
 

 

ON THE INFLUENCE OF DENSITY  
ON THE WAVE PROPAGATION IN FLUIDS 
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Abstract. In this paper we investigate the influence of the density on the propagation 
of waves in fluids with exponential and cosine stratification, respectively. We show 
that the waves are pairs of solitons, each pair consisting of two opposite directions 
propagating waves of the same mode. The modes of the two pairs are different from 
each other, and are different from the m-th and n-th modes. The original waves 
propagate after interaction without changing their identities, but only the m-wave 
suffers a shift of phase. 
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1. INTRODUCTION 

Influence of the density on the propagation of waves in fluids represents an 
important area of research with potentially application to the generation and motion 
of the Tsunami waves (Imteaz et al. [1]). 

Linear models on two-layered long wave flow [2–6] and nonlinear aspects 
extracted from experimental observations [7,  8], were successfully validated by 
numerical and analytical solutions for multi-layered flow based on Boussinesq-type 
equations [9,  10] and by piecewise integration of Laplace equation for each 
individual layer [11]. 

The Kadomtsev-Petviashvili (KP) equation (2D version of the Korteweg-de 
Vries equation) describes the motion of long waves of small amplitude with slow 
dependence on the transverse coordinate [12]. The KP equation coupled with the 
generalized play operator is able to explain the dilatonic behavior of the soliton 
interaction and the generation of huge waves in shallow waters [13]. 

The motion of an incompressible stratified fluid, with different densities in 
layers has been studied in the case of an exponential stratification by Munteanu and 
Donescu [14] and Yih [15].  

An example of stratified fluid is the atmosphere. Interesting meteorological 
implications are discussed by Robert [16,  17] in the frame of theoretical and 
                                                 

* Institute of Solid Mechanics of the Romanian Academy, 15 Ctin Mille, 010141 Bucharest 

Rev. Roum. Sci. Techn. − Méc. Appl., Tome 57, Nº 1, P. 63–70, Bucarest, 2012 



64 Ligia Munteanu, Valeria Moşneguţu, Iulian Girip, Mihaela Alexandra Popescu 2 

 

experimental analysis of the two-dimensional flow of a stratified fluid over a 
barrier in a gravity field. 

In this paper, we study the propagation of waves in fluids with exponential 
and cosine stratification, respectively. But, we mention that the governing 
equations are valid for any arbitrary density stratification.  

We show that the motion equations possess a special type of elementary 
solution. These solutions known as solitons have the form of localized waves that 
conserve their properties even after interaction among them, and then act somewhat 
like particles. These equations have interesting properties: an infinite number of 
local conserved quantities, an infinite number of exact solutions expressed in terms 
of the Jacobi elliptic functions (cnoidal solutions) or the hyperbolic functions 
(solitonic solutions or solitons), and the simple formulae for nonlinear 
superposition of explicit solutions [14]. 

2. FORMULATION OF THE PROBLEM 

The fluid is situated between two horizontal boundaries spaced at distance h 
apart. The wave motion takes place in the ( , )x y  plane of a Cartesian system of 
coordinates with the origin in the lower boundary and y vertically upward.  

Euler motion equations are given by [14,  15] 

D( )
D x

u p
t

ρ + ρ = − , (1) 

Dv( ) ( )
D yp g

t
ρ + ρ = − − ρ + ρ , (2) 

where u and v are the components of velocity in the positive direction of x  and y , 
p  is the pressure, ( )yρ  is the density in the undisturbed fluid, ρ  the density 

perturbation and g  the gravitational acceleration, and 
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The incompressibility equation 

D ( ) 0
Dt

ρ + ρ = , (4) 

leads to continuity equation 

0x yu v+ = . (5) 
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If the stream function is denoted by ψ , the components of velocity are 
expressed as follows  

yu = ψ ,  xv = −ψ . (6) 

From (1) and (2) we obtain 

xx yy y xD( + ) D D( ) ( )
D D Dy x xp gp

t t t
ψ ψ ψ ψ

ρ + ρ + ρ + ρ + = . (7) 

The equation (4) becomes 

D
D y xt
ρ
= ρ ψ . (8) 

Yih [15] has been studied the equations (7) and (8) in the case of exponential 
stratification 

0 exp( )yρ = ρ −α . (9) 

In this paper we intend to study not only the Yih case, but also the case of 
cosine stratification 

0 cos( )yρ = ρ β . (10) 

To solve the governing equations (7) and (8), we apply the cnoidal method 
[14] 
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where Θ  is the theta function defined as 
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,   2exp ii iB = ω . (13) 

j j j jk x tη = −ω + φ ,  1,2j = . (14) 

In (12), jk  are the wave numbers, jω are the frequencies and jφ are phases. 
For the case (9), the solutions for the m th and n th modes of the equations 

(10) are obtained from applying (12)–(14), to the lowest order [15] 
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and similarly for 2
nγ . 

For the case (10), we have the solutions for the m th and n th modes of the 
equations (7) and (8) to the lowest order 
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and similarly for 2
nγ . 

3. RESULTS 

It is convenient to discuss the propagation of waves for the particular case of 
2n m= . In both cases (9) and (10), these waves may propagate in the same 

direction or in opposite directions. The waves are pairs of solitons, each pair 
consisting of two opposite directions propagating solitary waves of the same mode. 
The modes of the two pairs are different from each other, and are different from the 
mth and nth modes of the waves. The original waves propagate after interaction 
without changing their identities, but only the m -wave suffers a shift of phase. We 
have taken n = 6 and m = 3. The depth of the fluid is 75 m, the wave length is 
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L = 390m, and the dimensionless amplitude is the amplitude reported to the wave 
amplitude of 4 m. 

Fig. 1 shows the variation of the amplitude with respect to /x L  at the top 
surface after 50 seconds, for both models of stratification, and similar input data. 

 

 
Fig. 1 – Comparison of stratification models for the top surface of the fluid at t = 50seconds. 

Figs. 2 and 3 illustrate the interaction between two opposite directions 
propagating solitary waves for the top surface, of the same mode, for both models 
of stratification in the interval of 6 and 9 seconds, respectively. We see that the 
original waves propagate after interaction without changing their identities. 

 
Fig. 2 – Interaction between two solitary waves for the top surface in the case of exponential stratification. 



68 Ligia Munteanu, Valeria Moşneguţu, Iulian Girip, Mihaela Alexandra Popescu 6 

 

 
Fig. 3 – Interaction between two solitary waves for the top surface in the case of cosine stratification. 
 

Figs. 4 and 5 represent the variation of the wave amplitude with respect to 
/x L  and time, at the top surface in the interval of 1–6 seconds, for both models of 

stratification. 

 
Fig. 4 – Variation of the wave amplitude for the top surface in the case of exponential stratification. 
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Fig. 5 – Variation of the wave amplitude for the top surface in the case of cosine stratification. 

 
We see from Figs. 4 and 5 that the wave propagation at the top surface has a 

complex structure. Agreements of our results are very good with results reported 
by Imteaz et al.[1]. It can be concluded that our model is capable to produce 
realistic results. For in depth surfaces, the picture of the wave propagation is 
simpler, because the intermediate surfaces gets dampen down with the course of 
time. These are because of the complicated interactions from the adjacent layers 
accordingly with [1]. For the top surface, the wave phase changes each 8 seconds 
and the wave moves a distance of half of the wave length within 8 seconds. Also, 
within 10 seconds to 50 seconds, many wave crests are formed. 
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