
 

ON THE RESONANCE WAVE INTERACTION PHENOMENON 

Petre P. TEODORESCU1, Veturia CHIROIU2, Ligia MUNTEANU2, Dan DUMITRIU2 

Resonant wave interaction is a nonlinear process in which energy is transferred 
between different natural modes of a system by resonance. For a nonlinear system, 
the motion is not a summation of the linear modes, but consists of the linear 
harmonics plus their nonlinear coupling. This paper is studying the dynamic 
interaction between an attachment of cubic stiffness nonlinearity and the beam. The 
resonant interactions of the attachment with incident traveling wave propagating in 
the beam are studied by using the cnoidal method. 

1. INTRODUCTION 

It is of interest to explore the dynamic interaction of linear media as a beam 
with local nonlinear attachments, and to determine optimal configurations in terms 
of dispersive characteristics of the linear medium and system parameters of the 
attachment that result in maximum absorption of energy from the medium to the 
attachment. Under resonance conditions, the nonlinear coupling between different 
modes may lead to excitation of neutral modes. An interesting situation occurs in 
systems coupling a main structure with a nonlinear attachment, where isolated 
resonance captures are resulting as a consequence of the energy pumping [1–5]. 
The energy pumping is an irreversible transfer of vibration energy from the main 
structure to its attachment. It is interesting to note that this transient resonant 
interaction results in broadband passive absorption of energy by the attachment, in 
contrast to the linear vibration absorber whose effect is narrowband [6]. The lack of 
a linear part in the stiffness nonlinearity of the attachment makes it possible for it 
to engage in instantaneous resonance with incident waves as well as modes of the 
beam. This result is in agreement with similar findings of previous works where it 
was shown that essentially nonlinear passive attachments are capable of engaging 
in 1:1 resonance capture with (and extracting energy from) a series of linear modes 
of linear periodic chains to which they are weakly connected [6–8]. The interaction 
of incident travelling waves with the attachment can lead to phenomena such as 
speed up or slow down of the travelling wave, scattering of the wave to multiple 
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independent wave packets, or trapping of the wave in the form of a localized wave 
[97]. The use of a nonlinear attachment applied on a beam is studied in this paper, 
for analyzing the energy exchange for an external sine excitation applied on the 
assembly. The result consists in a significant attenuation of the structural waves 
over a broad frequency range for arbitrarily located excitation. A specific 
application of such a system to a railway track is discussed in [10, 11]. 

2. THE THEORY 

Consider an elastic beam of length L connected to a grounded local 
attachment of unit mass, viscous damping and stiffness nonlinearity. The 
connection between the rod and the nonlinear end attachment is made on the point 

Ax x=  by means of a weak linear stiffness. Let us assume that ( )v t  is the 
displacements of the attachment, the beam are initially at rest and that an external 
force (0, ) sinf t A t= ω  is applied at the origin O of the coordinate system, at 0t = . 
The displacement A( , )y x t  of the rod at the point of attachment A, in the direction 
of ( )v t , can be written as [6] 

( )A AO A AA( , ) (0, ) ( )d ( , ) ( ) (0, ) ( )d ,
t t

y x t f g t y x v f g t
−∞ −∞

= τ − τ τ − ε τ − τ τ − τ τ∫ ∫  (1) 

where the Green’s function AAg  is the displacement at point A of the beam in the 
direction of ( )v t , due to a unit impulse applied at the same point and the same 
direction, and the Green’s function AOg  is the displacement at point A of the beam 
in the direction of ( )v t , due to a unit impulse applied at origin O in the direction of 
the external force. The motion equation of the attachment is given by 
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where 0 1≤ ε ≤  scales the weak coupling, λ denotes the viscous damping 
coefficient, and jα , 1,...,j p= , the coefficients of the stiffness nonlinearity. The 
lack of a linear part in the stiffness nonlinearity of the attachment makes possible 
for it to engage in instantaneous resonance with incident waves of the beam. This 
result is in agreement with similar findings of previous works where it was shown 
that essentially nonlinear passive attachments are capable of engaging in 1:1 
resonance capture with (and extracting energy from) a series of linear modes of 
linear periodic chains to which they are weakly connected. 

Substituting (2) in (1), the following equation for the oscillation of the 
attachment is obtained 
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The Green functions are expanded by a set of cnoidal functions [10] 
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where the modulus m  of the Jacobean elliptic function is 2 3
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satisfying the condition 3 2
21 27 0g g− > . The motion equation of the beam is 
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where Ax L e= +  ( 0x =  and x L e= +  are the ends of the rod) and 2
0ω  is the 

normalized stiffness of the elastic foundation. 

3. RESULTS 

The calculations are carried out for L = 200, 0ω = 1.2 , A = 10, λ = 0.4, 
5N = , e = 1, 0.14ε =  and the cubic stiffness nonlinearity 3p =  and 1α = 3.3, 

2 3.5α = , 1α = 4 [10]. The response ( )v t  of the attachment at x L e= +  is 
displayed in Fig.1. Instantaneous frequency of the nonlinear attachment is depicted 
in Fig. 2. These figures put into evidence the presence of four regimes of transient 
responses. The first regime (0–90s) describes the interaction of the nonlinear 
attachment with incoming travelling waves with frequency 0ω> ω . After a short 
transition, the attachment passes to periodic oscillation of the second regime (140–
260s) with frequency nearly below 0ω , and after another short transition to a 
weakly oscillation of the third regime (340–460s) with frequency nearly above 0ω . 
The periodic motion of the second and third regimes are the consequence of energy 
pumping where the attachment engages in 1–1 resonance capture with a linear 
structural mode [6, 12]. 

