
Rev. Roum. Sci. Techn. − Méc. Appl., Tome 56, Nº 3, P. 246–260, Bucarest, 2011 

TRAJECTORY PLANNING OF A PENDULUM-DRIVEN 
UNDERACTUATED CART 

YANG LIU1, HONGNIAN YU2, LUIGE VLĂDĂREANU3, SHUANG CANG4, FENG GAO5 

Abstract. The control problem of the pendulum-driven cart has been well studied in 
several literatures. The challenge issue of control of such underactuated systems is to 
control the motions of the pendulum and the cart by applying only one control input. 
However, most literatures focused on addressing the dynamic modeling and the 
tracking control design. Few papers have considered the trajectory planning of the 
system which is still an open issue. This paper studies the optimization for the 
trajectory planning of the system by considering three questions: 1) the furthest cart 
displacement; 2) the fastest average cart speed; 3) the most efficient power 
consumption. The paper systematically studies the system dynamics, the system 
constraints, the tracking control method, some initializations for the optimization 
problems, and the solutions for the three optimal questions. Extensive simulation 
studies are given to identify the optimum trajectories of the system. 

Key words: pendulum-driven cart, underactuated system, trajectory planning, tracking 
control. 

1. INTRODUCTION 

The pendulum-driven cart (PDC) [1, 2] is an underactuated system that has 
fewer independent control actuators than degrees of freedom to be controlled. It 
contains an inverted pendulum rotated by a motor mounted on the top of the cart 
shown in Fig. 1. The cart has four passive wheels which make it move horizontally 
on the ground. The control objective of the system is to control the cart movement 
by rotating the pendulum periodically. A similar system is the well-known classical 
cart-pole system 2. Both systems are underactuated systems with two-degree-of-
freedom and one control actuator. The difference between the classical cart-pole 
system and the PDC is that the former addresses a swing-up and balancing problem 
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4, while the later addresses a trajectory planning and tracking problem 5. In this 
paper, the optimization of the trajectory planning for the PDC is considered. 
 

 
Fig. 1 – The PDC system. 

 
Control of underactuated systems is currently considered among one of the 

most active fields of research due to their diverse applications [6, 7]. The difficulty 
of controlling such systems is that the reduced input space is less than the number 
of the system configuration to be controlled. Luca et al. 7 has identified the 
following three control problems for underactuated systems: 

1) Trajectory planning: given an initial configuration q0 and a final desired 
configuration qd, find a dynamically feasible trajectory that joins q0 and qd; 

2) Trajectory tracking: given a dynamically feasible trajectory qd(t), design a 
feedback control law that asymptotically drives the tracking error 
e=qd(t)−q(t) to zero; 

3) Set-point regulation: given a desired configuration qd, design a feedback 
control law to make the equilibrium state q=qd, dq/dt=0 asymptotically 
stable. 

It is known that swing-up control of the classical cart-pole system 2, the 
Acrobot 8, and the Pendubot 10 belongs to the set-point regulation problem, while 
control of the mobile robot 11, the PDC, the capsule robot 12, and the double-
pendulum driven cart 13 belongs to the trajectory planning and tracking problem. 

A number of papers [1, 2, 14, 15, 16] address the trajectory planning and 
tracking problem for the PDC system. The first model of the PDC was proposed by 
Li et al. 14. In 14, the dynamic model and the trajectory planning problem of the 
system were initially studied. Later on, a six-step motion strategy and the tracking 
control problem were studied in detail by Yu et al. 1. In particular, the paper has 
been devoted to trajectory optimization, and finally, a group of optimum trajectory 
parameters for the six-step motion strategy was obtained. In 15, a number of 
tracking control methods was studied, and the tracking performance was compared 
in terms of the cart displacement. A further study of the control method was 
presented in 16, and its robustness to parameter uncertainty and disturbance was 
investigated thoroughly. From the literature review above, it is known that the 
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modeling and the trajectory tracking problems of the PDC have been extensively 
studied. Regarding to the issues of optimization, the following questions arise 
naturally: 

1) What is the furthest cart displacement? 
2) What is the fastest average cart speed? 
3) What is the most efficient control consumption? 
It is therefore that the focus of this paper is to study the optimization of the 

trajectory planning problem for the PDC system by addressing the questions above. 
The paper is organized as follows. In Section II, the system dynamics and the 
control problem are described, and are followed by some initializations. In Section 
III, the optimal problems are studied, and extensive optimal results are presented. 
Finally, conclusions are given in Section IV. 

