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Abstract. The motion of a satellite or a spacecraft in the vicinity of the Earth is
subject to numerous perturbations from a variety of sources some of which are
transitory or “random”. It is not feasible to incorporate all these perturbations
analytically within the framework of Newton’s second law. In this paper we put
forward the proposition that fractional derivatives can provide a lumped sum
parameter approach to incorporate all these interactions based on the “historical
trajectory data” of the satellite. This may lead to longer (in time) and more
accurate prediction of its trajectory. To demonstrate (theoretically) the feasibility
of this conjecture we consider two test cases. The first is for the motion of a
satellite under the influence of quadratic drag. The second is for the motion
of a satellite in the gravitational field of oblate Earth. In both cases we show
that fractional derivatives models can lead to results which are very close to the
numerical solutions which incorporate the impact of these perturbations on the
motion of the satellite.

Key words: oblate spheroid, quadratic drag, equatorial orbits, analytical solutions,
Caputo derivative.

1. INTRODUCTION

The motion of the planets around the Sun and the stability of this motion was ad-
dressed by many mathematicians and physicists (Brouwer and Clemence [1], Poincare
[13], Prussing and Conway [14], Szebehely [15], Koon et al. [9]) and is still the
subject of many current research papers (Condurache and Martinusi [2, 3], Lidov [11],
Humi and Carter [7], Humi [8]). At the core of this problem is the treatment of n-body
interactions where n is large (Brouwer and Clemence [1], Szebehely [15]). An excep-
tion is the successful analytic treatment of two bodies and (to some extent) three-body
interactions (Gurfil [5], Levi-Civita [10], Nie et al. [12]). For n > 3, perturbation
theory is used usually to obtain approximate analytic solutions.
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From a fundamental point of view the motion of a spacecraft or satellite in the
Earth vicinity is subject to corrections due to drag and Earth oblateness. Additional
corrections are due to the gravitational field of the Sun, Moon and the planets. Others
perturbations due to the solar wind, asteroids and other small near Earth objects are
transitory and “almost random”. All these nonlocal influences are “registered” in the
memory of the satellite or spacecraft (viz. its historical trajectory). However it is not
feasible to incorporate all these interactions analytically in the equations of motion
using Newton’s law of gravitation (and as far as we know nobody has done so). Usually
the equations of motion for the orbit of a satellite incorporate the two most important
corrections due to the Earth oblateness (J2 effect) and drag (Humi and Carter [7], Humi
[8]). Even with these simplifications the numerical solution of these problem has to
address two issues. The first is due to the long time scale of the integration which
may lead to large “accumulated error” (as a result of floating-point operations). The
second is due to the different spatial scales which appear in these problems which lead
to “numerically stiff” differential equations for the evolution of these systems.

Due to these circumstances one is motivated to look for a different approach that
can produce better (and more accurate) predictions about the future satellite trajectory
based on the data about its “historical trajectory”.

Fractional derivatives were discussed by Leibniz and Abel. However their exten-
sive use in applications started only in the late 20th century (Herrmann [6], El-Sayed
et al. [4], Varieschi [16]). The reason can be attributed partially to the different defini-
tions of this concept in the literature and several stumbling blocks where fractional
calculus differs from ordinary calculus (e.g., the product and chain rules). Nevertheless
in recent years Caputo definition of fractional derivative became “standard” and we
shall adopt it throughout this paper (Herrmann [6]).

We note that fractional order derivative in time are integral operators that involve
the “satellite trajectory” at (all) previous times. Based on this historical trajectory they
can capture all interactions that influenced its trajectory in the past. By estimating
the optimal order of the fractional derivative that yields the best representation of this
trajectory in the past one can make, in principle, better and longer (in time) predictions
about its future trajectory. Thus the order of the fractional derivative in this model can be
viewed as a lumped sum parameter that represents the impact of all these interactions.

The objective of this paper is to demonstrate that fractional derivatives can actually
capture the impact of perturbations on satellite trajectory. Due to lack of actual satellite
data, we demonstrate this fact by considering two outstanding problems where satellite
trajectory is impacted by perturbations due to drag and Earth oblateness. For these
two problems we show that fractional derivatives are able to reproduce almost the
same results as the well established numerical algorithms (but potentially they can
do much more). We emphasize that this comparison is not intended to show that
fractional derivatives can “compete” with the well established numerical algorithms
(using Newton’s law) but to provide a “proof of concept” about the potential role of
this new methodology in celestial mechanics.