The last regime (550–800s) consists in weakly modulated periodic motions in 
the neighbourhood of 0ω . The transition between the third and fourth regimes 



34 Petre P. Teodorescu, Veturia Chiroiu, Ligia Munteanu, Dan Dumitriu 4 

(480–540s) describes the case when the attachment can no longer sustain resonance 
capture, and escape from resonance capture occurs. The energy is radiated back to 
the rod and the instantaneous frequency decreases until it reaches a frequency 0≈  
[12]. By comparing our results with those obtained in [6] for impulse excitation 
and step initial displacement distribution, we observe that in the case of a sine 
external force, four regimes are depicted, and not three as in [6]. This can be 
explained by an oscillatory irreversible transfer of vibration energy from the rod to 
its nonlinear attachment. Two steps of energy pumping for 1–1 resonance capture 
with the linear structural mode are depicted, for two weakly modulated periodic 
motions with nearly equal frequency (below and above 0ω ). We can term this 
phenomenon as an oscillatory energy pumping. 

The response of the attachment in the second regime (140–260s) with 
frequency nearly below 0ω  is shown in Fig. 3. The response of the attachment in 
the third regime (340–460s) with frequency nearly above 0ω , and respectively, in 
the transition zone between the third and the fourth regime (480–540s) are shown 
in Fig. 3, respectively, Fig. 4. 

 

 
Fig. 1 – The response of the attachment. 

From these figures we see that the nonlinear attachment behaved as a passive, 
broadband, adaptive boundary controller. The resonant interactions of the nonlinear 
attachment with traveling waves in the pass band of the beam, can be considered as 
analytical continuations of resonance capture cascades as the number of 
subsystems of the connected linear chain tends to infinity, and the dynamics 
approaches the continuum limit [6]. As the energy of the attachment decreases due 
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to damping and energy radiation back to the beam in the form of traveling waves, 
its instantaneous frequency continuously decreases and approaches the bounding 
frequency 0ω . Then, the attachment engages in 1:1 resonance capture with the in-
phase mode of the rod, in similarity to resonance captures studied in earlier works 
in alternative finite-chain attachment configurations. 

 

 
Fig. 2 – Instantaneous frequency of the nonlinear attachment. 

 

 
Fig. 3 – The response of the attachment in the second regime. 

time [s] 
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Fig. 4 – The response of the attachment in the third regime. 

 
Fig. 5 – The response of the attachment in the transition zone between the third and the fourth 

regime. 

From this analysis, it results that it is necessary to increase the effectiveness 
of the energy pumping and to use very small nonlinear attachments to be able to 
apply it to real structures. The nonlinear additional structure which is coupled to 
the initial beam by giving desired results must be carefully analyzed. 

Now it is the time to explain the chosen values for the weak stiffness 
parameter ε  and the cubic stiffness parameters iα , 1,2,3i = , namely 0.14ε =  
and 1α = 3.3, 2 3.5α = , 1α = 4. We have chosen these parameters so that the 
energy transfer from the beam to the attachment to be optimal. The energy transfer 
must be effective for a fixed and not large time interval. For a quantitative 
valuation of this transfer we estimate the following: if a loss of energy for the 

initially perturbed linear oscillator 1T T
T
−  during this time interval is equal to 70% 

or more, the energy transfer is considered as optimal [13]. The optimal energy 

time [s] 

time [s] 
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transfer in a plane of the system parameters ( , )iε α , 1,2,3i =  is represented in 
Fig. 6. The parameter ε  varies in the interval (0.08, 0.2), and the parameters iα , 

1,2,3i =  in the interval (2.5, 5.5). 
 

 

Fig. 6 – The optimal energy transfer in the plane of parameters ( , )iε α , 1,2,3i = . 

4. CONCLUSIONS 

In this paper, the energy exchange between a beam and a nonlinear end 
attachment is analyzed, for an external sine excitation applied on the assembly. It is 
studied the transition of the attachment motion from the pass band to the resonance 
capture regime. The reported results indicate that the nonlinear attachment is able 
to extract energy from the beam in a multi-frequency fashion, through 
simultaneous dynamic interactions of multiple modes of the nonlinear attachment 
with multiple modes of the linear system. The nonlinear attachment acts, in 
essence, as a nonlinear energy sink. 

As shown in [4] and [14], the physics of the energy pumping/resonance 
capture phenomenon in a nonconservative system can be understood and explained 
by studying the energy dependence of the nonlinear free periodic solutions 
(nonlinear normal modes [15]) of the corresponding conservative system that is 
obtained when all nonconservative forces are eliminated. The enhancement of the 
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energy pumping properties of the system should involve proper design of the 
topological structure of the nonlinear normal modes of the underlying conservative 
system. 
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