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ON THE VIBRATIONS GENERATED  
BY WOODEN CHURCH BELLS 

MIGDONIA GEORGESCU1 

Abstract. In Maramureş County, Romania, there is Budeşti Josani wooden church 
inscribed on the World Heritage List. The major deterioration of its 18th and 19th 
paintins represent a big problem in restoration program. The vibrations generated by 
the bells produced cracks and detachments in the paintings layer. In order to calculate 
the oscillations of a bell, the bell and its clapper were simulated as a double 
pendulum. 
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1. INTRODUCTION 

Budeşti Josani Church (Figs.  1 and 2), with Saint Nicolas titular saint, has 
been erected in 1643 and is representative to the characteristic Maramureş County 
wooden churches covered with double eaves, because it preserves the original 
shape, even their dimensions are larger than usual (18 m ×  8 m). The edifice is 
composed by one narthex, a nave with a raised semi-cylindrical dome and a 
polygonal altar. The church is made of oak beams, mounted in Blockbau system. 
The steep bell-tower, pillared on four lateral beams, has a bell-room with an open 
gallery, four corner pinnacles and a slender roof. 

The roofs covered with wood shingles were popular in that region of 
Romania in that period of time. The size and shape of the shingles as well as the 
detailing of the shingle roof differed according to regional craft practices. People 
within particular regions developed preferences for the local species of wood that 
most suited their purposes. The oak was frequently used in Maramureş County [1]. 

The narthex, the nave, the iconostasis, and a lot of icons of the church were 
painted by Alexandru Ponehalschi, in 1762, on textile pieces, applied on the walls 
covered with a preparation layer based on lime, and the altar was painted directly 
on the wooden walls by Ioan Opriş, in 1832. 

The vibrations produced by the bells generate the deterioration of the murals, 
developing cracks and fractures, as well as the detachment of the painting layer 
(Fig.  3). The bells are considered to have an imperfect shape, because of the 
irregularities of their shape, the material’s properties and the local defects during 
the casting process. The applications of ornaments and reliefs on the surface of the 
bell produce the asymmetry of the bell [2]. The forces induced by the swinging of 
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the bells can interact dynamically with the base of the bells, according to their 
angular frequencies and to their imbalance [3]. 
 

 

 
   Fig. 1 – Budeşti Josani Church, Maramureş County.                  Fig.  2 – Budeşti Josani Church, 
                                                                                                        Maramures County – perspective 
                                                                                                     geometries realized by restorer Dinu 
                                                                                                                            Săvescu. 
 
 

      
 

Fig.  3 – Detachment of the painting layer (photo: restorer Dinu Săvescu). 

2. FORMULATION OF THE PROBLEM 

The periodic forces induced by the bell’s swinging, as well as the wind 
loadings determine the bell-tower to vibrate, mainly on the horizontal direction. If 
the endurance limit of the bell-tower’s masonry and the church’s nave are 
exceeded, it results cracks and fractures, which represent the major problem of this 
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type of monuments. It is hard to determine which of these forces is more 
responsible with the initial micro-cracks, but all the forces mentioned above, 
especially the horizontal component of the bell’s swinging force contribute to the 
developing of already existing cracks. The dynamic problem is complex and 
difficult to solve, because the dynamic behaviour of the whole structure must be 
considered, including the parameters of the different materials used and the soil 
characteristics [4,  5]. 

In the case of wooden churches, where the bell-tower is erected upper to the 
dome, the momentums of the tower are transmitted to the nave, producing not only 
the developing of the existing cracks, but fractures in the connection zone. When 
the driving force is close to the natural frequency of the tower there is produced the 
most important degradation of the structure. 

 
Table 1 

The inclination of the bell typical for different countries 
System Country Inclination* 

Central European Germany 
Other European countries 
USA 

54 – 80º 
80 – 110º 
50 – 160º 

Spanish All the countries Complete circuit 
English All the countries Complete circuit 

* The inclination regarding to the vertical axis 

 
Ivorra et al. [6] analyzed three bell-tower systems, typically for Central 

Europe (which is called in Italy alla Romana), for England and Spain. In the first 
system, the bell swings on both sides of the symmetry axis. In the English system, 
it accomplishes complete circles, in which the sense of rotation interchanges after a 
complete cycle. The English and the Spanish systems are in imbalance, and the 
bells are mounted in the interior of a tower [6,  7]. 

Table 1 indicates the inclination of bells for all the three systems; their values 
are important to find the horizontal and vertical forces generated by the balance 
and their effect over the entire structure [8]. We have to add that the Budeşti Josani 
church belongs to the Central European category. 

Bell-towers are under axial charges bigger than the torsion and bending, 
because of the geometry, type of the material used and the fixing mode of the bell 
[4]. In this paper, the bell is modeled in all three systems, in the spirit of the 
Zlatescu paper [9] where the Lie transformation theory [10] is extended through the 
study of a double pendulum, subjected to the non-conservative periodic loads. 
Fig. 4 presents a section of a bell with clapper pendulant regarding to the vertical 
axis. The model is consisted from two straight rods 1 2O O  and 2 3O O  of masses 

1M , 2M , lengths 12l , 22l , and mass centres 1C , 2C . The rods are articulated in 



288 M. Georgescu 4 

2O  and suspended in 1O , so that they can move in the vertical plane 1Ox y  
without friction. 

