq. (12) and (13), 
we suppose that the approximate solution ( )( )f η  can be expressed in the 
following form only with we components: 

( ) ( ) ( )0 1 , , 1,2, ,if f f C i pη = η + η = … , (14) 

where the initial approximation ( )( )0f η  and first approximation ( )( )1 , if Cη  will 
be determined as follows. Inverting Eq. (14) into Eq. (12), one get:  

( ) ( ) ( ) ( )0 1 0 1, , 0i iL f L f C N f f C⎡ ⎤ ⎡ ⎤⎡ η ⎤ + η + η + η =⎣ ⎦ ⎣ ⎦ ⎣ ⎦ . (15) 

The initial approximation can be obtained from the following linear 
equation 
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( ) ( ) ( )0
0 0

d
0, , 0

d
f

L f B f
⎛ η ⎞

⎡ η ⎤ = η =⎜ ⎟⎣ ⎦ η⎝ ⎠
 (16) 

and the first approximation is obtained from the equation: 

( ) ( ) ( ) ( ) ( )1
1 0 1 1

d
, , 0, , 0

di i
f

L f C N f f C B f
⎛ η ⎞

⎡ ⎤ ⎡ ⎤η + η + η = η =⎜ ⎟⎣ ⎦ ⎣ ⎦ η⎝ ⎠
 

(17) 

Now, the nonlinear term from the least equation is expanded in the form: 

( ) ( ) ( ) ( ) ( ) ( )1
0 1 0 0

1

,
,

!

k
i k

i
k

f r C
N f f r C N f N f

k≥

⎡ ⎤η + = ⎡ η ⎤ + ⎡ η ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦ ∑
 

(18) 

where ! 1 2 3 ....k k= ⋅ ⋅ ⋅ ⋅  and ( )kN  means the differentiation of order k  of 
nonlinear function N . 

In general, the solution of the linear Eq. (16) can be expressed by: 
 

( ) ( )
1

0
1

m

i i
i

f a h
=

η = η∑ , (19) 

where the coefficients ia , the function ih  and the positive integer 1m  are known. 
The nonlinear operator N calculated for ( )0f η  may be written as: 
 

( ) ( )
2

0
1

m

i i
i

N f b g
=

⎡ η ⎤ = η⎣ ⎦ ∑ , (20) 

where the coefficients ib , the functions ( )ig η  and positive integer 2m  are known, 
and all depend on the initial approximation ( )0f η  and also on the nonlinear 
operator N . 

In what follows, we do not solve Eq. (17), but it should be emphasised that 
from the theory of differential equations, taking into consideration the method of 
variation of parameters, Cauchy method, the method of influence functions, the 
operator method and so on [19] it is more convenient to consider the unknown 
function ( )1 , if Cη  as dependent of ( )0f η  and ( )0N f⎡ η ⎤⎣ ⎦ . More precisely 

( )1 , if Cη  can be written in the form:  

( ) ( )1
1

, ,
p

k k i i
k

kFf C C h g
=

η =∑ , (21) 
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where kC  are several (p) unknown parameters at this moment and kF  are 
auxiliary functions depending on the function ih  and ig  defined by Eqs. (19) and 
(20) respectivelly. 

We have a great freedom to choose the values of the integer positive p  and 
the auxiliary functions kF . Note that the boundary/initial conditions could be 
fulfilled by the Eq. (21), so that finally, Eq. (14) responds to all boundary/initial 
conditions given by Eq. (13). We can not demand that ( )1 , if Cη  given by Eq. (21) 
is a solution of Eq. (17), but ( )f η  given by the Eq. (14) is the solution of Eqs. 
(13) and (14). 

For instance if ( )0f η  and ( )0 N f⎡ η ⎤⎣ ⎦  are trigonometric functions, then  

( )1 , if Cη  is a combination of the trigonometric functions. More precisely if  

0 4sin 7cosf = αη+ αη  ( )1 2 1 2 14, 7, sin , cos , 2a a h h m= = = αη = αη =  
and  

( )0 5sin 2 13cos3  N f⎡ η ⎤ = αη+ αη⎣ ⎦
( )1 2 1 2 25, 13,  sin 2 ,  cos3 , 2  ,b b g g m= = = αη = αη =  

then  
( )1 1 2 3 4sin sin 2 cos3 cos5f C C C Cη = αη+ αη+ αη+ αη  

( )1 2 3 4sin ,  sin 2 ,  cos3 ,  cos5 , 4F F F F p= αη = αη = αη = αη = . 