3 Satellite orbits and fractional mechanics 185

The plan of the paper is as follows. In Section 2, we give a brief review of the clas-
sical models for satellite motion. In Section 3, we first formulate the fractional models
for the motion and then present approximate solutions of the fractional models, details
of which are provided in the appendix. Section 4 provides verification of the analytic
fractional model as compared with the numerical solution of the orbit equations. We
end with some conclusions about the performance of fractional derivatives models
within the context of celestial mechanics.

2. CLASSICAL THEORY FOR SPHERICAL AND OBLATE BODIES

In classical physics the motion of a particle of unit mass in a central force field is
modeled by the following system of differential equations

r̈ = f (r)er. (2.1)
In this equation r is the radius vector of the particle from the center of attraction, r = |r|,
er is a unit vector along r and we use a dot above a symbol to denote differentiation
with respect to time t (e.g. ṙ = dr/dt). We assume also that f is differentiable on the
domain under consideration. It is easy to show that this motion is in a plane (which
we take to be the x− y plane). In polar coordinates (r,θ), the equations of motion are

rθ̈ +2ṙθ̇ = 0, (2.2)

(r̈− rθ̇
2) = f (r). (2.3)

Equation (2.2) can be integrated to obtain that

r2 dθ

d t
= h, (2.4)

where h is a constant. Using this result to change the independent variable from t to θ

in (2.3) we obtain the orbit equation
1

r(θ)
d2r(θ)

dθ 2 −
2

r(θ)2

(
dr(θ)

dθ

)2

= 1+
r(θ)3 f (r(θ))

h2 . (2.5)

Introducing the transformation r = 1
u , this equation becomes

d2u(θ)
dθ 2 +u(θ) =− f (r)

u(θ)2h2 . (2.6)

When f (r) represents the gravitational field due to a point particle at the origin
viz. f (r) =− µ

r2 (where µ is a constant), the equation of motion (2.6) is reduced to

d2u
dθ 2 +u =

µ

h2 . (2.7)

The classical solution for the orbit of a satellite in this force field is

r =
h2

µ

1
1+ ecos(θ +φ)

, (2.8)

where e and φ are constants.
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2.1. Equatorial Orbits Around Oblate Body

In the gravitational potential of an oblate body, the most important correction term
for the gravitational potential is the one containing J2, the coefficient of the primary
zonal harmonic. With this term the gravitational potential of the Earth or other oblate
spheroid is approximated by

U =−µ

r

[
1− R2J2

r2 P2(cosφ)

]
. (2.9)

With this equation, we associate an inertial coordinate system attached to the center of
the oblate body. In this system, r is the radius vector where r = |r|, φ is the colatitude
angle, R is the radius of the oblate body in the equatorial plane, µ represents the
product of the universal gravitational constant and the mass of the spheroid and P2 is
the second-order Legendre polynomial.

The force per unit mass acting on a particle at a point r due to the gravitational
potential (2.9) is given by

F(r) =−∇U(r).
If r and ṙ are initially in the equatorial plane then the angular momentum is

constant, both remain in this plane and φ = π

2 . It follows then that, in this plane, the
specific gravitational force F(r) = f (r)er is central where

f (r) =−µ

(
1
r2 +

3R2J2

2r4

)
. (2.10)

Introducing polar coordinates (r,θ) in the equatorial plane Eq. (2.5) becomes

r̈− rθ̇
2 =− µ

r2 −
µk
r4 , (2.11)

where k = 3
2R2J2. Using (2.4) to change the independent variable from t to θ and the

transformation u = 1/r (2.11) becomes
d2u
dθ 2 +u =

µ

h2 (1+ ku2). (2.12)

Though this nonlinear equation has no closed analytic solution,we seek a first order
approximation of the solution with the ansatz u = u0 + J2u1, as J2 is small for the
Earth. To a first-order in J2 the resulting solution for u1 is

u1 =
µ3R2

4h6 (6− e2(cos(2(θ +φ))−3)+3e(2θ sin(θ +φ)+ cos(θ +φ))). (2.13)

For |e| � 1 we can approximate u1 by 3µ3R2

2h6 and the (approximate) equation for the
orbit of the satellite becomes

r =
h2

µ

(
1

1+ ecos(θ +φ)+ kµ2

h4

)
. (2.14)
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3. FORMULATION USING FRACTIONAL DERIVATIVES

While the classical equations of motion in a central force field can be integrated
analytically for some force fields f (r), there are many other cases where the motion
of the particle is subject to perturbations, which might be due to additional central
force. In more general cases, these perturbations might be due to non-central forces
and can be considered as “non-local”. A classical example of this situation is the
motion of the Earth around the Sun with perturbations due to the Moon and the other
celestial objects in the solar system. In these cases, one defer (traditionally) to analytic
perturbation theory or numerical methods to obtain approximate solutions to these
equations.

