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GEOMETRIC TRANSFORMATIONS  
IN DESIGNING NEW MATERIALS 

LIGIA MUNTEANU*, DAN DUMITRIU*, VETURIA CHIROIU* 

Abstract. In this paper, an original idea of designing new materials is investigated. 
The property of Helmholtz equation to be invariant under geometric transformations 
is exploited to obtain new materials with inhomogeneous and anisotropic distribution 
of elastic properties. This approach opens up the possibility to configure new 
materials that might be useful in the design of elastic cloaking devices. 
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1. INTRODUCTION 

Over the last two decades a new field has emerged which is concerned with 
acoustic metamaterials which could cloak regions of space, making them invisible 
to sound [9,  11, 18]. We refer to acoustic cloaking which occurs when a medium 
contains a region in which noisy objects can be acoustically hidden. It is easy to 
imagine an object invisible to sound by building a box around it to prevent the 
wave from reaching the object. 

The idea for transforming homogeneous and isotropic materials into new 
inhomogeneous and anisotropic materials is the focus of this paper, mainly based 
on the geometric transformations. 

This idea is related to the current research in invisibility cloaks starting from 
the works of Pendry, Schurig and Smith [18] (cloaking via changes of coordinates), 
Leonhardt [11] (cloaking via conformal mapping), Milton and Nicorovici [12] 
(cloaking by reaction), Alu and Engheta [1] (plasmonic cloaking), Greenleaf, 
Lassas and Uhlmann [8] (cloaking in inverse problems), Milton [13] (elastic 
metamaterials) and Munteanu and Chiroiu [15] (acoustic cloaking). 

Milton, Briane and Willis [14] showed that geometric transformations cannot 
be applied to equations which are not invariant under coordinate transformations 
and, consequently, if cloaking exists for such equations (for example the elasticity 
equations), it would be of a different nature from acoustic and electromagnetic. 

However, the crucial point of Brun, Guenneau and Movchan [3] is that the 
Navier equations are not unchanged unless one allows the symmetries of the 
elasticity tensor to be violated. The aforementioned authors derive the elastic 
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properties of a cylindrical cloak for in-plane coupled shear and pressure waves. 
The cloak is characterized by a rank 4 elasticity tensor with spatially varying 
entries, which are deduced from a geometric transform. Remarkably, the Navier 
equations retain their form under this transform, which is generally untrue [12]. 
Further details on this point can be found in [17, 27]. 

The paper is organized as follows: §2 is devoted to the geometric 
transformations. The idea is to replace the initial material (homogeneous and 
isotropic) in the initial domain by an equivalent transformed domain that contains a 
new inhomogeneous (the properties are no longer constants but depend on 
coordinates) and anisotropic (tensorial nature) material. 

A challenge to the plausibility of applying the geometric transformations for 
designing new materials is the aim of §3. Concluding remarks are provided in §4. 

2. GEOMETRIC TRANSFORMATIONS 

Pendry, Shurig and Smith [18] proved that a finite size object surrounded by 
a coating consisting of a specially designed metamaterial would become invisible 
for electromagnetic waves at any frequency. The idea is that the sound sees the 
space differently [7]. For the sound, the concept of distance is modified by the 
acoustic properties of the regions through which the sound travels. In geometrical 
acoustics, the idea of the acoustical path when travelling an infinitesimal 
distance ds , is the corresponding acoustical path length -1dc s , where 1 /c− = ρ κ  
with ρ  the fluid density and κ  the compression modulus of the fluid. Cummer and 
Schurig [5] demonstrated that acoustic waves in a fluid undergo the same 
geometric transformation as electromagnetic waves do and therefore retain their 
form. For example, the 3D equation for the pressure waves propagating in a 
bounded fluid region 3RΩ⊂  is the Helmholtz equation 

2
1( ) 0p p− ω

∇ ⋅ ρ ∇ + =
κ

, (1) 

where p  is the pressure, ρ  is the rank-2 tensor of the fluid density, κ  is the 

compression modulus of the fluid and ω  is the wave frequency. 
Geometric transformations applied to certain types of elastodynamic waves in 

structural mechanics received less attention, since the Navier equations do not 
usually retain their form under geometric changes [2,  16]. For example, the in-
plane propagation of time-harmonic elastic waves is governed by the Navier 
equations 

2: 0C U U b∇ ⋅ ∇ + ρω + = , (2) 
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where u  is the displacement, ρ  the density, C  the 4th-order material tensor of the 
linear elastic material and ( )b x  represents the spatial distribution of a simple 
harmonic body force: ( , ) ( )exp(i )b x t b x t= ω , with ω  the wave-frequency and t  the 
time. 