 
Fig.  4 – The simplified model of the bell. 

Other notations from Fig.  4 are: 1 2O Ol = , 1 1 1O Cl = , 2 2 2O Cl = . We note 
by 1θ  and 2θ  the displacement angles with respect to the vertical 1O x , 1I  the 
mass moment of inertia of 1 2O O  with respect to 1C , 2I  the mass moment of 
inertia of 2 3O O  with respect to 2C , and g  the gravitational constant [9,13]. The 
forces acting upon the pendulum are, firstly, the weights of bars. The generalized 
forces are 

            1 1 1 1 2 1sin sinG M l g M gl= − θ − θ ,  2 2 2 2sinG M gl= − θ . (1) 

Let us to consider the case of non-conservative force cosA tω  acting into the 
point 3O . The motion equations are obtained from the Lagrange equations 

           1 2
1 21 2

d d, cos .
d d
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t t
   ∂ ∂ ∂ ∂

− = − = + ω   ∂θ ∂θ∂θ ∂θ   
 (2) 

Introducing the notations 

               

2 2
2 2

1 1 1 2
2

1 1 2 2 2 2
2 2

2 21 1 1 2

2 2
2

2 22 2 2

,

,

, ,

M ll
I l M l M

M l M l I l M
M lI l M l M

M ll A
gM lI l M

α =
+ +

+ +
β =

+ +

γ = δ =
+

 (3) 



5 On the Vibrations Generated by Wooden Church Bells 289 

equations (2) become 

         
2

1 2 2 1 2 2 1 1
2

2 1 2 1 1 2 1 2

[ cos( ) sin( )] sin 0,

[ cos( ) sin( )] sin cos .t

θ + α θ θ − θ − θ θ − θ +β θ =

θ + γ θ θ − θ + θ θ − θ + θ = δ ω

 (4) 

Without reducing the generality of the problem we consider 
2
1

1 1 3
lI M= , 

2
2

2 2 3
lI M= . By setting [13] 

                   1 2

2 1 1
, , ,M llm r s

M l l
= = =  (5) 

it is simple to show that , ,α β γ  become 

                 2 2
3 4 ( ) 3 , , =

43 4 3 4
rs s r m r

sr m r m
+

α = β = γ
+ +

. (6) 

Finally, we introduce the new variables 

                    1 1 2 2 1 3 2 4

5 6

 , , , ,
 cos ,    sin .

z z z z
t z t z

θ = θ = θ = θ =

ω = −ω ω =
 (7) 

For 0t >  we have the relation 2 2 2 2
5 6z zω + = ω . The motion of the double 

pendulum depends on the control parameters r , s , m , δ  and ω . Equations (4) 
are rewritten in the state-space form as 

1 3
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2 2
3 2 1 4 2 1 2 1 5
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sin( ) sin( )cos( ) ],

z z z z z

z z z z z z z z z

= ∆ − +βγ − −

− γ − −αγ − − − δ
 

            5 6
2

6 5

,

,

z z

z z

=

= −ω
 

(8) 

where 2
2 1

1
1 cos ( )z z

∆ =
−αγ −

  and  2
2 11 cos ( ) 0z z−αγ − ≠ . The initial conditions 

are 
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1 10 2 20 3 30

4 40 5 6

(0) ,  (0) ,  (0) ,
(0) ,  (0) 1 ,    (0) 0 .

z z z z z z
z z z z

= = =

= = =
 (9) 

After suitable simplifications, the system (8) and (9) can be rewritten under 
the form [13] 

( )
( )

n
n np p

n

g zz A z
h z

= +  ,  1,2,...,6n = , (10) 

with 

2 2

( , ) sin cos( )sin cos( )

  sin( ) sin( )cos( ) ( )

 ( )cos( ) ,

n np p np p npq p q p npqr p q r

npqr p q r npqr p q r q r n

nnpqm m p q

g z t B z C z D z z z E z z z

F z z z G z z z z z A z

L A z z z

= + + − + −

+ − + − − − +

+ −

 

 2( ) 1 cos ( )n npq p qh z H z z= − − , 

(11) 

and 0nh ≠ . It is assumed to be valid the summation law with respect to repeated 
indices  ( , , , 1,2,3,...,6)n p q r = . The constants are 

2
13 24 56 65 45

31 42 412 321 3521

3421 4321 3321 4421

321 421 3214 4214

1,    1,    1,    ,      1,
,    1,      ,    ,      ,
,    ,      ,    ,
,    ,      ,    ,

A A A A B
C C D D E
F F G G
H H L L

= = = = −ω =

= −β = − = βγ = α = −α

= α = −γ = αγ = −αγ

= αγ = αγ = α = γ

 (12) 

and the rest are null. The initial conditions are 

1 10 2 20 3 30

4 40 5 6

(0) ,    (0) ,    (0) ,
(0) ,    (0) 1,    (0) 0.

z z z z z z
z z z z

= = =
= = =

 (13) 

The problem (10)–(13) is solved by using the Linear Equivalence Method 
(LEM), introduced and developed by Toma [11,  12]. The values of the initial 
angular velocities [rad/s] are depending on the chosen system bell. 