In this work we suggest and test the feasibility of another paradigm to incorporate
these perturbations by replacing (2.2)-(2.3) by

r
d2α

θ

d t2α
+

Γ(2+α)

Γ(2−α)

(
dαr
d tα

)(
dα

θ

d tα

)
= 0, (3.1)[

d2αr
d t2α

− r
(

dα
θ

d tα

)2
]
= f (r), (3.2)

where α = 1± ε and ε ≈ 0. We observe that for α = 1 these equations revert to
(2.2)-(2.3).

By (3.1) and Lemma 1 in Appendix, we have
dα

d tα
(r1+α dα

θ

d tα
) =

d
d t

(r1+α dα
θ

d tα
)+O(ε)

= (1+α)rα dr
d t

dα
θ

d tα
+ r1+α d

d t
dα

θ

d tα
+O(ε)

=
Γ(2+α)

Γ(2−α)
rα dαr

d tα

dα
θ

d tα
+ r1+α dα

d tα

dα
θ

d tα
+O(ε)

= O(ε). (3.3)
Therefore, using Caputo definition of the derivative, we obtain

J = r1+α dα
θ

d tα
= h (3.4)

is a constant (as a zero-th order approximation in ε). Therefore using the chain rule
(Lemma 2), we can write

dαr
d tα

=
h

r1+α

dαr
dθ α

+O(ε). (3.5)

Using (3.5) to express dα
θ

d tα and substitute in (3.2) we obtain
h

r1+α

dα

dθ α

(
h

r1+α

dαr
dθ α

)
− h2

r2α+1 = f (r)+O(ε). (3.6)

We introduce now the transformation w = 1
r and use

dα(r−1)

dθ α
=

dα(r−1)

drα

dαr
dθ α

+O(ε) =−r−1−α dαr
dθ α

+O(ε). (3.7)
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We then have for (3.6)

−h2w1+α d2αw
dθ 2α

−h2w2α+1 = f
(

1
w

)
+O(ε). (3.8)

For f (r) =− µ

r1+α =−µw1+α we then have

h2w1+α

(
d2αw
dθ 2α

+wα

)
= µw1+α +O(ε). (3.9)

So finally we obtain
d2αw
dθ 2α

+wα =
µ

h2 +O(ε). (3.10)

For a zero-th order approximation in ε , we have
d2αw
dθ 2α

+wα =
µ

h2 . (3.11)

We note that this equation is endowed with periodic boundary conditions as w(0) =
w(2π).

Remark. Under the influence of drag, the periodic boundary condition is a legit-
imate approximation as the orbit changes almost periodically– there are very small
differences between w(0) and w(2π). Also, the periodicity will be utilized when we
calculate the Caputo derivatives of exponential functions, which are still exponential
functions. With other boundary conditions, the derivatives are no longer exponential
functions but are Mittag-Leffler type functions.

Using a perturbation analysis in ε (see Appendix A for details), we obtain the
following approximation solution

r =
1
E

e−θ cosω

1+ ccos(θ sinω +φ)
, (3.12)

where E =
(

µ

h2

)1/α
+ ε

µ

h2 ln µ

h2 , ω = 2π

α
and c,φ ,ε are constants.

