
 

A PREISACH MODEL FOR THE ANALYSIS  
OF THE HYSTERETIC PHENOMENA 
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Abstract. In the field of the hysteretic behavior of systems, the displacement drift, 
force relaxation and non-closure of the hysteretic loops for systems subjected to short 
input signals, are investigated by using a Preisach model. The results of fitting the 
Bouc-Wen model used to imitate experimental data, are presented and discussed.  

Key words: hysteretic behaviour, Preisach model, Bouc-Wen model, displacement 
drift, force relaxation. 

1. INTRODUCTION 

For a material in which the intrinsic order parameters of the hysteretic 
behavior may interact with the structural order parameter of the medium, the 
interplay of competing interactions stabilizes multiple topologically phases 
separated by sharp transitions in the hysteretic curves. 

Hysteresis refers to systems that have memory, where the effects of the 
current input to the system are experienced with a certain delay in time. Such 
systems are not linear, the specific nonlinearities being modeled as feedback 
models for freeplay/backlash: the Bouc-Wen or Duhem models for friction, the 
Preisach models for smart materials, and so on. The non-equilibrium behavior of 
such systems is an intensely studied field in mechanical engineering, 
electromagnetism, structural biology, geology, and even financial analysis. The 
slow and complex time dependence of various parameters is a characteristic of such 
systems [1–3]. 

Several aspects of this non-equilibrium dynamics have already been 
described in great detail for shape memory alloys and spin glasses [4]. In [5], the 
origin of the reversal-field memory is explained due to the existence of a 
macroscopic number of symmetric clusters of spins associated with local spin-
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reversal symmetry of the Hamiltonian. The Dahl, LuGre, and Maxwell-slip friction 
models are investigated as Duhem hysteresis models in [6]. 

According to the theory of dynamic systems, the critical conditions where the 
non-equilibrium dynamics begins to occur are mathematically correspondent to the 
singular points, which are special points at which all the partial derivatives 
simultaneously vanish. The topological approach to analyze the hysteretic behavior 
of the airfoil flow is reported in [7]. The approach is based on the topological 
invariant rules of singular points under topological mapping. Fig.1 displays a 
reversal constitutive curve (solid line) with the same value of the strain ε = 0.0175, 
observed for the copper wires at the unloading-load cycle [8]. Such singularities 
create non-analyticity in the behavior at a particular reversal point related to the 
history of the system. The reversal curves are minor loops, obtained by reversal 
from ascending or descending branch of the major loops (dotted line). 

 
Fig. 1 – Reversal constitutive curve (solid line) and major hysteretic loop (dotted line). 

 
The hysteretic loops which exhibit the displacement drift, force relaxation 

and non-closure are investigated in [9] by using a Bouc-Wen model. The 
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unrealistic behavior of the Bouc-Wen model with respect to short input signals was 
eliminated by inserting a stiffening factor into the hysteretic differential equation. 

In order to understand the microscopic origin of the reversal effect, the 
Preisach model can be used [10–13]. The friction contact models between two 
vibrating units (molecules or grains) are investigated in many papers [14, 15]. 
When the friction force exceeds a positive value, the contact interface starts to slip 
towards the positive displacement direction. The friction force remains equal to the 
varying slip load until the contact interface sticks again. The transition between slip 
and stick depends on the tangential relative displacement and on the variable 
normal load, which may decrease to reduce the slip load so that the occurrence of 
the transition can be postponed to some instant after the reversion of displacement. 
So, the moment when the interface changes back to the stick do not correspond to 
the moment when the displacement reverses its direction. During the cycle of 
motion the contact normal load may vanish and cause the separation [16–18]. 

In this paper, a Preisach model is used to describe the hysteretic behavior of a 
system with one degree of freedom subjected to short input signals. 

To imitate the experimental data, consider a system obeying to the law 

( ) ( , , ) ( ) 0Mx t r x x Mg t+ θ + =&& & , (1) 

where M  is the mass, x  is the displacement relative to the ground, x&  and x&& are 
the corresponding velocity and acceleration, respectively, θ  is the set of 
parameters that models the structural behavior, r  is a nonlinear restoring force and 

( )g t  is the short unloading-reloading ground acceleration. The restoring force r  
characterizes the hysteretic behavior of the system and we consider that it can be 
described by the Bouc-Wen model 

1| | | | (1 2 ( ) ( , )) | || |n nr cx kx x r r H xr R x r x r−= − +β + − γ&& && & & & & , (2) 

where c  is the viscous damping coefficient, k  is the equivalent stiffness 
coefficient, β  and γ  are the shape parameters, and n  governs the smoothness of 
the force-displacement curve, ( , ) [0,1]R x r ∈  is a stiffening factor and ( )H ⋅  is the 
Heaviside function defined as 

