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Abstract. The problem of the time-dependent quasi-optimal deceleration of 
dynamically symmetric rigid body rotations under a small control torque in the 
ellipsoidal domain with close unequal values of the ellipsoid’s semiaxes is studied. It 
is assumed that the body contains a spherical cavity filled with a highly viscous fluid 
(assuming small Reynolds numbers). The body is assumed to have a moving mass 
connected to it via elastic coupling with quadratic dissipation. The moving mass is 
modeling the loosely attached elements in a space vehicle, which can significantly 
affect the vehicle’s motion relative to its center of mass during a long period of time. 
In addition, the body is acted upon by a small medium resistance torque. The problem 
is solved asymptotically, based on the procedure of averaging the precession-type 
motion over the phase. The qualitative properties of quasi-optimal motion are 
analyzed and the corresponding graphs are presented. 
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1. INTRODUCTION 

The desirable development in the field of research describing the problem of 
dynamics and control of rigid bodies moving about a fixed point would imply that 
the bodies were not absolutely rigid but rather close to ideal models. The need for 
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the analysis of the influence of various deviations from the ideal states is caused by 
growing accuracy requirements in space exploration, gyroscopy, etc. The effect of 
nonideality can be analyzed by singular perturbation methods, averaging, or other 
asymptotic methods of nonlinear mechanics. This deviating from ideal state 
reduced to the presence of additional perturbation torques in Euler dynamic 
equations for a fictious rigid body. The motion of rigid bodies with internal degrees 
of freedom was investigated in [1‒7].  

Considerable attention was paid for analysis of the uncontrolled motion of 
rigid bodies with a cavity filled with a highly viscous fluid [1, 2, 8, 9]. Passive 
motion of rigid bodies in a resistive medium was studied in [2, 10‒12]. 

A significant number of works were devoted to the analysis of various 
problems of the dynamics of space vehicles containing internal movable masses. 
The issues of stabilization of motions have been studied in [13‒15]. The control of 
the rotations of quasi-rigid bodies using concentrated (applied to the body) torques, 
has been studied in less extent [4, 16‒18]. 

We consider a problem of the quasi-optimal deceleration of dynamically 
symmetric rigid body rotations with a cavity filled with a highly viscous fluid. A 
moving mass is attached to a point on the body’s symmetry axis. It is assumed that 
in relative motion the point is acted upon by the restoring elastic force and the 
resistance force proportional to the squared velocity (quadratic friction). In 
addition, the body is affected upon by the dissipative torque of the resistance of the 
medium. 

2. STATEMENT OF THE PROBLEM 

We consider controlled rotations of a dynamically symmetric rigid body with 
a cavity filled with a viscous fluid assuming low Reynolds numbers [1, 2]. In 
addition, a moving mass of relatively small linear dimensions, due to elastic 
relation with a quadratic dissipation [2, 3, 17], is attached to the moving body in a 
resistive medium. Based on the approach [4], the asymptotically approximate 
equations of controlled rotational motions in the coordinate system associated with 
the body (the Euler dynamic equations) should be presented in the form: 

   G ω G M + M M + M u p r . (1) 

Here, M u  is the vector of control external reactive torque, M p  is the vector of 
internal disturbing torque caused by the presence of a viscous fluid in the cavity 
inside the body, M  is vector of internal disturbing torque due to elasticity and 

quadratic friction of the damper, M r  is the torque of dissipation forces (resistance 
of medium). The vector G Jω  is the angular momentum of the body, where  

1 1 3diag( , , )J A A A  is a constant symmetric inertia tensor of the unperturbed body, 

reduced to the main axes, 
T( , , )ω p q r is the vector of angular velocity 
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represented by its projections onto the appropriate axes. The module of the angular 
momentum of the body has the form 

1 1
2 2 2 2 2 2 2 2 22 2
1 3 1 3

2 2 2
1 3

( ) ,

, .









           

  

GG A p q A r A A r

A A p q
  

We describe the structure of the control action. The magnitude of the control 
torque M u  is assumed to be small of order  , where 1   – is the small 
dimensionless parameter. Components of control torques should be presented in 

the form of products , 1,2,3 i ibu i  [4]: 

1, , 1,2,3, 1.u
i i i i iM bu u GG i    u  (2) 

Here, the constant expressions ib  all have the dimension of the torque of force and 

are quite close to each other, iu  are dimensionless control functions, which we 

should determine. 
To simplify the solving of the optimal control problem, a structural constraint 

is introduced into the system (1). It is believed that the torque of resistance forces 
of the medium is small and proportional to the angular momentum of the body [2, 
11, 16‒18] 

  M Jωr , (3) 

where   is some constant coefficient of proportionality, determined mainly by the 
properties of the medium and the shape of the body and having the dimension of 
angular velocity. 

