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Abstract. The main problem in artificial satellite theory is modeled by an initial
value problem describing the motion of a mass particle in an axially symmetric
potential. In the case of Earth, this potential is truncated up to order 4 in the
series that approximate the full potential, and only the even zonal harmonics
terms are considered. The problem is non-integrable and even exhibits chaotic
behaviour. However, approximate solutions may be given by replacing the orig-
inal potential with an approximation, generally named an intermediary poten-
tial. Several solutions have been offered in this way starting from the beginning
of the space era at the middle of the 20th century. The present work offers
the general intermediary potential that contains all of the previous models as
particular cases, opening the path in finding the most appropriate potential for
various types of orbits.
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1. INTRODUCTION

The Main Problem in Artificial Satellite Theory approaches the motion of a mass
particle in the potential of an oblate planet. The gravitational potential of a planet is
a function of its shape (modeled by its domain D) and its mass distribution, and it is
expressed in a point in space described by the position vector r as:

U (r) =
∫

Q∈D

dm
‖r− rQ‖

. (1)

For Earth, under the assumption of an axial symmetry, the potential in Equation (1)
is expressed as a series of spherical harmonics as:

U (r) =−µ

r

[
1−

∞

∑
n=2

Jn

(re

r

)n
Pn (cosφ)

]
(2)
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where µ is the gravitational parameter, Jn are the zonal harmonics, re is the mean
equatorial radius and Pn are the Legendre polynomials. Their argument is the cosine
of the colatitude φ of the satellite, its expression being used as:

cosφ = sinθ sin i (3)
where θ is the argument of latitude the and i is the inclination of the orbit. Since
the Earth dominant perturbation is given by the second zonal harmonic J2, the other
ones being three orders of magnitude smaller, i.e. J3,4 = O

(
J2

2
)
, the potential is

usually truncated at the second order and has the approximate expression U w U0 +
UJ2 , where

UJ2 (r) =
µJ2r2

e

r3 P2 (cosφ) =
µJ2r2

e

2r3

(
3sin2 isin2

θ −1
)
. (4)

The main perturbation model that is used in current applications was introduced
by Brouwer [2], and its two key features are common to all subsequent perturbations
theories. The first key feature is the replacement of the non-integrable Hamiltonian

H = H0 +UJ2 (r) (5)
with an integrable counterpart, that contains, in the case of Brouwer, the average of
the perturbation potential UJ2 (r) over one period of the unperturbed motion (gov-
erned by the Hamiltonian H0).

The second key feature, that is more subtle, is the introduction of a near-identity
canonical transformation. This is due to the fact that, in the moment when the po-
tential is replaced, the new model represents another motion, in another phase space,
being described with different canonical variables. The connection between the ”old”
variables, describing the real motion, and the ”new” variables is made exactly through
this near-identity canonical transformation, that in theory is an infinite series of terms
depending on the natural powers of the small parameter J2, but in practice it is trun-
cated to a finite number of terms that give the order of the perturbation model.

Brouwer’s original model suffered from a series of inconveniences, being sin-
gular at low inclinations and small eccentricities, due to the use of the Delaunay
elements (which is however justified by the fact that they are the action-angle vari-
ables of the unperturbed Keplerian motion). This deficiency was later improved by
Lyddane [10] through the use of the Poincaré canonical variables.

However, in the same period as Brouwer’s celebrated work, some other approx-
imate potentials were proposed. Sterne [11] proposed an integrable approximation
of the J2 potential. Incited by him, Garfinkel [7] proposes an intermediate integrable
approximation and later extends it to a potential [8] that also takes into consideration
the effects of the zonal harmonics J3,4.

Several years later, Aksnes [1] finds another integrable approximation for the
main problem in artificial satellite theory, and further on Cid and Lahulla [3] propose
an integrable approximation that admits a closed form solution (with the help of
elliptic integrals).

All the aforemementioned works make use of the classical Poincaré-von Zeipel
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canonical perturbation theory, that suffers a major deficiency, inherited from the clas-
sical canonical transformations in Hamiltonian mechanics: the generating function is
expressed in mixed variables, namely it is expressed with the help of half of the old
and half of the new variables. This makes the symbolic computations cumbersome,
especially at higher orders.

Deprit [5] proposes a new perturbation paradigm, in which the near-identity
canonical transformation is expressed as a Lie series, and has the enormous advan-
tage that it is not expressed in mixed variables, allowing an explicit transformation
between the new and the old variables (and vice-versa). He also proposes an inte-
grable approximation – Deprit’s radial intermediary – that has closed form solution
[4].