2. SYSTEM DYNAMICS 

A. Equations of Motion 

 
Fig. 2 – Physical model of the PDC. 

 
Consider the PDC in Fig. 2 where the inverted pendulum rotated by a DC 

motor is mounted on the top of the cart. The cart has four passive wheels and 
moves horizontally on ground. Particularly, discontinuous friction effect exists in 
the motion of the cart. The friction governed by the cart velocity is various 
depending on the normal force applied on the cart. The parameters of the PDC are 
defined as follows. M is the cart mass, m the ball mass, l the length from the pivot 
to the mass centre of the ball, µ the friction coefficient between the cart and 
ground, θ the pendulum angle from vertical, x the cart displacement along 
horizontal, and τ the torque applied to the pendulum by the DC motor. From the 
Newton’s Second Law, the dynamic model of the PDC can be obtained as follows 
[1] 

                      

2

2

( ) cos sin

[( ) sin cos ] ( ) 0

M m x ml ml

M m g ml ml x

+ − θ θ + θ θ +

+ µ + − θ θ − θ θ σ = ,              (1) 
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2cos sinmlx ml mgl− θ + θ − θ = τ ,                                       (2) 

where ( )xσ is a multivalued mapping governed by 
1 0

( ) [ 1,1] 0
1 0

x
x x

x

>
σ = − =
 − <

. 

The control goal is to drive the cart to move in one direction only by applying 
the control input τ. 

 
B. System Constraints 

 
In order to keep the cart on ground, the normal force of the cart must be 

positive, 

                       
2( ) sin cos 0yMg F M m g ml ml+ = + − θ θ − θ θ > ,                       (3) 

where Fy is the normal force of the pendulum applied on the cart. Based on the 
constraint (3), the following lemma is given. 

Lemma 1. If the following condition is satisfied,  

                                                 2 4 2θ + θ < λ                                                        (4) 

where ( ) /( )M m g mlλ = + , the cart will be kept on ground.  
Proof. Using the constraint (3), it yields 

                                                 2sin cosθ θ + θ θ < λ .                                                (5) 

If 2 4 0θ + θ = , the constraint (3) is held. 

If 2 4 0θ + θ ≠ , letting 2 4arccos( / )α = θ θ + θ , it yields 

                                             
2 4 sin( )θ + θ θ + α < λ .                                              (6) 

Enlarging the inequation above by using 

                                        
2 4 2 4sin( )θ + θ θ + α ≤ θ + θ ,                                       (7) 

 which leads to  

                                                  
2 4θ + θ < λ .                                                          (8) 

This completes the proof. 
Consider keeping the cart still when the pendulum is rotated, the internal force 

Fx along horizontal direction must be less than the maximal static friction, 

                                                ( )x yF Mg F≤ µ + ,                                                    (9) 

which gives the following lemma. 
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Lemma 2. If the following condition is satisfied,  

                                           

2

2 4

1
 µλ

θ + θ ≤  + µ 
                                                (10) 

the cart will be kept still while pendulum is rotated. 
Proof. using the constraint (9) gives that 

                                        

2

2

cos sin

( sin cos )

ml ml

Mg mg ml ml

θ θ − θ θ ≤

≤ µ + − θ θ − θ θ .
                   (11) 

First, consider one side of the above inequation,  

                                        

2

2

( cos sin )

( ) ( sin cos )

ml

M m g ml

θ θ − θ θ ≤

≤ µ + − µ θ θ + θ θ .
                   (12) 

If 2 4 0θ + θ = , the constraint (10) is hold. 
If 2 4 0θ + θ ≠ , choosing a constant such that 

2 4arccos( / )α = θ θ + θ , 
which satisfies 

                                   
2 4 2 4cos( ) sin( )θ + θ θ + α + µ θ + θ θ + α < µλ .              (13) 

If 2 4(1 )+ µ θ + θ < µλ  is satisfied, the inequation (13) is held. Another side of the 
inequation (11) can be verified by using the same approach. So this completes the 
proof. 
 