Taking into account (2), (3), the approximate system of equations of 
controlled motion (1) in projections onto the main axes of inertia of the body has 
the form [2‒4, 10, 16‒18]: 

 

 

 

1 2 2 6
1 3 1 1 1 1

1 2 2 6
1 1 3 2 1 1

1 2 2 1 5 3
3 3 3 1 3 3
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

       

       

     

  







A p A A qr b A pG Lpr FG qr Spr A p

A q A A pr b A qG Lqr FG pr Sqr A q

A r b A rG H p q r A A Sr A r

A A A A

 (4) 

It is worth to note that when the coefficients are equal 1 2 3 ( 0)   b b b b b  

where parameter b  can be suggested to be time-dependent, control (2) is optimal. 

This property explains the assumption of proximity ib  and the introduction of the 

term «quasi-optimal control» [4]. 
The coefficients , , ,F S H L  in (4) should be expressed through parameters 

of the system in this way [2‒4]:  
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   

2 2 3 3 3 4 4 1
1 3 1 3 3 1

1 1 1 2 2 2 2
0 1 3 1 0 1 3 1 3

, , 1

, , .

 

    

    

   


     

     

F m A A S m d d A A d A A

H P A A A L P A A A A p q
 (5) 

We introduce the notations in (5) which characterizes the torques of forces (caused 
by the presence of an elastic element). Here, m  is the mass of the moving point,   

is the radius-vector of the point of attachment of the moving mass which is located 
on the axis of dynamic symmetry of the given body, | |   . The constants 

2 ,  c m  3
1 0,      m  determine the frequency of oscillations and 

the velocity of their attenuation, respectively; c is the stiffness,  is the quadratic 

friction coefficient, 0  is the modulus of the initial value for the angular velocity 

vector. 

If we assume that the coupling coefficients 1  and   are such that the 

“free” point motions caused by the initial deviations decay much faster than the 
body makes a revolution, then in this case the body’s motion should be close to the 
Euler-Poinsot motion, and the relative oscillations caused by this motion will be 
small.  

Inequality 0  allows us to introduce a small parameter into expressions 

,F S  (5) and we can consider the corresponding perturbation torques as small in 

order to apply the averaging method outside the possible initial transient process. 
The coefficients ,H L  in (5) determine the torque of forces due to the 

motions of a highly viscous fluid in the body cavity,   is a fluid density,  is a 

kinematic viscosity coefficient, 0P  is the coefficient, which depends on the shape 

of the cavity and characterizes energy dissipation due to fluid viscosity. In the case 

of a spherical cavity of radius d  it equals 7
0 8 / 525P d  [1, 2]. The main 

admission is the assumption that the Reynolds number is small Re << ε << 1.  

3. ASYMPTOTIC APPROACH TO THE PROBLEM  
OF QUASI-OPTIMAL DECELERATION 

First, let us make the problem to be dimensionless. For definiteness, let us 

select the moment of inertia of the rigid body with respect to the axis 1x  – 

1 2A A and the variable 0  of the order of its initial velocity as characteristic 

parameters for the problem. Introducing the dimensionless time 0  t and the 

dimensionless inertia coefficients 1i iA A A , system (4) will take the form:  
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(6) 

Here, taking into account the assumptions made, the following notations are also 
introduced: 

2 2 1 2 3 3 1 4 6
1 3 0 3 3 1 3 0, (1 ) |1 | ,F m A A S m A A A A                 

1 1 1 1 1
0 1 3 3 0 0 3 3 1 0(1 ) , ( 1) ,L P A A A H P A A A                    

2
1 0 0 1 0 1 2, , , 1.i ib b A G G A A A              

(7) 

Here and below, we omit the sign «~» at using the dimensionless variables. 
Then we use the common generating solution of the system (6) for 0  : 

cos , sin , 0, const 0.     p a q a a r  (8) 

Here,  3 01    A r  is the phase of oscillating the equatorial component of 

the angular velocity vector. 
We substitute (8) into the third equation of system (6). For the first two 

equations of (6), the expressions are true: 2 2 2 a p q  and cos sin    a p q . 

We average the obtained system of equations for a  and r  over the phase  . 

Introducing the slow argument     after averaging, we obtain that the system 

takes the form (here, ' d d ): 

 

 

1 2 6
1 2

1 2 2 4 3
3 3

/ 2 ,

.

a a G b b Lr Sr a

r r b G Ha A Sr a



 
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     




 (9) 

The averaging of expressions containing factor F  equals zero. With 

additional demands 1 2 3  b b b b  equations for a  and r  can be fully integrated 

and this optimal control problem is thus solved analytically. 