Similarly if ( )0f η  and ( )( )0N f η  are polynomial functions 

( ) ( )( )( )2 3 4 5
0 03 5 , 7 9 11f N fη = η+ η η = η + η + η , 

then  
( ) 2 3 4 5

1 1 2 3 4 5, ...if C C C C C Cη = η+ η + η + η + η + . 
In the case when  ( ) 2 3

0 3ln 3 7f η = η+ η + η  and 

( )( )0 2
2 7 5lnN f η = + + η
η η

, then ( )0 ,  if Cη  is a combination of the function, 

which appear within ( )0f η  and ( )( )0N f η , 
 

( ) 3 4 3
1 1 2 5 63, ln ln lni

C Cf C C C C Cη = η+ η+ + + η η+ η η+
η η

  

 

Now, the parameters 1 2 , ., . . pC C C  which appear into Eq. (21), can be 
optimally identified via various procedures such as the least square method, the 
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Galerkin method, the collocation method, the Ritz method, the Kantorovich 
method or by minimizing the square residual error. 

( ) ( )
( )

2
1 2 1 2, , ,,... ,..., , d.p p

D

J C C C R C C C= η η∫ , (22) 

where D  is domain of interest and the residual R  is given by: 
 

( ) ( ) ( ), , , , 1,2,...,i i iR C L f C N f C i p⎡ ⎤ ⎡ ⎤η = η + η =⎣ ⎦ ⎣ ⎦ . (23) 

If ( ), 0iR Cη = , then ( ), if Cη  happens to be an exact solution of Eqs. (12) 
and (13). The unknown parameters  1 2, ,..., pC C C  can be identified from the 
conditions: 

1 2
... 0

p

J J J
C C C
∂ ∂ ∂

= = = =
∂ ∂ ∂

. (24) 

With these p parameters known (namely henceforward optimal convergence-
control parameters or convergence-control parameters), the approximate solution 
( )f η  given by Eq. (14) is well determined. 

Note that our technique contains the optimal auxiliary functions kF , which 
provides us with a simple way to adjust and control the convergence of the 
approximate solution. It is very important to properly choose these auxiliary 
functions kF . It will shown that our procedure is a powerfull tool to solving 
nonlinear problems without small or large parameters.  

4. APPROXIMATE SOLUTIONS OF THE BLASIUS PROBLEM BY MEANS OF 
THE ALTERNATIVE TO THE OAFM 

In what follows, we apply our technique to obtain on approximate solution 
of Eqs. (10) and (11). The initial approximation ( )0f η  which verifies the 
boundary conditions (11) can be chosen in the form: 

( )0 ln 1f k
k
η⎛ ⎞η = η− −⎜ ⎟

⎝ ⎠
 (25) 

 
where k  is an arbitrary positive unknown parameter. Taking into consideration Eq. 
(25), we define the linear operator in the forms (the liniar  operator would not be 
unique): 
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( ) 2 ''

1

fL f f
k

k

⎡ η ⎤ = +⎣ ⎦ η⎛ ⎞+⎜ ⎟
⎝

′′

⎠

′  
(26) 

or 

( ) 2 2
2 2

2 2

1 1

fL f f
k k

k k

⎡ η ⎤ = − +⎣ ⎦
η η⎛

′
′′′

⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 
(27) 

If we consider only the linear operator given through Eq. (26), we obtain the 
nonlinear operator as: 

( ) ( ) ( )1 2
2 1

fN f f f
k

k

⎡ η ⎤ = η η −⎣
′

⎦ η⎛ ⎞+⎜ ⎟
⎝

′
′

⎠

′ . 
(28) 

Substituting Eq. (25) into Eq. (28), it holds that: 