C.  Feedback Controller 
 

Since the cart motion is unactuated and the control input τ directly controls 
the rotation of the inverted pendulum, the control strategy of the PDC is to control 
the pendulum to track a proper trajectory that can drive the cart to move in one 
desired direction. A feedback controller using partial feedback linearization has 
been designed for the tracking control of the pendulum in 2. The tracking controller 
is presented as below. 

                                                    ( ) ( , )uτ = α θ + β θ θ ,                                             (14) 

                                             ( ) ( )d v d p du K K= θ − θ − θ − θ − θ ,                            (15) 
where  

2 2
2 cos (cos sin )m lml

M m
α = − θ θ + µ θ

+
,
  

2cos [ (sin cos ) ( ) ] sinml ml M m g mgl
M m

θ
β = θ − µ θ θ + µ + − θ

+
, 
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Kv and Kp are linear gains, dθ , ,dθ and dθ are desired trajectories of angular 
acceleration, velocity, and position, respectively. 

The next task is to find the optimal trajectory of the pendulum that drives the 
cart in an optimum manner. 

D.  Initilizations 
The system parameters are given in Table 1. Before the optimization, the 

following initial definitions and assumptions are given. 

Table 1 

The PDC Parameters 1 

M m l µ g 
0.5 kg 0.05 kg 0.3 m 0.01 9.81 m/s2 

 
Definitions:  
1) Forward stroke: one forward stroke of the pendulum is a cycle which rotates 

from its initial angle θ0 to θ1.  
2) Backward stroke: one backward stroke of the pendulum is a cycle which 

reverses back from θ1 to its initial angle θ0.  
3) Full stroke: one full stroke of the pendulum is a cycle which includes a 

forward stroke and a backward stroke.  
4) Fast motion: rotating the pendulum fast to generate a large internal thrust 

horizontally that leads to 0x ≠ .  
5) Slow motion: rotating the pendulum slowly to generate a small internal thrust 

that leads to 0x = . 
Assumptions:  

a) The pendulum rotates in upper plane of [−π/2, π/2]. 
b) For forward and backward strokes, the pendulum starts and ends with still. 
c) The initial position of the pendulum is −π/2 for each full stroke. 
d) For each full stroke, the cart moves and ends with still. 

3. OPTIMIZATION 

In this section, the following optimization issues will be investigated: 
 The furthest displacement of the cart in one full stroke; 
 The fastest average speed of the cart in one full stroke; 
 The most efficient control input in one full stroke. 

A. Phase and Time-Domain Trajectories 
Considering the boundaries of Lemma 1 and Lemma 2, we have the maximal 

angular acceleration and velocity at λ and λ , the minimal angular acceleration 
and velocity at µλ/(1+µ) and /(1 )µλ + µ , respectively. Based on Assumption (a), 
the pendulum phase trajectory for the fast motion is contained in the region 
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{ }2 4
2( , ) : , ,f
πΩ = θ θ θ ≤ θ ≤ λ θ ≤ λ − θ  

and the phase trajectory for the slow motion is contained in the region 

{ }2 4
2 1 1( , ) : , , ( )s

µ µπ
+µ +µΩ = θ θ θ ≤ θ ≤ λ θ ≤ λ − θ

. 
The trajectory of Lemma 1 in time domain is obtained by solving numerical 

integration of the following differential equations 

                                                 

2

2 4

(0)
(0) 0

y

y y

πθ = θ = −
 θ == λ −

.                             (16) 

Similarly, by solving the boundary of Lemma 2 

                                              

2

2 4
1

(0)
(0) 0( )

y

y y

π

µ
+µ

θ = θ = −
 θ == λ −

,                         (17) 

the trajectory of Lemma 2 in time domain is obtained. The velocity boundaries of 
the fast motion and the slow motion in time domain can be piecewise 
approximately represented by a first-order polynomial 

                                                 1( ) [ , ]i it k t b t t t +θ = + ∈ ,                                (18) 

where i = 0, 1, 2, … , 6. The plot of the boundary is shown in Fig. 4, and the 
coefficients of the trajectory are given in Table 2 and Table 3, where time is in 
seconds and angular velocity is in radian per second. 
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Fig. 3 – Phase trajectory of the pendulum (solid 

line in red shows fast motion boundary; dash line 
in blue shows slow motion boundary). 

