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Abstract. Environmental sounds detection plays an essential role in computer science 
and robotics as it simulates the human function of hearing. It is applied in 
environment research, monitoring and protection, by allowing investigation of natural 
reserves, and showing potential risks of damage deduced from the environmental 
acoustic. In this paper we present experimental results of attempts to separate different 
types of acoustic events from continuous environment recordings. We apply some 
deep learning approaches i.e., Deep Feed Forward networks, and Long short-term 
memory (LSTM) recurrent neural networks, feeding at input several types of 
parameters: spectral, cepstral and temporal features, and assessing various 
input/output data organization, or network configuration. The methods are evaluated 
and compared with some classical methods explored before. 
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1. INTRODUCTION 

Environmental noise recognition became an essential field of computer 
science and robotics, as it simulates the important function of human hearing, and 
is intended to overpower it. Hearing, the second most important human sense after 
vision, is not to be ignored when building a computer. Until recently, the research 
in acoustic signal processing has been done mostly around speech and music, with 
less exploration for the non-speech environmental sounds. However, lately, other 
categories of sounds receive attention as well, in the framework of a new discipline 
AESR (Automatic Environment Sound Recognition) with applications in content-
based search, robotics [1], security environment monitoring and protection [2‒5]. It 
involves the study of such aspects as AED (Acoustic Event Detection) or 
computational auditory scene analysis (CASA). By environmental sounds, we 
mean everyday sounds, natural (leaves rustling, animal noise, birds chirping, water 
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ripple, wind blowing through trees, waves crashing onto the shore, thunder) or 
artificial (produced by engines like cars, cranes, ATVs, snowmobile, lawnmower, 
pneumatic hammer, chainsaw, or creaky door, gunshots, crowd in club).  

In the framework of the SeaForest project, we proposed an architecture based 
on a sensor network. The design of the framework includes:  

• A wireless network of sensors to collect data from the forest environment, 
for monitoring gas emissions, heat, humidity acoustic data;  

• A data processing module based on a MQTT server application. 
• An acoustic data processing module to identify nature of acquired signals.  

The focus of our research in the context of forest monitoring is logging risk 
detection by identification of specific classes of sounds: chainsaw, vehicles, or 
maybe speech. We extend an earlier research on acoustic signal processing, by 
exploring the state-of-the-art paradigm in data modelling and, the Deep Neural 
Networks (DNN). We examine two types of DNNs, the Deep Feed Forward Neural 
Networks (FFNN) and a popular version of Recurrent Neural Networks (RNNs), 
the Long Short-Term Memory (LSTM). The two neural networks will be run on 
two types of feature spaces: the Mel-cepstral and the Fourier power spectrum 
feature spaces. We will compare the achieved results with the former performance 
obtained using the Gaussian Mixtures Modelling (GMM) and the Dynamic Time 
Warping (DTW). Another purpose of the paper is to clarify some issues concerning 
signal pre-processing framework, like length of the analysis window and the 
underlying frequency domain to be used in spectral analysis. 

The paper is structured as follows: next the state-of-the-art in environmental 
sound recognition is described; the third section details our approach: signal feature 
extraction and modelling methods we applied in sound recognition; the fourth 
section presents the setup of the experiments and evaluates the proposed methods; 
the last part lays the conclusions of the paper. 

2. STATE-OF-THE-ART 

Early attempts to assess speech typical methods in the context of non-speech 
acoustics can be found for instance in [6, 7]. Artificial Neural Networks (ANN), 
DTW, Hidden Markov Models (HMM), Learning Vector Quantization (LVQ), 
applied on Fourier or Linear Predictive Coding (LPC) features are evaluated. 