The present paper focuses on two key aspects: (i) it presents a general pertur-
bation framework in which all possible integrable intermediaries (including the ones
listed above) may easily be deduced and (ii) it offers a method of solution (only at
first order) for any of the cases. The aim to offer a novel solution to the main problem
is beyond the scope of this paper, as well as proceeding to higher orders. However, all
that is presented further may be extended to (i) higher order zonal harmonics in the
gravitational potential and (ii) higher order solutions, all these extensions depending
only on technical manipulations.

2. HISTORICAL INTERMEDIARIES

We start by setting the classical orbital elements a (semimajor axis), e (eccen-
tricity), i (inclination), ω (argument of perigee), Ω (right ascension of the ascending
node) and M (mean motion) of a Keplerian unperturbed orbit. Denote by f the true
anomaly of the satellite and let η =

√
1− e2. The semilatus rectum is p = aη2. The

argument of perigee is expressed then as θ = ω + f .
The Delaunay orbital elements (l,g,h,L,G,H) are listed here for the sake of com-

pleteness:
l = M g = ω h = Ω

L =
√

µa G =
√

µ p H =
√

µ pcos i .
(6)

We also list another set of canonical variables that are used, namely the Whittaker
variables, also known as the polar-nodal ones:

r = p(1+ ecos f )−1
θ = g+ f ν = h

R = ṙ = Gp−1esin f Θ = G N = H
(7)

Also denote:

k2 =
µJ2r2

e

2
c = cos i = N/Θ s = sin i =

√
1− c2 (8)

Since the inclination of a satellite is always betwen 0 (prograde equatorial orbit) and
π (retrograde equatorial orbit), there is no sign ambiguity in the last of Eqs. (8).

With these notations, we can now list the intermediaries mentioned in the Intro-
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duction:

H0+
k2

r3

(
1−3c2−3s2 cos2θ

)
full J2

3k2

pr2 s2 cos2θ +
k2

r3

(
3c2−1

)
Sterne, 1957

3k2η

p2r

(
3c2−1

)
+

3k2

pr2

(
3s2−2+ s2 cos2θ

)
Garfinkel, 1958

k2η3

p3

(
3c2−1

)
Brouwer, 1959

2k2

pr2

(
1−3c2−3s2 cos2θ

)
Aksnes, 1965

k2

r3

(
3c2−1

)
Cid-Lahulla, 1969

k2

pr2

(
3c2−1

)
Deprit, 1981

(9)

2.1. A General Intermediary Framework

The forms of the intermediaries in Equations (9) suggest a generalization, that is
presented as follows. Assume the most general form of an intermediary, that is:

K = H0 +V0 +V1 +V2 +V3 (10)
where H0 is the unperturbed Hamiltonian and the intermediary potentials Vk, k ∈
{0,1,2,3}

V0 =
k2η3

p3 (A00 +A01 sin2θ +A02 cos2θ) (11a)

V1 =
k2η

p2r
(A10 +A11 sin2θ +A12 cos2θ) (11b)

V2 =
k2

pr2 (A20 +A21 sin2θ +A22 cos2θ) (11c)

V3 =
k2

r3 (A30 +A31 sin2θ +A32 cos2θ) . (11d)

The choice of the factors in front of the parentheses will be explained further in
this paper. One may notice that the so-called fast variables are contained inside the
parentheses (through the argument of latitude θ = ω + f ), as well as in the negative
power of the radial distance r. This power is reflected in the index of the intermediate
potentials Vk.

We choose the terms Akm, k ∈ {0,1,2,3}, m ∈ {0,1,2} to be only functions of Θ

and N (or G and H in Delaunay variables). What we demand from the Hamiltonian
in Equation (10) is to be integrable in the first place. Following a result by Stackel,
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expressed in polar-nodal variables, we already know that it must be of the form:

K =
1
2

(
R2 +

Θ2

r2

)
− µ

r
+U1 (r,Θ,N)+

µ

r2 U2 (θ ,Θ,N) . (12)

The expression of the Hamiltonian in Equation (12) implies that the zonal terms
(i.e. those depending on θ ) to be present only in V2, that makes:

Akm = 0,k ∈ {0,1,3},m ∈ {1,2} . (13)
Equations (11) transform into:

V0 =
k2η3

p3 A00 (14a)

V1 =
k2η

p2r
A10 (14b)

V2 =
k2

pr2 (A20 +A21 sin2θ +A22 cos2θ) (14c)

V3 =
k2

r3 A30 . (14d)

With Equations (14), a general form of an intermediary has been listed. For the
sake of simplicity, a different notation for the new variables has been omitted, that is
related to the variables displayed in Equations from Eq. (10) onward. The connection
between these variables and the old ones is given by an infinitesimal canonical trans-
formation, or infinitesimal contact transformation, following the paradigm introduced
by Deprit [5].