3.1. Equatorial Orbits Around Oblate Body

For the motion of a satellite in equatorial orbit around an oblate body where f (r)
is given by (2.10), we can derive a similar formulation using fractional calculus as in
(3.11). Specifically, we obtain, in place of (2.12),

d2αw
dθ 2α

+wα =
µ

h2 (1+ kw1+α)+O(ε). (3.13)

An approximate solution of this equation may be obtained as follows. Since this
is a nonlinear equation we shall seek (as in Section 2.1) a first order approximate
solution in J2 that is we let w = w0 + J2w1 where w0 is given by (inverse of) (3.12) .
Substituting this in (3.13) leads to the following equation for w1

d2αw1

dθ 2α
+αwα−1

0 w1 =
3µR2

2h2 w1+α

0 +O(J2,ε). (3.14)
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Using the fact that α = 1± ε is very close to 1, we approximate this equation by
d2w1

dθ 2 +αw1 =
3µR2

2h2 w2
0, (3.15)

whose solution is

w1 =
3µ

2h2
e2θ cosω

1+4cos2 ω
. (3.16)

The final form of the approximate solution for (3.13) is

w = w0 + J2w1 + ε
µ

h2 ln
µ

h2 . (3.17)

4. MODEL VERIFICATION

In this section, we attempt to verify the fractional derivatives model that we
presented in Section 3. Specifically, we compare the numerical solutions of equations
with drag with solutions given in Section 3 derived from fractional calculus. As we
have no a priori algorithm to determine α , we shall use the results of the numerical
simulation ( with a least square method with a quasi-Newton method) to find an
optimal value of α that reproduces the orbit decay for various values of the drag
coefficient. Then we compare the solutions given in Section 3 with computed α with
numerical solutions.

The equation of motion of a satellite about a spherical planet under the influence
of Newtonian gravitation and atmospheric drag is

r̈ = f (r)er−Dρ(r)(ṙ · ṙ)1/2ṙ, (4.1)
where r represents the position vector of the satellite from the center of attraction
and r = (r · r)1/2 is the magnitude of this vector. Also, ρ(r) is directly proportional
to the atmospheric density at a distance r from the center of attraction and D is a
constant that is determined from the drag coefficient of the satellite, its geometry, and
the atmospheric density at a specified altitude.

In polar coordinates (see Section 2) we obtain the following system of equations
for the orbit of the satellite,

rθ̈ +2ṙθ̇ =−Dρ(r)(ṙ · ṙ)1/2rθ̇ , (4.2)

r̈− rθ̇
2 = f (r)−Dρ(r)(ṙ · ṙ)1/2ṙ. (4.3)

4.1. Orbits Around Spherical Body

In this section, we consider the force in the form of
f (r) =−µ/r2, (4.4)

where µ is the product of the universal gravitational constant and the mass of the
planet. We shall compare the numerical solution of the equations with this force with
the solution given by (3.12).

For ρ we use a typical (exponential) model for the density of the earth’s atmosphere
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at heights near 7000 km above the center of the Earth

ρexp = ρ0 e−
(r−r0)

H , (4.5)
where H = 88.667 km and r0 = 7120 km. In the following we absorb ρ0 in D so that
ρ is normalized to 1 at r0.

To solve equations (4.2)-(4.3) numerically, we used the following parameters and
initial conditions in all simulations:

R0 = 7120 km, D = 1×10−11. (4.6)
The initial value of dθ

d t was chosen so that at time t = 0 the gravitational and centrifugal
forces balance each other

dθ

dt
(0) =

RE

R0

√
g

R0
, (4.7)

where RE = 6378 km is the earth radius and g = 9.807m/sec2 is the acceleration of
gravity at the sea level.

The parameters α , c and φ in (3.12) that yield the best fit to the numerical solution
are α = 1+0.9225×10−8, c = (α−1)/4 and φ = π/4. The difference between the
numerical and fractional solutions over ≈ 7 revolutions is shown in Fig. 1. In this
figure the difference between these two orbits is less than 6 cm. This difference can
be attributed in part to the accumulated numerical integration error of (4.2) and (4.3).
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Fig. 1 – Difference between the numerical and fractional solutions, D = 10−11.
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Fig. 2 – Drag coefficient vs. (α−1).

In Fig. 2 we plotted on a logarithmic scale the functional relationship between the
value of the drag coefficient D and the optimal value of α . This relationship turns out
to be linear over a wide range of values of D.

4.2. Equatorial Orbits Around Oblate Body

We consider the motion (4.1) with a force of the form (2.10):

f (r) =−µ

(
1
r2 +

3R2J2

2r4

)
.

With the form (2.10), Eq. (4.1) in the polar coordinate (r,θ) (in the equatorial plane)
becomes

rθ̈ +2ṙθ̇ =−Dρ(r)(ṙ · ṙ)1/2rθ̇ , (4.8)

r̈− rθ̇
2 =− µ

r2 +
µk
r4 −Dρ(r)(ṙ · ṙ)1/2rθ̇ , (4.9)

where k = 3
2 R2J2. We use the same initial conditions as in 4.1.