In [8] an overall investigation of different categories of acoustic signals and 
the appropriate recognition methodologies. The environmental sounds are 
classified as stationary and non-stationary. The framework for stationary acoustic 
signals coincides to a great extent with the one used in voice-based applications 
(speech or speaker recognition) in what concerns features extraction, where 
spectral features prevail, derived from Mel analysis, LPC, Spectral Dynamic 
Features (SDF), techniques based on signal autocorrelation, and feature space 
modelling methods, where GMM, k-Nearest Neighbours (k-NN), LVQ, DTW, 
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HMM, Support Vector Machine (SVM), DNNs are frequently applied. Concerning 
the non-stationary signals, successful methods are based on sparse representations 
using the Matching Pursuit (MP) to generate MP-Gabor features. Alternative 
approaches use fusion of different methods to boost the performance of the system.  

In [9] the authors evaluate the up-to-the-minute methodologies used in 
AESR. The leading approaches are GMM, in fact, the GMM-UBM (Universal 
Background Model). SVM and two neural network architectures, DNN/RNN, in 
the context of open-set identification experiments on two types of acoustic events, 
baby cries and smoke alarm, and a very large world set of ambient sounds as 
source of impostor, representing a great range of complementary acoustic events. 
The FFNN yields the best identification rate, while the best computational cost is 
achieved by GMM. SVM has an intermediate performance as identification rate yet 
at a very high computational cost.  

 

 
Fig. 1 – The framing process of a real-life sound with classification of each 3s frame. 

Concerning the framework applied in AESR, this material draws on the ideas 
presented in [8]. The usual pre-processing applied in AESR includes a framing 
process for the acoustic signal, usually followed by sub-framing or sequential 
processing. In the “framing” stage the signal is processed continuously, frame by 
frame. A classification decision is made for each frame and successive frames may 
belong to different classes. This can enhance the acoustic signal classification by 
structuring the stream into more homogeneous blocks to better catch the acoustic 
event. In real circumstances it could answer the questions "What happened when?" 
and “How persisting and possibly dangerous the happening events are?”. Yet, there is 
no way of setting an optimal frame length, as for some acoustic events, such as 
thunder or gunshot, the window length suited for engine detection, might be too 
large, and contain several other acoustic events. Thus, certain events could be 
associated to inappropriate classes. For applications like chainsaw detection in forest 
environment we consider a length of about 2‒3 s. This is illustrated in Fig. 1, where a 
chainsaw is detected in a forest environment. The scores are obtained by applying the 
GMM approach, for three classes of sounds: chainsaw, vehicle, genuine forest. 

The latest advances in instrumentation allow applying different frame lengths 
during monitoring, based on detecting signal energy layers of the environmental 
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sounds, to spare energy consumption. For low energy layers the length of the frame 
is increased and it is decreased when a rise of the energy layer is detected. 

Next, usually a sub-framing approach is applied, by dividing the frame into, 
usually overlapping, analysis subframes. The length of a subframe is explicitly set 
in [8] to 20‒30 ms. This length is suited for the analysis of speech sounds as it 
ensures a good resolution in time and frequency. Fig. 2 presents 22 ms of a male 
speech which includes three fundamental periods of the respective voice. Whereas 
Fig. 3 represents 22 ms of chainsaw sound, Fig. 4, 44 ms of chainsaw, and Fig. 5, 
88 ns of the same sound. From the image in the Fig. 3 we cannot infer anything 
about the periodicity of the chainsaw sound, while the two other intervals contain 
two respectively four periods of the sound. Therefore, considering sub-frames of 
over 44 ms is a reasonable solution for detecting chainsaw activities. On the other 
hand, in an acoustical environment different frame lengths could be suited to 
different acoustic events, so setting the analysis frame length should be a 
compromise between different lengths suited to different events. 

 

  
Fig. 2 –. 22 ms of male speech. Fig. 3 – 22 ms of a chainsaw sound.  

 
Fig. 4 – 44 ms of a chainsaw sound.  Fig. 5 – 88 ms of a chainsaw sound.  