1, 0,
( )

0, 0.
x

H x
x
>

=  ≤
 

The term 2 ( ) ( , )H xr R x r&  was proposed in [9] within the idea that the 
Heaviside function can help the unloading branches to remain identical to those of 
the classical model [19,20] 

1| | | | | || |n nr cx kx x r r x r−= − + β + γ&& && & & & . (3) 

Also, the stiffening factor R  controls the transition between loading 
(reduced) stiffness and unloading (increased) stiffness, when loading or reloading. 
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For 0R = , (2) reduces to (3). For 1R = , the loading stiffness becomes equal to that 
of unloading at the same point. 

 
Fig. 2 – The definition of R . 

We use the Charalampakis and Koumousis definition of R  (see [9] and 
Fig. 2) 

2 1
1 1

2
( ) ( ) x xR H r r H x x

x x

κ
 −

= − −  − 
. (4) 

As shown in Fig. 2, P  is a reversal point. During reloading, the current state 
is represented by the point a  for 10 r r≤ < . The point b  corresponds to the 
unloading path. As a  approaches b  from the left, 1R → . When a  and b  
coincide, then 1R =  and loading follows the unloading path exactly. The unloading 
path P c−  can not be crossed. When 1r r>  or 1x x> , the stiffening effect 
disappears due to the Heaviside function. Parameter κ  controls the intensity of 
stiffening to the left of the unloading path. The stiffening is closed to the unloading 
path for increased values of κ , and diminished every where else. It was observed 
in [9] that 1 2≤ κ ≤  is the best for identifying the realistic hysteretic loops. 

Therefore, the set of parameters θ  of the Bouc-Wen model described by (1), 
(2) and (4), is  

( ) [ , , , , ]t c kθ = β γ κ , (5) 

for a given n . 
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2. THE PREISACH MODEL 

Consider a hysteretic transducer which is characterized by an input ( )u t  and 
an output ( )f t . Its input-output relationship is a multi branch nonlinearity for 
which a branch-to-branch transition occurs after each input extremum. The input is 
determined by the interaction of the transducer with the rest of the system. For this 
reason, a mathematical model is needed to detect and accumulate input extrema 
and to choose the appropriate branch of the hysteretic nonlinearity with respect to 
the accumulated history [10, 11, 18].  

The Preisach model, which describes a hysteretic operator with nonlocal 
(global) memory, implies mapping of input ( )u t  on output ( )f t  in the form 

( ) ( , ) ( )d df t P G u tαβ
α≥β

= α β α β∫∫ , (6) 

where Gαβ  is an elementary hysteretic operator – a rectangular loop shown in 
Fig. 3. 

Numbers α  and β  correspond up and down switching values of input, 
respectively 1+  and 1−  are two possible output values. Therefore, in the Preisach 
model a dynamic system is described as a collection of independent two state 1±  
switching units. As the input ( )u t  is monotonically increased, the ascending 
branch abcde  is followed. When decreased, the descending branch edfba  is 
traced. The function ( , )P α β  is named the Preisach function. It is assumed α ≥ β , 
which is quite natural in the physical point of view. Thus, the integration in (6) is 
performed over the right triangle in ( , )α β  plane, with the line α =β  being the 
hypotenuse and point 0 0 0( , )α β = −α  being the triangular vertex. The value of 

0 0α >  is defined by the largest extremum value of the input function ( )u t . 

 
Fig. 3 – Elementary hysteretic operator. 
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There is a one-to-one correspondence between Gαβ  operators and points 
( , )α β  of the triangle. The triangle (Fig. 4) is called a limiting triangle support for 
the Preisach function, since the Preisach function ( , )P α β  is assumed to vanish 
outside the triangle. The interface between two parts of the triangle is a staircase 
line ( )L t  whose vertices have ( , )α β  coordinates that are local input maxima and 
minima at previous instants of time. 

If the input is increasing, the line of ( )L t  is horizontal; if it is decreasing, it is 
vertical. At any instant of time the triangle is subdivided into two sets: a positive 

( )A t+  consisting of points ( , )α β  for which ( ) 1G u tαβ = , and a negative set ( )A t−  
consisting of points ( , )α β  for which ( ) 1G u tαβ = − , separated by ( )L t . Thus, 
equation (6) can be rewritten as 

( ) ( )

( ) ( , )d d  ( , )d d
A t A t

f t P P
+ −

= α β α β − α β α β∫∫ ∫∫ . (7) 

The model has the following property: each local input maximum wipes out 
the vertices of ( )L t  whose α  coordinate are below this maximum, and each local 
minimum wipes out the vertices whose β  coordinates are above this minimum. In 
other words, the Preisach model stores the alternating series of dominant input 
extrema, while the other extrema are wiped out (Fig. 5). The wiping out of vertices 
is equivalent to the erasing of the history associated with these vertices. The major 
hysteretic curve must be defined, at a point h , by the integral (7). Secondary 
curves are defined by both the primary curve from which it departs, and the point at 
which it departs from its parent curve, i.e. by two values 1h  and 2h . 