( )0 3 2
2

1 ln 1
2 11 2 1

N f
k

k k kk k

η η η⎛ ⎞⎡ η ⎤ = − + +⎜ ⎟⎣ ⎦ η⎛ ⎞ ⎝ ⎠η η⎛ ⎞ ⎛ ⎞ +⎜ ⎟+ +⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠

. 
(29) 

For the first approximation 1f , the boundary conditions are 

( ) ( ) ( )'
0 10 0 0 f f f ′= = ∞ = . (30) 

From the section 3 and from Eqs. (29) and (30), we have the freedom to 
choose the first approximation in the following form:  

( ) ( )2 3 1
1 1 2, ln 1 ... p

i pf C C C C +η = + η + η + + η  (31) 

where 1 2, ,..., pC C C   are unknown parameters. 
The analytical approximation of Eqs. (10) and (11) is obtained from Eqs. 

(14), (25) and (31): 

( ) ( ) ( )

( )
0 1

2 1
1

, ,

ln 1 ln 1 ... .

i i

p
p

f C f f C

k C C
k

+

η = η + η =

η⎛ ⎞= η− + + + η + η⎜ ⎟
⎝ ⎠

 (32) 

The optimal convergence control parameters are determined by using the 
condition (24) where: 
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( ) ( ) ( ) ( )''' ''1, , , , , 1,2, ,    
2i i i iR C f C f C f C i pη = η + η η = , (33) 

and ( ), if Cη  is given in Eq. (32). 
In what follows we will shown that the accuracy of the results obtained by an 

alternative to the OAFM is growing along with increasing the number p of 
parameters iC . 

For 6p = , we obtain:  

1 24.136440558322; 0.0451056233184; 0.01996802807k C C= = =

3 40.00335917554; 0.001665797515;C C= − =  

5 60.0002536093067; 0.00001213043235256C C= − = . 
(34) 

Table 1 
 

Comparison between the approximate solution given by Eq. (35) and numerical result [22] 
 

η (η)numericF , [22] ( ) ( )η , Eq. 35F  error ( ) ( )numF F= η − η  

0 0 0 0 
0.2 0.0066412 0.0066418582 6.38E-05 
0.6 0.0597215 0.059749865 2.83E-05 
1 0.1655717 0.165584803 1.31E-05 
1.4 0.3229815 0.322975577 5.92E-06 
2 0.6500243 0.650065389 4.11E-05 
2.4 0.9222901 0.922399411 1.01E-04 
3 1.3968082 1.396900384 9.21E-05 
3.4 1.7469501 1.746963516 1.34E-05 
4 2.3057464 2.305857328 1.11E-04 
5 3.28329 3.284382105 1.01E-03 
6 4.27964 4.279822606 1.82E-04 
7 5.27926 5.27547322 3.78E-03 
8 6.27923 6.279480302 2.51E-04 

 
In this case the approximate solution given by Eqs. (32) and (34) of the Eqs. 

(10) and (11) becomes: 
 

( ) ( )
2 3

4 5

6 7

4.13644055832ln 1 0.241753745999

ln(1 0.0451056233184 0.0199680280744
0.00335917554 0.00166579751
0.0002536093067 0.00001283043235256 ).

f η = η− + η +

+ + η + η −

− η + η −

− η + η

 (35) 
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In Table 1 we present a comparison between the approximate solution given 
by Eq. (35) with numerical results [22] for some values of variable η  and the 
corresponding errors. 

For 8p = , we obtain: 

1

2

2.500137843922;  0.03410933979297;
 0.054471864056; 
k C

C
= = −

=
 

3 40.0176773550246; 0.004895234662;C C= − =  

5
5 60.00088409414;  8.98134158273 10 ;C C −= − = ⋅  

6 8
7 84.5347403075 10 ; 8.365909375 10C C− −= − ⋅ = ⋅ . 

(36) 

The approximative solution given by Eqs. (32) and (36) of the Blasius 
eqiation (10) and (11) is: 

( ) ( )
2 3

4 5

6 5 7

6 8 8 9

2.50137843922ln 1 0.3999779463356

ln(1 0.03410933979297 0.05447186056181
0.017677355024 0.004895237662
0.00088409414 8.98134158273 10
4.53347403075 10 8.365909375 10 ).

f

−

− −

η = η− + η +

+ − η + η −

− η + η −

− η + ⋅ η −

− ⋅ η + ⋅ η

 (37) 

In Table 2 we present a comparison between our approximate solution (37) 
and numerical results. 