 
The general processing applied on the analysis frames is usually the same 

with the one applied in speech signal applications and its final goal is to extract 
characteristic features. The largely applied features are related to the spectral 
analysis, i.e., derived from the Fourier features, like the Fourier coefficients, or 
cepstral features (MFCCs). Non spectral features are energy, Zero-Crossing Rate 
(ZCR), Spectral Flatness (SF), calculated in temporal domain. Concerning spectral 
analysis, the relevant frequency interval, for a signal sampling frequency of 44.1 
kHz is not the whole frequency domain [0, 22.05] kHz, but a shorter range, as 
shown in Figs. 5, 6. By setting the appropriate value for the frequency interval, we 
may improve the performance as accuracy and speed of execution, as another 
benefit of shortening the frequency interval is the decrease of the number of 
spectrum samples to be processed. 
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Fig. 6 – Power spectrum of a chainsaw sound. 

 

Fig. 7 – Power spectrum of a snowmobile sound. 

The usual pre-processing is applied on the analysis frame, and it includes 
(hamming) windowing and pre-emphasis.  

Classification methodology employed in environmental sound recognition is 
in many concerns similar to the one applied in speaker recognition. It might be 
aimed to either identification of environmental sounds, like in speaker 
identification, or to confirm or deny the nature of a sound like in speaker 
verification operated by authentication programs.  

3. THE METHOD 

Our methodology is inspired by the above presented facts. As features we 
used the Mel-cepstral coefficients [10], accompanied or not by SF and ZCR [11], 
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and the Fourier power spectrum. Modeling the feature space was accomplished 
using the DNN architectures: FFNN and LSTM.  

3.1. FEED FORWARD DEEP NEURAL NETWORKS 

 
Fig. 8‒ Neuron and myelinated axon, with signal flow from inputs at dendrites to outputs at axon 

terminals. 

The artificial neural networks (ANNs) were designed to simulate human 
associative memory, as presented in Fig. 8 [12]. They learn by processing known 
input examples, and corresponding expected results, creating weighted associations 
between them, stored within the network data structure. The input set consists of 
multiple independent variables, rather than a single value. Learning from a given 
example is made by difference in the state of the net before and after processing the 
example, leading to estimation of weighted relationships. 

3.1.1. Architecture of artificial neural networks 

ANNs are composed of artificial neurons, which express the biological 
concept of neurons. They receive input data, combine the input through internal 
processing elements like weights and bias terms, and apply an optional threshold 
using an activation (transfer) function, as shown in Fig. 8. 

 

 
Fig. 9 ‒ Structure of a neuron. 
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Transfer functions provide a smooth, differentiable transition as input values 
change, i.e., small changes in input produce small changes in output. They are used 
to model the output to lie between yes and no, mapping the output values between 
0 to 1 or –1 to 1, etc. Transfer functions are basically divided into: 

• Linear Activation Functions, 
• Non-linear Activation Functions, usually S – shaped functions such as: 

Logistic (a.k.a. Sigmoid or Soft step):  

( ) ( ) 1
1 xf x x

e−
= σ =

+
, (1) 

hyperbolic tangent, arctg function or Rectified linear unit (ReLU) 

( ) ( ) ( )max 0,f x x x= σ = . (2) 

Input data to artificial neurons are usually multidimensional pre-processed 
numerical data coming from text documents, images, acoustic environment. 

Deep feedforward networks (FFNN), also called feedforward neural networks 
[13], [14], or multilayer perceptrons (MLPs), are the quintessential deep learning 
models. The goal of a feedforward network for modelling and classification is to 
define a mapping ( ),y f x= θ  and learn the value of parameters θ to ensure the best 
approximation of the expected value y by the output of f, given the input x and 
parameters θ. FF have one or more hidden layers of sigmoid neurons followed by 
an output layer of linear neurons. The general diagram is shown in Figs. 10, 11, 
where the parameters to be tuned are the weight matrices and bias terms applied at 
the input of each layer, so that at the output of the overall system would be close to 
expected values. These networks are called feedforward because the information 
flows in one direction through intermediate computations and there is no feedback 
connection. The number of neurons does not necessarily decrease with the layer 
layer as presented in Fig. 10, but usually the goal is to reduce the dimensionality of 
the input layer, a process similar to feature extraction. A layer of neurons can be 
expressed by matrix of weights and bias vectors, as in Fig. 11. The transfer 
function is supposed to be the same for each neuron. 