We first obtain numerical solution of (4.8)-(4.9) with the standard Runge-Kutta
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4 in time to the orbit of a satellite using (3.13). The best fit between the numerical
solution of and the approximate analytic solution (3.17) was obtained with

α = 1+9.102×10−7, c = 0.0.4112(α−1), φ =
37.5π

180
,ε = 2.35×10−4.

The difference between the numerical solution of (4.8)-(4.9) and the approximate
analytic solution of (3.17) for the orbit over≈ 7 revolutions is less than 8.5m as shown
in Fig. 3. This represents a relative error of 10−6 between the two orbits.
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Fig. 3 – Difference between the numerical and fractional solutions, D = 10−10.

5. CONCLUSION

The motion a spacecraft or a satellite in the Earth vicinity is subject to large num-
bers of “perturbations” from a variety of sources some of which might be considered as
random. Due to the fact that it is not feasible to account for all these interactions using
Newton’s law of gravitation a different paradigm is needed to predict the trajectory of
the satellite accurately and for long(er) period of time. The present paper examined
a lumped-parameter formulation of this problem using fractional derivatives. It was
demonstrated that fractional derivatives can capture perturbations due to quadratic
drag and Earth oblateness to an accuracy comparable to the numerical solutions. These
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two examples demonstrate that the paradigm of fractional derivatives might provide an
alternative to the traditional perturbation approach for the inclusion of nonlocal effects
in celestial mechanics. It is clear that these examples do not provide “a general proof”
for the utility of this paradigm. However they demonestrate its possible potential in
celestial mechanics.

For a practical application of this method, data about the historical trajectory of
the satellite (or spacecraft) is needed. This data can be used then to derive the optimal
value for the order of the fractional derivative that describes best this historical data.
The model can be applied then to make accurate and superior projections about the
future trajectory of the satellite or the spacecraft.

APPENDIXES

A. APPROXIMATE ANALYTICAL SOLUTIONS TO (3.11)

In this section, we apply perturbation analysis and superposition principle to obtain
an approximate solution to Equation (3.11). We also show that this solution satisfies
Equation (2.1) approximately.

To solve for the homogeneous part of (3.11) we substitute
wh(θ) = eνθ . (A.1)

This yields the algebraic equation, up to a first-order perturbation in ε

ν
2α +1 = 0, (A.2)

which has two complex conjugate solutions for ν

ν1,2 = cos
(

π

2α

)
± isin

(
π

2α

)
. (A.3)

It follows then that we have two solutions
w1 = eθ cos(ω) exp(iθ sin(ω)), w2 = eθ cos(ω) exp(−iθ sin(ω)), (A.4)

where i =
√
−1, ω = π

2α
.

Although the superposition principle does not hold for (3.11), we shall combine
these two solutions to obtain

wh = eθ cosω [C cos(θ sinω)+Dsin(θ sinω)],

where C, D are constants. This can be rewritten more succinctly in the form
wh = Aeθ cosω cos(θ sinω +φ), (A.5)

where A, φ are constants.
A particular solution of (3.11) is

wp =
(

µ

h2

)1/α

. (A.6)
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A.1. Superposition of the solutions

Since the superposition principle does NOT hold for(3.11) it follows that wh +wp

is not a solution in of this equation in the strict sense:
d2α(wh +wp)

dθ 2α
+(wh +wp)

α − µ

h2 6= 0. (A.7)

However, since ε = |1−α| � 1, we shall compute the first order correction term
in ε to this expression to obtain an approximate solution of (3.11) (viz. up to terms
of order ε2). To modify this solution so that (A.7) holds up to terms of order ε2 we
consider a solution of the form

w = wh +wp + εws,

where ws is the first order correction term.
Substituting the expression for w (using (A.5) and (A.6) in (3.11) we find that this

equation is satisfied to up to zero order in ε . To have an order 1 in ε we obtain the
following equation for ws

d2α(ws)

dθ 2α
+ws =−

(
wh ln wh−

µ

h2 ln
µ

h2

)
.

Since we can not solve this equation analytically, we use an approximation which
ignores the first term on the right hand side of this equation and let

ws =
µ

h2 ln
µ

h2 .