Fig. 4 – The boundaries of Lemma 1 and Lemma 
2 (Ωf and Ωs) in time domain. 

 
Note that the boundary trajectories Ωf and Ωs in time domain will be used in 

the rest of the paper for different optimization purposes. 
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Table 2 

The configuration of the fast motion boundary Ωf 

t1 t2 t3 t4 t5 t6 
0.06 0.16 0.22 0.28 0.38 0.45 
w1 w2 w3 w4 w5 w6 

18.97 18.97 0 −18.97 −18.97 0 

Table 3 

The configuration of the slow motion boundary Ωs 

t1 t2 t3 t4 t5 t6 
0.62 1.7 2.32 2.18 2.51 3.13 
w1 w2 w3 w4 w5 w6 

1.85 1.85 0 −1.85 −1.85 0 
 

B. Cart Motion 
It is known from the equations of motion that the PDC is a holonomic 

underactuated mechanical system 4 which has a completely integrable second-
order constraint (1). So integrating (1) once using Assumptions (b) and (d) gives 

         

2
0 0

2
0

( ) d ( cos sin )d

( ) [( ) sin cos ]d 0.

t t

t

M m x t ml t

x M m g ml ml t

+ − θ θ + θ θ +

+µσ + − θ θ − θ θ =

∫ ∫
∫

 

The cart speed is given as 

                                       
[cos ( )sin ] ( ) .ml xx x gt

M m
θ θ + µσ θ

= − µσ
+

                          (19) 

Integrating (1) twice gives 
2

0 0 0 0

2
0 0

( ) d ( cos sin )d

( ) [( ) sin cos ]d 0.

t t t t

t t

M m x t ml t

x M m g ml ml t

+ − θ θ + θ θ +

+ µσ + − θ θ − θ θ =

∫ ∫ ∫ ∫
∫ ∫             

(20) 

Since the initial angle of the pendulum is fixed (Assumption (c)), the cart 
displacement is rewritten as 

                                     
2[sin ( )cos 1] 1 ( ) .

2
ml xx x gt

M m
θ − µσ θ +

= − µσ
+

                  (21) 

Next, we consider the three optimization issues aforementioned in this section. 
C.  Optimization of Cart Displacement 
From (21), the cart can achieve the furthest displacement if the pendulum 

rotates the full range from π/2 to π/2 using the shortest time in the forward stroke. 
So a rest-to-rest movement is required for the cart, i.e. move forward in forward 
stroke and stay still in backward stroke. As shown in Fig. 5, consider a series of 
motions as below: 
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Forward stroke: 
1) OFA: the motion with the maximal fast-motion acceleration of the 

pendulum leads to the acceleration of the cart; 
2) FAFB: the pendulum rotates using the maximal fast-motion angular 

velocity while the cart keeps accelerating; 
3) FBFC: the motion with the maximal fast-motion deceleration of the 

pendulum leads to the deceleration of the cart. 

 Fast motion
 Slow motion
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Fig. 5 – The velocity trajectories for the furthest displacement of the cart. 

Backward stroke: 
4) FCFD: after the pendulum rotates to π/2 at FC, it starts backward stroke 

using the maximal acceleration of the slow motion; 
5) FDFE: the pendulum rotates using the maximal angular velocity of the slow 

motion while keeps the cart still; 
6) FEFF: the pendulum decelerates using the maximal deceleration of the slow 

motion until it reaches to its original position −π/2 at FF. 