 
Fig. 10 ‒ Feed Forward Neural Network architecture. 
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Fig. 11‒ Structure of a layer of neurons. 

The computation corresponding to Figs. 10, 12 can be written as 

( )( )( )( )( )( )4 4 3 2 1
4 3 2 1 1 2 3 4 ,a f W f W f W f W p b b b b⎛ ⎞== + + + +⎜ ⎟

⎝ ⎠
 (3) 

or more generally: 

( ) ( )( )( )
( )( )( )( )( )

1 1 2
1 1

1 2 3
1 2 2 1 ... .

k k k k k k
k k k k k k

k k k k
k k k k k k

a f W a b f W f W a b b

f W f W f W a b b b

− − −
− −

− − −
− − − −

= + = + + =

= + + + =
 (4) 

 

 
Fig. 12 ‒ Flow of data in a feedforward network. 

In the equations above the known information is  
a) The input parameters p . The input might be: 
• Measurements from sensors: wind speed, temperature, humidity 
• Parameters coming from images: matrices of colours, or grey hues. 
• Parameters coming from acoustic signals: Fourier spectrum on an 

analysis  
window, or more complicated parameters like cepstral, lineal prediction. 

b) The expected output: for instance, if we want to solve a three classes 
problem the corresponding output for each class input would be either:  

• Unidimensional (a scalar value for each class): ( )1,0,1−  or ( )0,1,2 .  
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• Multidimensional (a vector for each class): ( )1,0,0 , ( )0,1,0 , ( )0,0,1 .  
c) The neural network architecture: number of hidden layers, number of 

neurons on each layer, etc. 
Unknown parameters are:  
a) weights: kW ,  
b) bias terms: kb . 

3.1.2. Training  

Training of a Neural Network can be made in two ways: in batch mode and in 
incremental mode [13]. In batch mode weights and biases are only updated after all 
the inputs and targets are presented. The method can be applied to both static and 
dynamic networks. Incremental Networks receive the inputs one by one and adapt 
the weights according to each input. Usually, batch training is used. Equation (5) 
has several unknowns, the weight matrices and the bias terms, and a much larger 
training data, all the input data and the corresponding expected values. This 
implicates the realistic conclusion that there will not be any solution of the 
equation system. All we can do would be to find those parameters, weights and 
biases, that make the error between the output value and expected output, minimal: 

( ) ( )( )
2

1
, , ,

N
k

i i
i

e W b y a p W b
=

= −∑ , (5) 

where N is the number of (input, output) pair samples. 
To minimize the least mean square expression the LMS algorithm or 

Widrow-Hoff learning scheme, based on an approximate steepest descent 
procedure, are used. Adaptive linear networks are trained on examples of correct 
behaviour. There are many algorithms used to solve the equation. Mathlab has 
implemented and supports many network training algorithms: Levenberg-
Marquardt Algorithm (LMA), Bayesian Regularization (BR), BFGS Quasi-
Newton, Resilient Backpropagation, Scaled Conjugate Gradient, One Step Secant, 
etc. To start minimization using any of these the user should provide an initial 
guess for the parameter vector ( ),W bθ = . The performance of the system depends 
on this initial guess. Most of the above algorithms try to optimize this process. 

3.1.3. Classification 

At the end of the training process, we get a FFNN model, ( ),k kW b , 
1,2,...k K= , where K is the number of layers in the network. To classify a 



 Svetlana Segărceanu, Inge Gavăț, George Suciu 10 28 

sequence of data we “feed” them at the input of the network, perform all the 
operations applying the weights and biases to the input data, as in Fig. 12, and 
evaluate the output. If we coded the output classes as { }1 2, ,..., Cy y y , C  the 
number of classes, we compare the obtained output to these values and if the output 
is closest to cy  the input data will belong to class c . 