Let us consider the geometric transformation from the coordinate system 
( , , )x y z′ ′ ′  of the compressed space to the original coordinate system ( , , )x y z , 
given by ( , , )x x y z′ ′ ′ , ( , , )y x y z′ ′ ′  and ( , , )z x y z′ ′ ′ . The change of coordinates is 
characterized by the transformation of the differentials through the Jacobian xxJ ′  
of this transformation, i.e. 

d d
d d
d d

xx

x x
y J y
z z

′

′   
   ′=   
   ′   

,   ( , , )
( , , )xx

x y zJ
x y z′

∂
=

′ ′ ′∂
. (3) 

From the geometrical point of view, the change of coordinates implies that, in 
the transformed region, one can work with an associated metric tensor [9,28]: 

T

det( )
xxxx

xx

J J
T

J
′′

′
= . (4) 

In terms of the material parameters, one can replace the material from the 
original domain (homogeneous and isotropic) by an equivalent compressed one 
that is inhomogeneous (its characteristics depend on the spherical ( , , )r′ ′ ′θ φ  
coordinates) and anisotropic (described by a tensor), and whose properties, in terms 
of x xJ ′ , are given by 

T 1 det( )x xx x x xJ J J− −
′′ ′′ρ = ρ ,   det( )x xJ ′′κ = κ , (5) 

or, equivalently, in terms of xxJ ′ : 

T

det( )
xx x x

xx

J J
J

′ ′

′

ρ
′ρ = ,   

det( )xxJ ′

κ′κ = . (6) 

Here, ′ρ  is a second order tensor. When the Jacobian matrix is diagonal, equations 

(5) and (6) can be more easily written. Multiplying (1) by a test function ϕ  and 
integrating by parts, one obtains [7]: 

( ) ( )1 2 1
( , , ) ( , , ) d d 0x y z x y z p V p V− −

Ω

− ∇ ϕ⋅ρ ∇ + ω κ ϕ =∫ ∫ . (7) 
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In (7) the surface integral, corresponding to a Neumann integral over the 
boundary ∂Ω , is zero. By applying the coordinate transformation 
( , , ) ( , , )x y z x y z′ ′ ′→  to (7) and using (3), one obtains 

( ) ( )T 1 T 2 1
( , , ) ( , , ) det( )d det( ) d 0x y z x y z xx xxx x x xJ J p J V J p V− −
′ ′ ′ ′ ′′ ′

Ω

′ ′− ∇ ϕ⋅ρ ∇ + ω κ ϕ =∫ ∫ ,   

(8) 

in terms of xxJ ′ , and 

( )
1 T 1T 2

( , , ) ( , , ) d d 0
det( ) det( )
x x x x

x y z x y z
x x x x

J J
p V p V

J J

− −′ ′
′ ′ ′ ′ ′ ′

′ ′Ω

 ρ  κ  ′ ′− ∇ ϕ ∇ + ω ϕ =     
∫ ∫ , (9) 

in terms of x xJ ′ . 
A linear geometric transformation (3) which maps the disk 2r R≤  into an 

annulus 1 2R r R≤ ≤  [18] is given by: 

2 1
1

2

R Rr R r
R
−′ = + ,  20 r R≤ ≤ , 

′θ = θ ,  0 2≤ θ ≤ π , 

3 3x x′ = ,   3 Rx ∈ , 

(10) 

where r′ , ′θ , 3x′  are radially contracted cylindrical coordinates r , θ , 3x . The 
Cartesian basis 1 2 3( , , )x x x  is defined as 1 cosx r= θ , 2 sinx r= θ . The Jacobean of 
the transformation from polar to stretched polar coordinates is given 

by 3

3

( , , )
( , , )rr

r xJ
r x′

∂ θ
=

′ ′ ′∂ θ
. In the stretched space, the associated metric tensor is given 

by (4): 
T

det( )
rrrr

rr

J J
T

J
′′

′
= . (11) 

Qiu et al. [19] classified the geometric transformation functions in terms of 
the negative (i.e., concave-down) or positive (i.e., concave-up) sign of the second 
order derivative of this function. The concave-down nonlinear transformation 
compresses a sphere of radius 2R  in the original space Ω  into a shell region 

1 2R r R′< <  in the compressed space ′Ω  as 
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1
2 1

2 1
( ) 1

R Rr
rR R

ββ+

β β

   β = −   ′−   
, (12) 

where β  denotes the degree of the nonlinearity in the transformation. By taking 
0β→  in (8), the linear case is obtained, namely 

2 1

2 1

Ln( / )( )
Ln( / )

R r Rr
R R

′
β = . (13) 

All curves belonging to (12) have negative second order derivative with 
respect to the physical space r′ . This class of transformations is termed as the 
concave-down transformation. The transformation function (12) depends on the 
radial component r′  in the spherical coordinate system ( , , )r′ ′ ′θ φ . 