Table 4 

The configuration of the trajectory for the furthest displacement 

t1 t2 t3 t4 t5 t6 
0.06 0.166 0.226 0.846 1.924 2.544 
w1 w2 w3 w4 w5 w6 

18.97 18.97 0 −1.85 −1.85 0 

The series of motions is a combination of the fast motion and the slow 
motion. So we can obtain the trajectory using the configurations in Table 2 and 
Table 3. The final configuration of the pendulum trajectory for the furthest 
displacement is presented in Table 4. 
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A simulation result is shown in Fig. 6. It is seen that the cart was driven in the 
fast motion which is also the forward stroke of the pendulum, and was kept still 
during the slow motion which is the backward stroke of the pendulum. It can be 
obtained from the simulation that the cart achieved the maximal displacement 
0.052 m in 0.226 seconds and kept stationary until 2.544 seconds when a full 
stroke cycle was finished. Note that, it is not surprise that the simulation result is 
consistent with the result calculated by equation (21) which indicates that the 
furthest displacement can be achieved by enlarging the final angle of the fast 
motion while minimizing the duration of the full stroke cycle. The phase trajectory 
of the pendulum in one full stroke is presented in Fig. 7, and the cart position as a 
function of the pendulum angle is shown in Fig. 8. 
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Fig. 6 – The furthest displacement of the cart in 

one full stroke. 
Fig. 7 – The phase trajectory of the pendulum for 

the furthest cart displacement. 
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Fig. 8 – The cart position as a function of the 

pendulum angle for the furthest cart 
displacement. 

Fig. 9 – One full stroke of the pendulum angular 
trajectory for the fastest average cart speed. 

D.  Optimization of Average Cart Speed 
Consider the movement shown in Fig. 9 as below. 
Forward stroke: 
1) OFA: the motion with the maximal fast-motion acceleration of the 

pendulum leads to the acceleration of the cart; 
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2) FAFB: the pendulum rotates using the maximal fast-motion angular 
velocity while the cart keeps accelerating; 

3) FBFC: the motion with the maximal fast-motion deceleration of the 
pendulum leads to the deceleration of the cart. 

Backward stroke: 
4) FCFD: after the pendulum rotates to π/2 at EC, it starts backward stroke 

using the maximal fast-motion acceleration which leads to the acceleration of the 
cart in backward direction; 

5) FDFE: the pendulum rotates using the angular velocity –w1 while the cart 
keeps accelerating; 

6) FEFF: the pendulum decelerates using the maximal deceleration of the fast 
motion which leads to the deceleration of the cart; 

7) FFFG: the motion with the maximal slow-motion acceleration while the cart 
keeps still; 

8) FGFH: the pendulum rotates using the maximal angular velocity of the slow 
motion while keeps the cart still; 

9) FHFI: the motion with the maximal slow-motion deceleration until it stops 
at −π/2. 
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Fig. 10 – The duration of the fast motion in the backward stroke (tf)  
as a function of cart displacement. 

 
As discussed in Section III.C, the furthest displacement is achieved at FC, the 

fast motion FC-F in the backward stroke will bring the cart back a short distance 
which depends on the duration of the fast motion tf in the backward stroke. 
Furthermore, as it is known that the pendulum rotates from π/2 to −π/2 in the 
backward stroke, it is easily found that the duration of the slow motion FF-I can be a 
function of tf. Therefore, we use tf as a control parameter of the cart displacement 
and the average cart speed in order to find the optimum tf that gives the fastest 
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average speed of the cart. The simulation results of the cart displacement and the 
average speed as a function of tf are shown in Fig. 10 and Fig. 11, respectively. 
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Fig. 11 – The duration of the fast motion in the backward stroke (tf) as a function of average cart speed. 