3.2. LONG SHORT-TIME MEMORY 

LSTM is an artificial recurrent neural network architecture RNNs are 
designed to handle sequences of events that occur in succession, with the 
understanding of each event based on information from previous events and are 
able to handle tasks such as such stock prediction or enhanced speech detection. 
One significant challenge for RNNs performance is that of the vanishing gradient 
which impacts RNNs long-term memory capabilities, thus are restricted to only 
remembering a few sequences at a time. LSTMs proposes an architecture to 
overcome the vanishing gradient problem and allow retain information for longer 
periods compared to traditional RNNs. Unlike standard feedforward neural 
networks, LSTM has feedback connections. It is capable of learning long-term 
dependencies, useful for certain types of prediction requiring the network to retain 
information over longer time periods, can process entire sequences of data (such as 
speech or video). 

It was introduced in 1997 by the German researchers, Hochreiter and 
Schmidhuber.  

3.2.1. Architecture 

Common architecture includes a cell (the memory part of the LSTM unit) and 
three "regulators", called gates, of the flow of information inside the LSTM unit:  

• input gate to control the extent to which new values flow into the 
cell, 

• output gate to control the extent to which a value remains in the cell, 
• forget gate to control the extent to which the value in the cell is used 

to compute the output activation of the LSTM unit. 
The LSTM is able to remove or add information to the cell state, through 

these gates. Some variations of the LSTM unit ignore one or more of these gates. 
• Peephole LSTM 
• Convolutional LSTM 

The cell is responsible for keeping track of the dependencies between the 
elements in the input sequence. The activation function of the LSTM gates is often 
the logistic sigmoid function. The connections to and from the LSTM gates, some 
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recurrent, are weighted. The weights are learned during training, they determine 
how the gates operate. The diagram of a cell is presented in Fig. 13 [15] and the 
LSTM flow is shown in Fig. 14.  

 

 
Fig. 13‒ Structure of a LSTM cell. 

 
 

 
Fig. 14‒ LSTM chain. 

The calculations that allow to solve the LSTM paradigm are [16]: 
 

( )
( )
( )
( )

( )

1

1

1

1

1
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,
,

.

t g f t f t f
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t t h t
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−

−
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= ⋅ + ⋅
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 (6) 
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We detail below the information in the diagram: 
Known data: 

• d
tx R∈  – input vector to the LSTM unit, 

d  and h  - number of input features and number of hidden units, respectively. 
Unknowns: 

• h
tf R∈  – forget gate's activation vector, 

• h
ti R∈  – input/update gate's activation vector, 

• h
to R∈  – output gate's activation vector, 

• h
th R∈ – hidden state vector (output vector of the LSTM unit), 

• h
tc R∈  – cell input activation vector, 

•  h
tc R∈  – cell state vector,  

• hxdW R∈ , hxdU R∈ , hb R∈  – weight matrices and bias vector parameters 
which need to be learned during training. 

Activation functions are: 
• gσ  – sigmoid function, 
• cσ  – hyperbolic tangent function, 
• hσ  – hyperbolic tangent function or, linear function. 

3.2.2. LSTM training and classification  

An optimization RNN training using LSTM units on data sequences is made 
in a supervised mode by a set of algorithms like gradient descent, combined with 
backpropagation through time to compute the gradients needed during the 
optimization process, in order to change each weight of the LSTM network in 
proportion to the derivative of the error (at the output layer of the LSTM network) 
with respect to corresponding weight. With LSTM units, when error values are 
backpropagated from the output layer, the error remains in the LSTM unit's cell. 
This "error carousel" continuously feeds error back to each of the LSTM unit's 
gates, until they learn to cut off the value. This allows to avoid the problem with 
standard RNNs where error gradients vanish exponentially with the size of the time 
lag between important events. This happens for sub unitary norm of the weights. 
The system is trained using the equations (6). 