The concave-up nonlinear transformation compresses a sphere of the radius 
2R  in the original space Ω  into a shell region 1 2R r R′< <  in the compressed 

space ′Ω  as 

2 1

12 1
( ) 1

R R rr
RR R

ββ

β β

  ′ β = −  −   
. (14) 

As 0β→ , one obtains again the linear case (13). This class of 
transformations is termed as the concave-up transformation because (14) has 
positive second order derivatives. 

3. NUMERICAL RESULTS AND DISCUSSION 

In this Section, we illustrate the numerical results obtained using the 
geometric transformation (10) presented in §2. In the studies below, we suppose 
that the original domain is a cylinder of radius 2R  and length l , made of an 
homogeneous and isotropic material. By applying (10), the transformed domain is 
a shell cylinder of internal and external radii 1R  and 2R , respectively, and of 
length l′ . This domain is made of a new inhomogeneous and anisotropic material. 

We begin considering the time-harmonic sound propagation in a medium 
with density 0ρ  and sound speed 0c  governed by the Helmholtz equation 

2
0 1 2 3 1 2 3

0

1 ( , , ) ( , , ) 0u x x x u x x x
 

−ρ ∇ ⋅ ∇ − κ = ρ 
, (15) 
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where 02 /f cκ = π  is the wave number, and f  is the sound frequency. The 
cylinder is made of copper ( 0ρ = 8,960  kg/ 3m , 0c = 4,600  m/s) and aluminum 
( 0ρ = 2,700  kg/ 3m , 0c = 6,320  m/s), both materials being considered to be 
homogeneous and isotropic. 

Under a change of coordinates ( , , )x y z′ ′ ′  to ( , , )x y z  given by (10) with 

T
1 2 3 1 2 3( , , ) ( , , )x xu x x x J u x x x−

′′ ′ ′ ′ = , ( , , )
( , , )x x
x y zJ
x y z′
′ ′ ′∂

=
∂

,  Eq. (15) takes the form 

2
1 2 3 1 2 3 1 2 3 1 2 3

1 2 3

1( , , ) ( , , ) ( , , ) ( , , ) 0
( , , )

x x x u x x x x x x u x x x
x x x

 
′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′−ρ ∇ ⋅ ∇ − κ = ′ ′ ′ ′ρ 

.   

(16) 

The new material is inhomogeneous (the properties are no longer constants 
but depend on coordinates 1 2 3, ,x x x′ ′ ′ ) and anisotropic (tensorial nature) material, 
whose properties are given by (6): 

   1
0T −′ρ = ρ ,  1T −′κ = κ , (17) 

with T  defined by (11) and with the Cartesian basis 1 2 3( , , )x x x  defined as 

1 cosx r= θ , 2 sinx r= θ . 
We suppose that the cylindrical specimen has 2R = 20 mm initial radius and 

l = 100 mm initial length. The initial domain is transformed into a shell cylinder 
with different 1R′  and l′ = 80 mm. 

The compression ratio is defined as 
2 2

2 1
2
2

( )
c

R R lr
R l

′ ′ ′−
= , (18) 

where prime ' denotes the final parameters. The transformed annulus domain is 
presented in Fig.1, for cr = 0.152, 0.35 and 0.6 (the corresponding thicknesses for 
the annulus 1 2R r R≤ ≤  are 2mm, 5mm and 10mm, respectively). 

Our discussion starts with the computed radial component of the density 
tensor inside of the shell cylinder for cr = 0.152, 0.35 and 0.6 shown in Fig. 2, for 
copper and aluminum, respectively. As seen in the figure, the density increases and 
decreases up to certain values, and starts decreasing again when 9r > mm, for both 
materials. In conclusion, the density oscillates with respect to the radial coordinate. 
In order to analyze the properties of the material, let us consider an acoustic 
pressure field Re( exp( 2i ))u ft− π  generated inside of the annulus domain. Fig.  3 
illustrates the wave amplitudes u  inside and outside of the shell, respectively, for 
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cr = 0.152 and 0.35. From Fig.  3, one can notice that the wave field inside of the 

shell (i.e. the inner region of radius 1R ′  which surrounds the acoustic pressure 
field) is partially isolated from the region situated outside of the shell for cr = 0.35, 
and is completely isolated from the outside region for cr = 0.152. Actually, the 
later case corresponds to an acoustic cloak. Obviously, the waves generated inside 
of the cloak are smoothly confined inside of the inner region of the shell. The inner 
region is acoustically isolated and the sound is not propagating outside of the shell 
because the amplitudes on the boundary almost vanish. The domain 1r R′<  is an 
acoustic invisible domain for the exterior observers. 
Secondly, we consider the example of the conventional homogeneous and isotropic 
suspension of fibers characterized by ρ = 21 3kg/m . The paper material exhibits 
several properties similar to foam and soil. As a consequence, the effects of 
Poison’s ratio upon the properties of the material must be analyzed. The Poisson’s 
ratio of the initial material is ν = 0.17. The velocity ratio / sc cδ =  can be rewritten 

under the form 2 2(1 ) /(1 2 )δ = − ν − ν . Here, c is the longitudinal wave speed, and 

sc the transversal wave speed, respectively. 
 