 
Fig. 4 – Limiting triangle with a staircase interface line ( )L t . 
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All hysteretic loops corresponding to the same extremum values of input are 
congruent (Fig. 6). Such minor loops, obtained by reversal from ascending or 
descending branch of the major loops, can only be shifted relatively to each other 
along the output axes. 

 
Fig. 5 – Preisach model stores only alternating series of dominant input extrema. 

The Preisach function ( , )P α β  can be determined as follows. Starting from 
the state of negative saturation, let the input be increased to some value α . The 
output follows the ascending branch of the major loop, and at input u = α  has the 
value fα . If the input is subsequently decreased to some value β , the output 
follows the corresponding reversal (transition) curve, as in Fig. 7. 

 

 
Fig. 6 – Congruency property of the Preisach model. 

Denoting the output value at u = β  by fαβ , then from the limiting triangle it 
follows 



250 V. Preda, M.F. Ionescu, V. Chiroiu, T. Sireteanu 8 

( , ) 2 ( , )d dF f f P
α α

αβ α
β β

 
′ ′ ′ ′α β = − = − α β α β  

 
∫ ∫ , (8) 

where by differentiation with respect to β  and α , respectively, we have 

( , ) ( , )P P−α −β = α β ,    
21 ( , )( , )

2
FP ∂ α β

α β = −
∂α∂β

. (9) 

 
Fig. 7 – First order transition curve obtained by input reversal from u = α  to u = β .  

3. RESULTS OF FITTING 

To imitate the experimental data, the Bouc-Wen parameters [ , , , , ]c kθ = β γ κ  
are chosen to be 

c = 0.07 kNs/m,  k = 25 kN/m,  β = 2,  γ =1,  1.5κ = . 

The parameter n  is kept constant ( 2n = ). The mass of the system is 
120M = kg. The simulated experimental data are obtained by randomly 

multiplying by { }3 210 ,10− −ε =  the results obtained by numerically solving of the 

equations (1), (2) and (4). The results are shown in Fig. 8. We see that the data 
exhibits multiple reversal points. 

A random short input signal is chosen to be applied to the system (Fig. 9). 
The problem consists in fitting of the model parameters [ , , , , ]c kθ = β γ κ  by using 
the Preisach model. 

The central result of the Preisach modeling is presented in Fig. 10. This is a 
specific response to short input signals. In Fig. 10 we see that the displacement 
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drift, the force relaxation and non-closure of hysteretic loops are present. We 
remember that the displacement drift appears when cycled between two unequal 
forces, the force relaxation appears when cycled between two unequal 
displacements (Fig. 11). We must specify that such responses exhibit multiple 
reversals of small amplitude and are experimentally put into evidence [9, 21]. 

 
Fig. 8 – The imitated experimental data. 

 
Fig. 9 – The random input signals. 



252 V. Preda, M.F. Ionescu, V. Chiroiu, T. Sireteanu 10 

 
Fig. 10 – The results obtained by the Preisach model. 

 
Fig. 11 – The displacement drift and force relaxation. 
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4. CONCLUSIONS 

In this paper, a Preisach model is proposed to describe the hysteretic behavior 
of a system with one degree of freedom subjected to short input signals. This 
system exhibits displacement drift, force relaxation and non-closure of loops. The 
experimental data are imitated by using a Bouc-Wen model. Results of fitting the 
Bouc-Wen model are presented and discussed. Shown hysteretic properties assess 
the wide potentialities of the proposed model. The principal properties of this 
model are: 

1. Each local maximum wipes out the vertices whose α  coordinates are 
below this maximum and each local minimum wipes out the vertices whose β  
coordinates are above the minimum; 

2. All hysteretic loops corresponding to the same extremum values of input 
are congruent. 

These two properties constitute necessary and sufficient conditions for a 
hysteretic nonlinearity to be depicted by the Preisach model. The main advantage 
of the model is associated with its simple working, allowing describing of the 
hysteretic nonlinearities such as the displacement drift, the force relaxation and 
non-closure of hysteretic loops. The singularity which creates non-analyticity in the 
constitutive behavior at a particular reversal point related to the history of the 
system is a hallmark of many engineering systems. 
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