4. EXPERIMENTAL RESULTS 

The experiments aimed at evaluation of the FFNN and LSTM in the context 
of three classes of sounds: chainsaw, genuine forest and vehicles. The two neural 
networks will be run on the two types of feature spaces: the mel-cepstral features, 
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accompanied or not by ZCR and Spectral Flatness. and the Fourier power spectrum 
spaces. We will compare the obtained results with the former performance obtained 
using GMM and DTW. The experiments were closed set identification and 
performance given by identification rates. 

At the framing layer we have evaluated segments of 3 s. We have assessed 
several lengths of subframes (analysis frames), based on the above remark (see Fig. 
2‒5). So, the lengths considered are mainly 22 ms, 44 ms, 88 ms. Concerning the 
frequency interval length, we have investigated lengths of 3.7, 7.4, 10 and 12 kHz.  

The acoustic material contains 99 recordings of the three classes of sounds, 
39 were used for training and 60 for testing, the testing set resulted in 685 segments 
of three seconds. 

4.1. EXPERIMENTS USING THE FFNN 

We have applied FFNN methodology feeding at input Mel-cepstral features 
(coming with or without Spectral Flatness and ZCR) and Fourier spectrum features. 
We have extracted 12 to 20 Mel-cepstral coefficients on different frequency 
intervals. At training we fed the information at the of sample layer, each sample 
being associated with the expected outputs 1, 0, ‒1, depending on the nature of the 
sound sample (chainsaw, genuine forest, vehicle engines). A sample in this case 
means a feature vector (of Mel-cepstral coefficients or Fourier coefficients, etc.). 
Another approach would have been to train the network at the layer of each 
segment, by associating the above expected output values depending on the nature 
of the segment. We applied the batch training and used the MATLAB framework. 
We evaluated the Bayesian Regularization, Levenberg-Marquardt Algorithm 
(LMA) as training solutions. At classification we evaluated each segment of 3 s, by 
assessing each of its samples. A sample belongs to a certain class if its output score 
is closest to that class expected output. The overall decision on the 3 s layer is 
taken by applying one of the rules: 
• Majority voting (the segment is associated with the class for which most of 

the samples of the segment belong to the respective class) 
• Average output: the average output score of the samples on the segment is 

closest to the expected output of a certain class.  
Concerning the network architecture, we have tested FFNN with 1 to 4 layers, 

with 6 to 10 neurons on each layer.  

4.1.1. Experimental results  

As the performance of the test depends on the initialization in the training ser 
we provided 5 tests for each configuration. The tables below present some relevant 
results. 
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Table 1 

FFNN – MFCC results of 5 tests using networks 
of 3 layers, with 8, 7, 6 neurons respectively 
88ms analysis windows, 0–10 kHz, 17 Mel-
coefficients, and Spectral flatness. Training 

accomplished by Bayesian Regularization, and 
classification using the majority voting rule  

Table 2 

FFNN – Power Spectrum results of 5 tests using 
networks of 4 layers, with 9, 8, 7, 6 neurons 

respectively, 88ms analysis windows, 0–7400 Hz, 
training models obtained by Bayesian 

Regularization and classification using the 
majority voting rule 

 Chai 
nsaw 

forest vehicle Gen 
eral 

test1 51.30 95.69 61.53 70.27 
test2 53.40 79.31 58.84 64.27 
test3 46.07 92.67 56.53 65.88 
test4 49.73 93.96 57.30 67.64 
test5 53.40 94.82 57.69 69.10  

 Chain 
saw 

forest vehicle Gene 
ral 

test1 74.86 92.24 74.61 80.67 
test2 65.96 91.37 78.46 79.35 
test3 78.01 87.06 77.69 80.96 
test4 67.53 80.17 78.46 75.98 
test5 75.39 77.58 78.07 77.16  

  

Table 3 

FFNN – Power Spectrum – results of 5 tests 
using networks of 3 layers, with 9, 8, 7 neurons 
respectively, 88ms analysis windows, 0–3700 Hz, 

training models obtained by LMA and 
classification using the majority voting rule 