4. APPROXIMATE SOLUTION 

Let us consider a special case 

1 2 30.5( ) .  b b b b  (10) 

Multiplying the first equation in (6) by p , the second equation by q , and the 

third one by 2
3A r  then, we should then sum them all. After averaging, we obtain 

next equation: 
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.   G b G  (11) 

Taking into account the initial 0
0( ) G G  and final conditions 

   0 0
0 0, , 0, ,  G T G T T G , we obtain after the appropriate integrating (11) 

   0 01
exp , ln 1 .


 

  

   
          

   

b b
G G G

b
 (12) 

Let us note that in (12) the quantity   while 0 G b  for different 

;  in turn, 0  while 0 0 G b  ( is arbitrary) or   . 

We consider below the change of variables for system (9) subjected to the 
condition (10); besides, we consider the change of variables: ,  r G a G . The 

equations of system (9) should be then written in the form: 

 2 2 5 4 2 2 2 5 4
3

d d
, ( ).

d d
G L SG G H A SG   

 
    

 
 (13) 

We divide the first equation of the system (13) by the second and obtain:  

 5 4

2 5 4
3

d

d ( )

L SG

H A SG






 

  
. (14) 

This equation (14) above can be solved numerically. 

5. NUMERICAL INVESTIGATIONS 

With the aim of solving the system (9), we have performed numerical 
investigations for various initial conditions and parameters of the problem. The 

renormalized quantities at the initial time are equal to values 0 1  , 3 1.2A ,  

3 1.5A  respectively, as well as control torque coefficients 1 0.1625b , 2 0.1b , 

3 0.15b  (moreover, 1 2 30.5( ) b b b ). In this paper, we have considered two cases 

which are corresponding to the set of initial data as below: 

0 0.35a ,   (15) 

0 0.626a . (16) 

We determine the angular velocity of rotation about the axis of dynamically 

symmetry by the formula  
1 22

0 0 0 r a at 0 1  . The calculations were 

performed at two values of the renormalized resistance coefficient 0.2, 0.5   as 
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well as the coefficients 0.5, 0.8,S  0.5, 0.8  H , 2 1 0.72, . 51  L . We select 

the parameters in such a way as to satisfy the conditions 3 2A , 0 0a r . The 

expression  
1

2 2 2 2
3  GG a A r  was used to plot the angular momentum 

absolute value. We present on the Figs. 14 very similar type of plots for the 
changing of functions a , r  and G , which we obtain as a result of numerical 
integration.  

 

 

Fig. 1 ‒ 0.2  ; 0.5S  ; 0.5H  . 

Plots of functions a , r , G  at values 0.2   and initial data (15) is 
presented on the Figs. 1 and 2. The deceleration time equals 4.75T  for different 
values of the coefficients S  and H , but at the increasing in the coefficients S  and 
H  the plot of function ( )a  is more curved (Fig. 2). 

The result of numerical integrations for the system (9) at different initial data 
(16) and value 0.5   is presented on the Figs 3, 4. In this case of calculations, 

3.51T . As we can see from the Fig. 2, the increasing of the coefficients of forces 
torques is due to the presence of the elastic element and viscous fluid in the cavity 
which causes a change in the decreasing of ( )a .  
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Fig. 2 ‒ 0.2  ; 0.8S  ; 0.8H  . 

 

Fig. 3 ‒ 0.5  ; 0.5S  ; 0.5H  . 
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Fig. 4 ‒ 0.5  ; 0.8S  ; 0.8H  . 

We can see from the plots that the value of the time of deceleration T  affect 
values of resistance coefficient  , with an increase in which the deceleration of the 

rigid body occurs faster, as well as the same is valid for the coefficient 3A . The 

influence of the initial values a  and r  on the time of deceleration is insignificant. 
Variation of variables a , r , G  is monotonous. Thus, the quasi-optimal 
deceleration problem has been solved. 

6. CONCLUSION 

The problem of the time-dependent quasi-optimal deceleration for the 
dynamically symmetric rigid body with a cavity filled with a fluid of high viscosity 
and a moving mass connected with the body by a quadratic dissipation damper in a 
medium with resistance was investigated. In the framework of the asymptotic 
approach, the averaged system of equations has been obtained, the deceleration 
time has been determined ( 4.75T  and 3.51T ) for the chosen numerical 
values of dimensionless parameters. The plots of the angular momentum G  of the 
body and the values of a  and r  (i.e., the equatorial, the axial component of the 
angular velocity, vector of a quasi-rigid body) are constructed. 
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