The potentials listed in Equations (9) are recovered through particular values
given to Akm = Akm (Θ,N) as follows:

A22 = 3s2; A30 = 3c2−1 Sterne, 1957

A10 = 3
(
3c2−1

)
; A20 = 3

(
3c2−1

)
; A22 = 3s2 Garfinkel, 1958

A00 = 3c2−1 Brouwer, 1959

A20 = 1−3c2; A22 =−3s2 Aksnes, 1965

A30 = 3c2−1 Cid-Lahulla, 1969

A20 = 3c2−1 Deprit, 1981

(15)

For each intermediary, if the values are not displayed for particular Akm ’s it means
that they are 0.

3. THE “EFFICIENCY” CONDITION

This condition was stated by Deprit [4] as a generalization of Brouwer’s ap-
proach. Briefly, it states that for an intermediary to be efficient (or “natural”), it
needs to have the same average (over one unperturbed period) as the full unperturbed
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potential, that is:∫ T

0

(
−UJ2 (r,θ ,−,R,Θ,N)+

3

∑
k=0

Vk (r,θ ,−,R,Θ,N)

)
dl = 0 (16)

By making the change of variable

dl =
r2

Θ
d f

and by denoting, for an arbitrary function U :

<U >l=
1

2π

∫ 2π

0
U

r2

Θ
d f

and after some computations it follows that:

< UJ2 >l=
k2η3

p3

(
1−3c2) (17a)

< Vk >l=
k2η3

p3 Ak0, k ∈ {0,1,2,3} (17b)

The choice of the coefficients in front of the parantheses in Equations (14) becomes
now obvious. The efficiency condition (16) becomes:

<UJ2 >l=< V0 +V1 +V2 +V3 >l

that gives :
S0 = A00 +A10 +A20 +A30 = 1−3c2. (18)

It is important to notice that the only potential in Equations (9), namely that of
Garfinkel, it does not obey this efficiency condition (although it obeys the form of
the Hamiltonian listed in Equation (12) that guarantees integrability). In the case of
Garfinkel’s potential, the sum S0 defined in Equation (18) is:

SGar f inkel
0 = A10 +A20 = 6

(
3c2−1

)
6=
(
3c2−1

)
. (19)

One interesting fact to be mentioned is that by this procedure, we have embedded
into our general approach all the known historical intermediaries, unlike the attempt
to find their general form proposed by Ferrandiz et al. [6]. This is due to the fact that
we have first searched for the intermediary potential, and only afterwards we have
proceeded to build the perturbation theory based on Lie series.

4. THE INFINITESIMAL CONTACT TRANSFORMATION

The transformation is generated by following the rules of the Lie triangle [5], and
the procedure (developed here only for the first order) is as follows. We choose to
seek for the generating function by using the Delaunay canonical variables because
of their simplicity and because the very simple form of the unperturbed Hamiltonian,
keeping in mind the the Lie derivative is invariant to canonical changes of variable.
The infinitesimal contact transformation, which is computed from the partial deriva-
tives of the generating function, can be expressed with the help of the polar-nodal
(Whittaker) canonical variables, that do not exhibit any singularity for small eccen-
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tricities, while the singularity that exists for small inclinations is practically removed
by the axially-symmetric nature of the potential field, h being a cyclic variable.

In what follows, to be consistent with Deprit’s notations (and also with the very
clear perturbation approach presented in [9]), we will denote by H0,0 the unperturbed
Keplerian Hamiltonian:

H0,0 =
1
2

(
R2 +

Θ2

r2

)
− µ

r
=− µ2

2L2 (20)

by H1,0 the potential is the J2 perturbation part of the full J2 Hamiltonian,

H1,0 =
k2

r3

(
1−3c2−3s2 cos2θ

)
(21)

and by H0,1 the intermediary potential that is the J2 part of the approximate Hamil-
tonian:

H0,1 =
3

∑
k=0

Vk (r,θ ,−,R,Θ,N) . (22)

Note that the canonical variable R appears in H0,1 only if one chooses A00 or A10
to be non-zero (we are in the integrable setting defined in the general form by the
expressions of the Vk potentials from Equations (14)).