Table 4 

FFNN – Power Spectrum – results of 5 tests 
using networks of 3 layers, with 10, 9, 8 neurons 

respectively, 88ms analysis windows, 0–7400 
Hz, training using LMA and classification using 

the average score on the 3ms frames 
 Chain 

saw 
forest vehicle Gene 

ral 
test1 72.77 84.48 77.69 78.62 
test2 75.39 79.31 85.76 80.67 
test3 69.11 89.65 69.23 76.13 
test4 69/63 90.08 79.61 80.38 
test5 64.92 87.93 84.23 80.08  

 Chain 
saw 

forest vehicle Gene 
ral 

test1 52.36 98.28 67.69 73.79 
test2 54.45 97.41 65.39 73.21 
test3 52.88 97.41 64.62 72.47 
test4 57.07 93.10 64.62 72.18 
test5 59.16 86.21 68.08 71.74  

  

Table 5 

Average Identification rates obtained using 
FFN- DFT with 3 layers with sizes 9,8, 7, using 

different values for fhigh and lengths of the 
analysis frame, training with Bayesian 

Regularization and majority vote classification 

analysis frame lengths  
22 44 88 

3700 71.04 76.31 78.83 
7400 74.98 76.02 77.22 
10000 69.64 74.76 76.02 

Fr
eq

ue
nc

y 
in

te
rv

al
 

12000 72.61 75.17 74.00  

  
Fig. 15. Average Identificarion rates for different 

values of fhigh and length of the analysis frame 
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Table 1 shows maybe the best performance obtained using Mel-cepstral 
features as input, using a 3 layers FFNN, with 8, 7, 6 neurons on each layer, 88ms 
analysis windows, 0–10 kHz, frequency interval for which the coefficients were 
computed. 17 Mel-coefficients were extracted, and Spectral flatness added on each 
analysis frame. Training was accomplished by Bayesian Regularization, and 
classification using the majority voting rule. The average performance was 
67.43%. This performance is lower than, or comparable to the one obtained 
previously applying the classical GMM and DTW approaches [11]. Table 2 
presents the results of 5 tests using FFNN with Power Spectrum coefficients as 
input, of 4 layers, with 9, 8, 7, 6 neurons respectively, 88 ms analysis windows,  
0–7400 Hz frequency interval for spectral features. At training we applied 
Bayesian Regularization and at classification the majority voting rule. The average 
performance was 78.82%. Table 3 presents the results of 5 tests using networks of 
3 layers, with 9, 8, 7 neurons respectively, 88 ms analysis windows, 0–3700 Hz, 
applying LMA training and classification using the majority voting rule. The 
average recognition rate was 79.17%. Table 4 contains the results of 5 tests 
applying FFNN to spectral coefficients, calculated on the frequency domain 0–
7400 Hz and 88 ms analysis windows, using the LMA training, on 3 layer networks 
with 10, 9, 8 neurons. The classification algorithm used the average score on 3 s 
frames. The average performance was 72.67%. 

Discussing the overall results, the Fourier spectrum as input to FFNN yielded 
very good results when applying the classification majority vote rule. The average 
score rule produced poorer results but still are better than using Mel-cepstral 
analysis or GMM, DTW [11]. The Bayesian Regularization and LMA produced 
comparable results, maybe LMA results were more balanced among the 5 tests. 
Concerning the network architecture for the Fourier spectrum variants of 2, 3 or 4 
layers produce comparable results, especially when using the majority voting rule. 
For the average score classification, the 3 layers FFNN seemed to work better than 
4 layers nets. Concerning the analysis window, the results are better in all the cases 
for lengths of 44ms or 88ms. Table 5 and Fig. 15 present the average overall 
identification rates for the FFNN-DFT approach using Bayesian regulation at 
training, and majority voting at classification, several analysis window lengths and 
frequency intervals. The best average score is obtained for the spectrum restricted 
to 0–3700 Hz, and an analysis window of 88 ms, but in fact the results are very 
close among the frequency intervals and among the 5 tests for each configuration 
there were many identification rates above 80%. 