Table 2 

Comparison between the approximate solution given by Eq. (37) and numerical result [22] 

η  ( )numericF η , [22] ( )( ),  Eq. 37F η  error 

0 0 0 0 
0.2 0.0066412 0.0066418 6.58E-07 
0.6 0.0597215 0.05975296 3.14E-05 
1 0.1655717 0.163571192 5.07E-07 
1.4 0.3229815 0.32292591 5.56E-05 
2 0.6500243 0.649967725 5.65E-05 
2.4 0.9222901 0.922443657 1.53E-04 
3 1.3968082 1.397106905 2.98E-04 
3.4 1.7469501 1.747172681 2.22E-04 
4 2.3057464 2.305742988 3.41E-06 
5 3.28329 3.283285682 4.32E-06 
6 4.27964 4.279634827 5.17E-06 
7 5.27926 5.279254032 5.96E-06 
8 6.27923 6.279213301 6.05E-06 
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In Table 3 we present a comparison between our approximate solution 
(37) with published results [23, 24]. 

 

Table 3 

Comparison between the present results with other published results 
 

η  ( )numericf η ,[22] ( )( ),  Eq. 37f η  ( ),  [23]f η  ( ),  [24]f η  
0 0 0 0 0 
0.2 0.0066412 0.0066418 0.066409 0.0069699 
0.6 0.0597215 0.05975296 0.0597345 0.0626959 
1 0.1655717 0.163571192 0.1655715 0.1738016 
1.4 0.3229815 0.32292591 0.3229812 0.3391217 
2 0.6500243 0.649967725 0.6500224 0.6828833 
2.4 0.9222901 0.922443657 0.9222734 0.9691873 
3 1.3968082 1.397106905 1.3964712 1.4674133 
3.4 1.7469501 1.747172681 1.7451217 1.8335195 
4 2.3057464 2.305742988 2.2897787 2.4153361 
5 3.28329 3.283285682 - - 
6 4.27964 4.279634827 - - 
7 5.27926 5.279254032 - - 
8 6.27923 6.279213301 - - 

 
From Tables 1, 2 and 3 it can be seen that the analytical method of Blasius 

equation and other published results are very accurate and that accuracy of the 
obtained results by OAFM is growing along with increasing the number of 
parameters in the auxiliary functions. However, some other method published in 
[23] and [24] give a good accuracy, but OAFM in by far the best method delivering 
faster convergence and better accuracy. In our procedure the approximate relations 
are perfomed in a simple manner by identifying some coefficients and therefore 
very good approximation are obtained in few terms. 

CONCLUSIONS 

In this paper, an alternative Optimal Auxiliary Functions Method is employed 
to propose new analytic approximate solutions for the velocity profile of the fluid 
in the boundary layer theory on a half-infinite interval - Blasius problem. 

In comparison with any other known methods, our technique is based uper an 
original construction of the solution using a moderate number of the optimal-
convergence-control parametric iC  which appear in the so-called auxiliary 
functions kF . For the sake of brevity, it is very important to remark that these 
parameters lead to a high precission, comparing our approximate solutions with 
numerical results and other mentioned methods. Let us note that the nonlinear 
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diffrential Eq.(10) is reduced to two linear differential equations, which not depend 
on all terms of the nonlinear equation. 

Also the construction of the equation which determine the first approximate 
( )0f η  is not unique. We have a great freedon to choose the number of optimal 

convergence control parameters, of the auxiliary function kF  and some terms from 
nonlinear operator ( )0N f⎡ η ⎤⎣ ⎦ . 

The accuracy of the results obtained by OAFM is growing along with 
increasing the number of the parameters iC . Our procedure is very effective, 
explicit and accurate for nonlinear approximation, rapidy converging to the exact 
solution and provides a simple but rigorous way of controlling and adjusting the 
convergence of the solution. 
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