 
It is shown from Fig. 10 that, as tf is increasing, the cart displacement is 

decreasing due to the backward movement of the cart in the backward stroke. Note 
that tf varies from 0 to 0.226 seconds which tf  = 0 second means there is only one 
slow motion in the backward stroke (equals to the motion of the furthest 
displacement) and tf  = 0.226 seconds means there is no slow motion, but only one 
fast motion is used in the backward stroke. An optimum parameter is observed at 
tf  = 0.067 seconds in Fig. 11 which shows the average cart speed as a function of tf. 
It is seen that, when tf  = 0, the furthest displacement of the cart is shown 
corresponding to an averaged cart speed of 0.02 m/s. When tf  = 0.067, the fastest 
average cart speed is obtained at 0.021 m/s. Finally, when tf = 0.225, the pendulum 
executed a fast motion in the forward stroke and in the backward stroke 
respectively which led to an average speed of −0.004 m/s. The phase trajectory of 
the pendulum and the cart position as a function of the pendulum angle for the 
fastest average cart speed are presented in Fig. 12 and Fig. 13, respectively. 

E. Optimization of Energy Consumption 
In order to minimize the control energy in one full stroke, the energy 

consumption at per unit displacement is considered as below 

                                             
2

0
( d ) / ( ),

T
E t x T= τ∫                                          (22) 
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where T is the period time for one full stroke. Next, consider the pendulum motion 
as below: 
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Fig. 12 – The phase trajectory of the pendulum 

for the fastest average cart speed. 
Fig. 13 – The cart position as a function of the 
pendulum angle for the fastest average speed. 

 
Forward stroke: 
1) OEA: the motion with the maximal fast-motion acceleration of the 

pendulum leads to the acceleration of the cart; 
2) EAEB: the pendulum rotates using the angular velocity w1 while the cart 

keeps accelerating; 
3) EBEC: the motion with the maximal fast-motion deceleration of the 

pendulum leads to the deceleration of the cart. 
Backward stroke: 
4) ECED: after the pendulum rotates to π/2 at EC, it starts backward stroke 

using the maximal fast-motion acceleration which leads to the acceleration of the 
cart in backward direction; 

5) EDEE: the pendulum rotates using the angular velocity –w1 while the cart 
keeps accelerating; 

6) EEEF: the pendulum decelerates using the maximal deceleration of the fast 
motion which leads to the deceleration of the cart; 

7) EFEG: the motion with the maximal slow-motion acceleration while the cart 
keeps still; 

8) EGEH: the pendulum rotates using the maximal angular velocity of the slow 
motion while keeps the cart still; 

9) EHEI: the motion with the maximal slow-motion deceleration until it stops 
at −π/2. 

The detailed pendulum trajectory is shown in Fig. 14. To find the optimal 
configuration of the pendulum trajectory for the most efficient control consumption, 
the energy consumption at per unit displacement represented by equation (22) is 
computed by varying the maximal fast-motion angular velocity w1 and the duration 
of the fast motion in the backward stroke tf. In the simulation, w1 is varying from 
the maximal slow-motion angular velocity 1.85 rad/s to the maximal fast-motion 
angular velocity 18.97 rad/s, and tf is varying from 0 s to 0.225 s. 
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Fig. 14 – One full stroke of the pendulum 

angular trajectory for the most efficient control 
consumption. 

Fig. 15 – The energy efficiency as a function  
of w1 and tf. 

 
The simulation result for the energy efficiency as a function of w1 and tf is 

shown in Fig. 15. From the result, the minimum energy consumption at per unit 
displacement is obtained when (w1, tf) = (7.35, 0) which means the maximal fast-
motion speed is 7.35 rad/s and there is no fast motion in the backward stroke. The 
phase trajectory of the pendulum and the cart position as a function of the 
pendulum angle are shown in Fig. 16 and Fig. 17, respectively. 
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Fig. 16 – The phase trajectory of the pendulum 

for the most efficient energy consumption. 
Fig. 17 – The cart position as a function of the 
pendulum angle for the most efficient energy 

consumption. 

4. CONCLUSIONS 

The paper has investigated the trajectory planning problem of the pendulum-
driven cart. Three optimization problems have been studied: 1) the furthest cart 
displacement; 2) the fastest average cart speed; 3) the most efficient control 
consumption. The optimizations were undertaken by varying a piecewise linear 
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trajectory of the pendulum approximately obtained from the system constraints. 
The optimum trajectories were found by extensive simulation studies. 
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