The first term of the generating function W, denoted by W1, satisfies the omolo-
goical equation:

{W1,H0,0}= H1,0−H0,1 (23)
where {·, ·} denotes the Lie-Poisson bracket, defined for any set X = X(q,p) of
canonical variables and two scalar valued functions f = f (X) , g = g(X) as:

{ f ,g}= ∂ f
∂X

J

(
∂g
∂X

)T

(24)

where ∂ f/∂X denotes the gradient of f with respect to the vector field X,

∂ f
∂X

=

[
∂ f
∂q1

∂ f
∂q2

∂ f
∂q3

∂ f
∂ p1

∂ f
∂ p2

∂ f
∂ p3

]
and J is the symplectic matrix:

J =

[
O3 −I3
I3 O3

]
.

Since in Delaunay variables the unperturbed Hamiltonian H0,0 depends only on
the action variable L, most partial derivatives in the Lie bracket vanish, leaving the
homological equation (23) to be:

{W1,H0,0}= n
∂W1

∂ l
(25)

where n = Θη3 p−3 is the angular frequency of the Keplerian unperturbed orbit. The
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partial derivatives equation (23) may be solved through simple integration, giving:

W1 =
k2η3

p3

{[
A20 +A30 +

1
2
(
3c2−1

)]
( f − l)

+σ

[
ηr
p

A10 +A30 +
1
2
(
3c2−1

)]
(26)

+

[
1
2

A22 + s2
(

κ +
3
4

)]
sin2θ − 1

2
(
A21 + es2)cos2θ

}
where the functions κ and σ are defined as:

κ = ecos f =
p
r
−1 σ = esin f =

pR
Θ

. (27)

The quantity φ = f − l is called the equation of the center. The partial derivatives
of W1 with respect of the polar-nodal variables (r,θ ,h,R,Θ,N) can be computed by
taking into account [9]:

∂η

∂ r
=

κ p
ηr3

∂η

∂R
=−σ p

ηΘ

∂η

∂Θ
=

η2− (1+κ)2

ηΘ

∂φ

∂ r
=

σ

r

(
1+κ

1+η
+

η

1+κ

)
∂φ

∂R
=

σ

R

(
κ

1+η
+

2η

1+κ

)
∂φ

∂Θ
=−σ

R
2+κ

1+η

(28)
The partial derivatives of the eccentricity may be easily computed by taking into
account that e2 +η2 = 1, that gives

∂e
∂u

=−η

e
∂η

∂u
(29)

for any variable u among the polar-nodal ones.
One has also to take into account that the (unspecified) factors Akm depend solely

on Θ and N. Their choice may be made at will, under the restriction that they should
satisfy the efficiency condition (18).

The infinitesimal contact transformation (at first order), direct and inverse, may
be deduced from:

X = X′+
{

W1,X′
}

(30a)

X′ = X−{W1,X} . (30b)
Since the aim of this paper is not to develop a full perturbation theory based on

the general form of an intermediary, we will not display here the expanded form
of Equations (30). These derivations, together with the tuning of the unspecified
terms Akm = Akm (Θ,N) , will be subject to future work. Note that in this framework,
Equations (30), togehter with the explicit expression of the generating function W1 in
Equation (26), contain all the contact transformations derived for all the ”historical”
intermediaries listed within this paper.
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5. CONCLUSIONS

We offer a general framework to seek for intermediary solutions for the main
problem in artificial satellite theory, more exactly the motion around an oblate spheroidal
planet. By using simple algebraic manipulations, we deduce the general form for in-
termediary potentials, the ”natural” ones being those whose average is the same as
the average of the full perturbing potential (they satisfy the efficiency condition). Af-
ter imposing the necessary condition of integrability, we offer a general perturbation
framework with unspecified parameters that may be tuned arbitrarily in the given ef-
ficiency condition. Some particular value sets of these parameters lead to the known
”historical” intermediaries that started being used at the beginning of the space era.
In this way, we have shown that there exists a general intermediary that embeds all
possible situations. This approach leads the way to build new perturbation theories
in the main problem of artificial satellite theory. The same approach may be applied
for higher-order zonal harmonics and, of course, higher-order perturbation models.

Received on December 2020
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