The (approximate) solution of (3.11) is

w = wh +wp + εws = Aeθ cosω cos(θ sinω +φ)+
(

µ

h2

)1/α

+ ε
µ

h2 ln
µ

h2 . (A.8)

Then we obtain the equation (3.12) for r = 1
w , where c = A

E and E =
(

µ

h2

)1/α
+

ε
µ

h2 ln µ

h2 .
Now we verify that w = wh +wp + εws is an approximate solution to (3.11) with

an order one in ε . Denote that wh = A1w1 +A2w2, where wi = eνiθ , i = 1,2. Then
d2α (wh)

dθ 2α = (A1ν2α
1 eν1θ +A2ν2α

2 eν2θ ).

d2α(w)
dθ 2α

+wα =
d2α(wh +wp + εws)

dθ 2α
+(wh +wp + εws)

1±ε

=
d2αwh

dθ 2α
+(wh +wp + εws)

1±ε

= (A1ν
2α
1 eν1θ +A2ν

2α
2 eν2θ )+(wh +wp + εws)

± ε(wh +wp) ln(wh +wp)+o(ε)

= (A1(O(ε)−1)eν1θ +A2(O(ε)−1)eν2θ )

+(wh +wp + εws)− ε(wh +wp) ln(wh +wp)+o(ε)

= −wh +O(ε)+(wh +wp + εws)+O(ε)

= wp +O(ε) = wα
p +O(ε) =

µ

h2 +O(ε).
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A.2. The solution (3.12) is an approximate solution to equation (2.1)

We next show that the solution (3.12) satisfies the following equation up to a
first-order approximation in ε:

r̈ = f (r)er, f (r) =− µ

r2 . (A.9)

We only need to show that
r̈− rθ̇

2 = f (r)+O(ε), (A.10)

rθ̈ +2ṙθ̇ = O(ε). (A.11)
By (3.12), we then have

ṙ =
−cosωe−θ cosω θ̇

E +Acos(θ sinω +φ)
− r
−Asin(θ sinω +φ)sinω

E +Acos(θ sinω +φ)
θ̇ (A.12)

= −rθ̇ cosω + rθ̇
Asin(θ sinω +φ)sinω

E +Acos(θ sinω +φ)
(A.13)

= −rθ̇ cosω + r2
θ̇eθ cosωAsin(θ sinω +φ)sinω.

Observe that the first-order derivative of r̃2θ̇ is zero where r̃ = 1
µ/h2+Acos(θ+φ)

. Then

the formula (A.11) holds r−1− r̃−1 = O(ε). Thus by the fact that ω− π

2 = O(ε) and
(A.11),

r̈ = −cosω(rθ̈ + ṙθ̇)+(2rṙθ̇ + r2
θ̈)eθ cosωAsin(θ sinω +φ)sinω

+r2
θ̇

2eθ cosωAsin(θ sinω +φ)sinω cos(ω)

+r2
θ̇

2eθ cosωAcos(θ sinω +φ)sin2
ω

= r2
θ̇

2eθ cosωAcos(θ sinω +φ)sin2
ω +O(ε)

= r2
θ̇

2eθ cosω(
1

reθ cosω
−E)+O(ε) = rθ̇

2− r2
θ̇

2E +O(ε).

This can be written as r̈− rθ̇ 2 =−r2θ̇ 2E +O(ε). As r2θ̇ = h+O(ε) by (A.11) and
E = µ/h2 +O(ε), we obtain

−r2
θ̇

2E =−(h+O(ε))2 1
r2 E =−(h+O(ε))2 1

r2 (µ/h2+O(ε))=−µ +O(ε)

r2 = f (r)+O(ε).

We have reached the formulation (A.10).

B. PERTURBATIONS IN THE FRACTIONAL ORDER

We recall the left Caputo fractional derivative C
0 Dµ

t , which is by

C
0 Dµ

t u(t) = 0I
n−µ

t
dn

dtn u, 0I
1−µ

t v =
1

Γ(1−µ)

∫ t

0

v(s)
(t− s)µ

ds, n−1 < µ ≤ n.

(B.1)
Here n ∈ N is a natural number, i.e., n = 1,2,3, . . ..
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LEMMA 1. For n−1 < β ≤ n, let n−β = ε and then

C
0 Dβ

t f = f (n)(0)
tε

Γ(1+ ε)
+
∫ t

0
f (n+1)(τ)

(t− τ)ε

Γ(1+ ε)
dτ

= f (n)(t)+ εγ f (n)(t)+ ε f (n)(0) ln(t)+ ε

∫ t

0
f (n+1)(τ) ln(t− τ)dτ +o(ε).