 

 
Fig.  1 – Transformed domain. 
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Fig.  2 – Variation of the radial density with respect to radial coordinate. 

 
 

 
Fig.  3 – Wave field inside and outside of the shell. 

 
Fig.  4 shows the variation of the Poisson’s ratio with respect to 1 cr−  

(equivalent to the compressive strain) for the suspension of fibers material (the 
upper curve) and the paper material (the lower curve) respectively. We observe that 
the paper material becomes auxetic, i.e. a material with negative Poisson’s ratio 
− 0.32 v< < 0, for 0.4 1 cr< − < 0.86 or 0.14 cr< < 0.6.  The auxeticity is related to 
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the property to grow fatter, expanding laterally when stretched instead of getting 
thinner like an elongated elastic band [10]. Since 1987, when isotropic auxetic 
foam was manufactured for the first time, negative Poisson’s ratio materials have 
created interest for potential engineering applications. A feature that the auxetic 
materials showed compared to the other materials is the significant damping 
capacity which increased up to 16 times compared to the conventional foam 
material [6,  21]. 

It seem appropriate to consider, as before, the same initial domain with 
2R = 20 mm and l = 100 mm, transformed into a shell cylinder with different 1R′ , 

l′ = 80 mm and cr = 0.152, 0.35 and 0.6 (Fig. 1). 
Comparing with the case of conventional paper, where the stiffness in the 

machine direction is usually 1–5 times greater than that in the cross-machine 
direction, and typically 100 times greater than that in through-thickness direction 
[22–23,  25–26], the stiffness of the new material has comparable high values for 
all directions. The variation of the shear stress of the paper material with respect to 
radial coordinate r  is illustrated in Fig.5, for cr = 0.152, 0.35 and 0.6. The results 
show that the new material exhibits increased shear strength in comparison to the 
conventional paper material [24]. The variation of the Young’s modulus with 
respect to radial coordinate 1 2R r R′ ′≤ ≤  is presented in Fig.  6 for cr =  0.6 and 
0.152 (the corresponding thicknesses for the annulus 1 2R r R≤ ≤  are 10 mm and 
2 mm, respectively). The paper material has increased Young’s moduli in all 
directions in comparison to the conventional paper (30–50 MPa). 

 

 
Fig.  4 – Poisson’s ratio versus compressive strain for suspension of fibers  

and the conventional paper material. 
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Fig.  5 – Variation of the shear stress with respect to radial coordinate. 

 
 

 
Fig.  6 – Variation of the Young’s modulus with respect to radial coordinate. 

 
In the following, we suppose that the transformed annulus domain 

corresponding to cr = 0.152 (Fig. 1) surrounds a noisy machine, as shown in Fig. 7. 
By using the wave propagation technique, we show that this domain exhibits the 
property of a spherical cloak [15]. 
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Fig.  7 – Sketch of the spherical cloak surrounding a noisy machine [15]. 

 
Fig.  8 illustrates the wave amplitudes u  inside and outside of the cloak, 

respectively, for cr = 0.152. Again, the phenomenon is the same, i.e. the wave field 
inside of the cloak is completely isolated from the region situated outside of the 
cloak. One observes that the inner region is acoustically isolated and the sound is 
not detectable by an exterior observer because the amplitudes on the boundary 
vanish. For these particular cases, it is easy to imagine an object invisible to sound 
by building a box around it to prevent the wave from reaching the object. 

 

 
Fig.  8 – Wave fields inside and outside of the cloak. 
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4. CONCLUDING REMARKS 

The idea for transforming homogeneous and isotropic materials into new 
materials is the main goal of this paper. The property of Helmholtz equation to be 
invariant under geometric transformations is exploited in order to transform an 
original cylinder made of an initial material, into a shell cylinder made of a new 
inhomogeneous and anisotropic material. 

The results show that the new materials can cloak regions of space, making 
them invisible to sound. We refer to acoustic cloaking which occurs when a 
medium contains a region in which noisy objects can be acoustically hidden. 

In conclusion, geometric transformations can be used in designing new 
materials [29]. By manipulating the spatial compression, different performances 
can be achieved under inhomogeneous and anisotropic materials that might be 
useful in the design of elastic cloaking devices.  
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