4.2. EXPERIMENTS USING THE LSTM 

In the experiments using LSTM we used the same input as in the FFNN 
experiments. The number of hidden units was set to 100 and each cell configured 
with 5 layers, the default MATLAB configuration.  
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4.2.1. Experimental results  

Table 6 presents the best results obtained so far by applying LSTM. We have 
fed as input 18 dimensional sheer Mel-cepstral vectors, calculated on 44ms analysis 
window, and filtering the frequency domain to 0–12 kHz. The average performance 
among the 5 tests is 64.85%. As can be seen the identification rates are unbalanced 
among the three classes. In any other configurations the results were even worse.  

In what concerns the experiments using as input the Fourier spectrum we 
failed to obtain interesting results, as the network did not behave well from the 
beginning at training. 

Table 6 

Results of 5 tests using LSTM applied on an input set of Mel-cepstral 18-dimensional vectors, 
calculated on 44ms analysis windows, and the frequency interval of [0, 12] kHz 

 csaw forest vehicle g-ral 
test1 48.69 86.20 47.69 61.05 
test2 37.69 93.10 56.92 63.83 
test3 42.40 97.41 45 62.07 
test4 67.53 90.51 47.69 67.78 
test5 62.82 93.10 53.46 69.54 

 

 
Fig. 16 ‒ Accuracy estimation during training for a LSTM-MFCC process. 

 
Fig. 17 ‒ Accuracy estimation during training for a LSTM applied on Fourier power spectra. 
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Figures. 16, 17 present the estimation of the achieved accuracy during the 
training process for LSTM applied to Mel-cepstral input and power spectra 
respectively. While the first process achieve maximum accuracy in less than 100 
iterations the LSTM applied to power spectra aschieves less than 80% in more than 
300 iterations. 

 

5. CONCLUSIONS AND FUTURE WORK 

We have designed and laid out a framework based on Deep Neural networks 
and aimed at some problems of environmental sound recognition. We used two 
types of networks (Deep Feedforward Neural Network and LSTM) and have fed as 
inputs two types of data, Mel-cepstral and Fourier power spectral coefficients. 
Deep Feed Forward Neural Network output the best results, mainly when using the 
sheer spectral features. and especially when using the majority voting rule, with an 
average identification rate of over 78%, with about 10% higher than other methods 
performance. This fact suggests that FFNN, based on Fourier spectral features, 
using a less complex processing sequence, is able to produce more valuable 
features than the elaborate Mel cepstral analysis. A difference is in the number of 
features at input, while the Mel features are fewer than 20, the spectrum on 0–7400 
Hz frequency interval means about 170 coefficients. Figures. 18, 19 summarize this 
idea.  

 

 
Fig. 18 FFNN using Mel cepstral input applies a range of transforms on the Fourier spectrum and 

feeds the result to the network. 

 
Fig. 19 FFNN using Fourier Spectrum coefficients as has a simpler schema, and probably devises 

more valuable features through the layers of the network. 
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The disappointing results using the LSTM network may have several reasons. 
One of them is maybe the unproper use of the LSTM MATLAB tool. A second 
reason may be in the fact that this type of network might be not suited to the kind 
of problem we want to solve.  

Another advantage of using FFNN is the fact that it is easy to implement in 
programming environments other than MATLAB. While the models can be 
generated in MATLAB, the classification part can be implemented in more 
inexpensive programming languages, like C++, Java, etc., using the parameters 
established at training.  

As future work we intend to resume the tests with LSTM approach, on one 
side and with other DNN variants. Concerning future developments with FFNN we 
would like to continue the research by placing the training and classification, not at 
the sample layer but at 3s segment layer.  

Another important objective is to extend the field of research to other AESR 
applications, in the field of scientific environment monitoring (e.g. detect bird or 
species), or early detection of disasters such as land sliding or avalanches, where 
acoustic emissions are among the data used as input.  
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