3. LEM INVESTIGATIONS AND CONCLUSIONS 

Let us apply LEM to the system (10) and (11), i.e. Theorem 1 in order to get 
the corresponding LEM solution. In this case, the LEM exponential mapping will 
depend on 5 parameters. The linearized form of equations (12) is 

z Az= , (14) 
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where  

2

0 0 1 0 0 0
0 0 0 1 0 0

0 0 0
0 0 0

0 0 0 0 0 1
0 0 0 0 0

A

 
 
 
 −βς ας −αςδ
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βγς −ς ςδ 

 
  −ω 

, (15) 

where 1ς = + αγ . The characteristic equation is 0A I− λ = . The equivalent LEM 
system is written under the form [13] 
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1 1 , 1 , , 1
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, , , 1 , , , , 1
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t

v vd e

= = = =

= =

∂ ∂ ∂ ∂= σ + σ + σ +
∂ ∂σ ∂σ ∂σ ∂σ ∂σ ∂σ

∂ ∂
+ σ + σ ∂σ ∂σ ∂σ ∂σ ∂σ ∂σ ∂σ ∂σ ∂σ 

∑ ∑ ∑ ∑

∑ ∑
 

(16) 

and the initial conditions 

( ) 0 0 0 0 0 0
1 2 3 4 5 6 1 2 3 4 5 5 61 2 3 4 60, , , , , , exp( )v z z z z z zσ σ σ σ σ σ = σ + σ + σ + σ + σ + σ . (17) 

In order to present and compare the performance of the aforementioned 
method, we consider an example for each systems of bell illustrated in Table 1. The 
weight and initial angular velocities, respectively, are presented in Table 2. 
 

Table 2 

Examples 

System Weight [N] 
Initial angular 

velocities 

1θ / 2θ  [rad/s] 

Central European (1) 4300 2.77 / 3.14 
Spanish (2) 4300 2.20 / 3.14 
English (3) 4318 0.96 / 1.30 

 

Initial conditions are chosen in the interval [–1.5, 1.5]. Results show that the 
solutions 1θ  and 2θ  are bounded and stable for 0ω= δ = . For certain values of ω  
and δ  we have also bounded motions, but we can depict other regions of these 
parameters for which the solutions may sudden change to irregular, chaotic type 
motions. 
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We start with illustrating the time history of 1θ  and 2θ , respectively, by 
Figs.  5–7 for each system, and ω= β , δ = 1.1. The LEM procedure is 
convergent and the behavior of the system is quasi periodic. For δ ≥1.9 the 
solutions show a typical transition between the regular and non-regular motions, 
when increasing the time. The cascade of period-doubling solutions suggests easily 
a route to chaos. The amplitude of oscillations increases and the system will lose its 
stability. 

 
Fig.  5 – Time history of 1θ  and 2θ  ( δ = 1.1) in the case of Central European system. 

 

 
Fig.  6 – Time history of 1θ  and 2θ  ( δ = 1.1) in the case of the Spanish system. 
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Furthermore, a comparison between the LEM and Ivorra et al. [6] methods 
for the time history of the horizontal force ( δ =1.1), is illustrated in Fig.8 for the 
Spanish system. From the figure it can be seen that the LEM results show a small 
distorsional aspect in the decreasing regions of the horizontal force with respect to 
time. We explain this by the fact that the motion is very sensitive with respect to 
the variation of the parameter m . 

 
Fig.  7 – Time history of 1θ  and 2θ  ( δ = 1.1) in the case of the English system. 

Fig.  8 – Comparison between LEM and Ivorra et al. [6] methods for the horizontal force time history 
( δ = 1.1) for the Spanish system. 

 
It is interesting to consider a crack in the bell in order to study the way in 

which the crack affects the bell motion. In order to do this, the wave analysis is 
needed because the crack affects the resonance at the fundamental and 
subharmonic waves. Different cracks into the bell contribute to the deterioration of 
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the harmonics. Fig.  9 represents the free decay vibrations of the Central European 
system for δ = ω = 0 and the perturbed parameter m m+ ∆ , 310−∆ ≈ . We see that 
the equilibrium position of the double pendulum is shifting during the motion. 

After oscillations died out, the equilibrium position remains shifted. We must 
remark that a similar behaviour was experimentally observed on different damaged 
material vibrators [14–16]. Though the noise is not typically treated in an 
engineering discussion of damping, we believes that there is a connectivity among 
vibrations, damping, and noise, because the mechanical damping of hysteretic type 
is closely to the form of noise (1/ f = flicker) [17]. 

 

 
 

Fig. 9 – Free decay oscillation 1θ  of the Central European system. 

 
In conclusion, the motion of double pendulum can be, especially for 

damaged materials, very complex, and cannot be explained by classical double 
pendulum models. 
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