Proof. When β = n, the conclusion is straightforward. We prove in the following
the case n−1 < β < n. By the definition of the Caputo derivative and integration by
parts, we have

C
0 Dβ

t f =
f (n)(0)(t−0)n−β

Γ(n+1−β )
+

1
Γ(n+1−β )

∫ t

0
f (n+1)(τ)(t− τ)n−β dτ

= f (n)(0)+
∫ t

0
f (n+1)(τ)dτ

+ f (n)(0)[
tε

Γ(1+ ε)
−1]+

∫ t

0
f (n+1)(τ)[

(t− τ)ε

Γ(n+1−β )
−1]dτ.

This can be simplified as
C
0 Dβ

t f − f (n)(t) = f (n)(0)[
tε

Γ(1+ ε)
−1]+

∫ t

0
f (n+1)(τ)[

(t− τ)ε

Γ(n+1−β )
−1]dτ. (B.2)

By the Taylor’s expansion for the log-gamma function, it holds that for |ε|< 1,

lnΓ(1+ ε) =−γε +
∞

∑
k=2

ζ (k)
k

(−ε)k,

where ζ (k) is the zeta function and γ =
∫

∞

0
e−t−1+t
t(et−1) d t. By Taylor’s expansion in ε , we

have

(t−b)ε = 1+
K

∑
k=1

(ln(t−b))k

k!
ε

k +o(εK), t > b.

Then
(t−b)ε

Γ(1+ ε)
−1 = (t−b)ε exp(γε−

∞

∑
k=2

ζ (k)
k

(−ε)k)−1

= (1+
K

∑
k=1

(ln(t−b))k

k!
ε

k +o(εK+1))(1+ γε−
∞

∑
k=2

ζ (k)
k

(−ε)k +o(ε))−1

= ε(γ + ln(t−b))+o(ε). (B.3)
Then by (B.2) and (B.3), we conclude that

C
0 Dβ

t f = f (n)(t)+ f (n)(0)[
tε

Γ(1+ ε)
−1]+

∫ t

0
f (n+1)(τ)[

(t− τ)ε

Γ(1+ ε)
−1]dτ

= f (n)(t)+ ε f (n)(0)(γ + ln(t))+ ε

∫ t

0
f (n+1)(τ)(γ + ln(t− τ))d t +o(ε)

= f (n)(t)+ εγ f (n)(t)+ ε f (n)(0) ln(t)+ ε

∫ t

0
f (n+1)(τ) ln(t− τ)d t +o(ε). �
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LEMMA 2 (Approximation of chain rule). For n−1 < β ≤ n (n = 1), let n−β = ε

and then there exists a constant C depending on f ,g that
C
0 Dβ

t f (g(t)) = 0I
1−β

t f ′(g)C0 Dβ

t g+Cε. (B.4)
Proof. By Lemma 1, we have
C
0 Dβ

t f (g(t)) = [ f (g)](n)(t)+ εγ[ f (g)](n)(t)+ ε[ f (g)](n)(0) ln(t)

+ ε

∫ t

0
[ f (g)](n+1)(τ) ln(t− τ)dτ +o(ε)

= f ′(g)g′(t)(1+ εγ)+ ε f ′(g(0))g′(0) ln(t)

+ ε

∫ t

0
[ f (g)](n+1)(τ) ln(t− τ)dτ +o(ε)

= (0I
1−β

t f ′(g)−C f ε)(
C
0 Dβ

t g−Cgε)(1+ εγ)+ ε[C f (g)− γ f ′(g)g′(t)]

= 0I
1−β

t f ′(g)C0 Dβ

t g+Cε.

Here C is a constant depending on f , g and β . This conclusion implies that the chain
rule holds up to a first-order approximation in ε .

LEMMA 3 (Approximation of product rule). For n− 1 < β ≤ n (n ∈ N), let
n−β = ε and then there exists a constant C depending on f ,g that

C
0 Dβ

t f g = C
0 Dβ

t f C
0 Dβ

t g+Cε. (B.5)
The proof of this lemma is based on Lemma 1 as in the proof of Lemma 2 and is

thus omitted.

Received on December 2020
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