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Abstract. This paper describes a platform which allows humans to interact with 
robotic arms using augmented reality. Low cost “kinect” cameras (Xbox 360) are used 
for tracking human skeletons and locations of robot’s end effectors. The main goal of 
this paper is to develop robust trackers on this platform. Concretely, a Kalman filter is 
used for tracking robotic arms using data received from these sensors. It comes to 
finding a low cost platform for human-robot interactions. 
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1. INTRODUCTION  

There is a wide range of industrial processes in which robotic systems are 
present. Nowadays, the required characteristics for such industrial processes are 
high efficiency, flexibility and adaptability. Human-robotic systems interaction is a 
key solution to accomplish these requirements, establishing a synergy between the 
best features of both robots and humans: robot’s precision and high efficiency and 
human’s flexibility and adaptability. 

Human-machine interactions have numerous applications such as assembly 
tasks [3, 12], wheelchair controls through different types of sensors [2, 13], 
developments of servomechanisms [1], developments of intelligent robots [4], and 
so on. 

This paper provides the basis for human-machine interaction in order to 
increase efficiency in pieces assembly processes, whose flexibility and adaptability 
characteristics require a clos interaction between humans and the robotic systems. 
Interactions between humans and robots improve the efficiency of complex 
assembly processes, especially when intelligence is required by the system [3]. 
However, a precondition for this close relationship is human safety. Many research 
advances have been carried out in this area and now, some surveillance systems 
based of sensors used to interact with robots in the market can be found. Intelligent 
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assistance devices (IAD) are the basis for introducing human beings in assembly 
processes in order to use their cognitive and sensory-motor skills to carry out 
assemblies with high flexibility. 

The main goal of this research consists on creating a platform which can be 
used as a basis for developing applications with interactions between humans and 
machines. A simple practical case of human-robot interaction has been 
implemented to check this platform. 

1.1. RELATED RESEARCH 

We consider the problem of estimating and tracking 3D configurations of 
complex articulated objects from images, e.g., for applications requiring 3D robot 
arms pose, human body pose and hand gesture analysis. There are two main 
schools of thought on this. Model-based approaches presuppose an explicitly 
known parametric articulated object model and estimate the pose either by directly 
inverting the kinematics (which has many possible solutions and which requires 
known image positions for each part [26]) or by numerically optimizing some form 
of model-image correspondence metric over the pose variables, using a forward 
rendering model to predict the images (which is expensive and requires a good 
initialization, and the problem always has many local minima [24]). An important 
subcase is model-based tracking, which focuses on tracking the pose estimate from 
one time step to the next starting from a known initialization based on an 
approximate dynamical model [17, 23]. In contrast, learning-based approaches try 
to avoid the need for explicit initialization and accurate 3D modeling and 
rendering, instead capitalizing on the fact that the set of typical articulated object 
poses is far smaller than the set of kinematically possible ones and learning a 
model that directly recovers pose estimates from observable image quantities. In 
particular, example-based methods explicitly store a set of training examples 
whose 3D poses are known, estimating pose by searching for training image(s) 
similar to the given input image and interpolating from their poses [15, 19, 22, 25]. 

There is a good deal of prior work on articulated objects pose analysis, but 
relatively little on directly learning 3D pose from image measurements. Brand [16] 
models a dynamical manifold of human body configurations with a Hidden 
Markov Model and learns using entropy minimization, Athitsos and Sclaroff [14] 
learn a perceptron mapping between the appearance and parameter spaces, and 
Shakhnarovich et al. [22] use an interpolated-k-nearest-neighbor learning method. 
Human pose is hard to ground truth, so most papers in this area [14, 16, 19] use 
only heuristic visual inspection to judge their results. However, Shakhnarovich et 
al. [22] used a human model rendering package (POSER from Curious Labs) to 
synthesize ground-truthed training and test images of 13 degrees of freedom upper 
body poses with a limited (±40º) set of random torso movements and viewpoints. 
Several publications have used the image locations of the center of each body joint 
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as an intermediate representation, first estimating these joint centers in the image, 
then recovering 3D pose from them. Howe et al. [18] develop a Bayesian learning 
framework to recover 3D pose from known centers, based on a training set of pose-
center pairs obtained from resynthesized motion capture data. Mori and Malik [19] 
estimate the centers using shape context image matching against a set of training 
images with prelabeled centers, then reconstruct 3D pose using the algorithm 
of [26]. These approaches show that using 2D joint centers as an intermediate 
representation can be an effective strategy. 

With regard to tracking, some approaches have learned dynamical models for 
specific human motions [20, 21]. Particle filters and MCMC methods have been 
widely used in probabilistic tracking frameworks, e.g. [23, 27]. Most of these 
methods use an explicit generative model to compute observation likelihoods. 

1.2. OVERWIEV OF THE APROACH 

Using the same philosophy as for tracking human skeleton, former 
approaches can be applied to track robot arms. We propose to use a low cost vision 
system which requires a discrete Kalman filter. This allows tracking join variables 
at each instant of time. 

1.3. ORGANIZATION 

Section 2 describes the global system. Section 3 describes de low cost 3D 
vision system and calibration system. Section 4 presents the robot used and 
descrive the kalman filter uses to track a robot arm. Section 5 describes a human 
skeleton tracking approach. Section 6 describes an example to human-robot 
interaction. Finally, Section 7 concludes with some discussions and directions of 
future work. 

2. GLOBAL SYSTEM DESCRIPTION 

A platform for human-machine interaction using augmented reality [8] has 
been performed between robotic systems and human beings. This platform is a 
distributed system where processes can communicate easily between them. The 
main functionalities offered by this platform are: 

1) Communications between processes via XML [5]. 
2) Safety controls. 
3) Tracking of robot arm poses. 
4) Tracking of human skeletons. 
5) Handle of augmented reality scenes. 



154 Enrique Martinez Berti, Antonio José Sanchez Salmerón, Francesc Benimeli 4 

A practical case of human-robot interaction has been implemented to check 
this platform. Figure 1 shows the distribution of the physical components (robot 
and camera) of this application. 

 

Fig. 1 – Low cost 3D vision system. 

In this case, the distributed system is composed by two processes to perform 
interactions between a human and a robot. One process realizes the monitoring of 
human skeleton. The other process realizes the monitoring of the robot arm pose. 
The data information for human and robot state estimation is obtained by a low-
cost 3D camera. 

The XML messages set developed ad-hoc for an application use special 
communication software. This software is called RT-SCORE [6] and it is a system 
(based on a blackboard system) that allows to assign a communication channel 
between processes. The “channel” concept is similar to a “hall” in a chat 
communication system (the chat communication is RT-SCORE); so, only the 
entities connected to a channel receive the information sent into this channel. 

Safety regulations require introducing guardrails, so that humans do not have 
direct access to industrial robots workspaces. To achieve a human–robot 
interaction a safety protocol has been established that allows such interaction 
without risk of serious damages. The safety control system calculates the human 
and robotic arms location, so that the closer they get, the slower the robot moves. 

MatLab [10] has been used in order to implement both processes. 
The robot arm monitor tracks the end effector and joint angles of the robot. 

However, it is needed a Kalman filter for tracking robot arm poses. 
The human skeleton monitor uses third party libraries with functions to 

estimate locations of each body part. Some human skeleton poses are used to 
handle virtual objects in the augmented reality scenario. Additionally these virtual 
objects can be shown on real RGB images captured by the camera. 
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3. LOW COST 3D VISION SYSTEM 

The vision system used in this practical case is the “Kinect” camera, which 
consists of two optical sensors whose interaction allows a three-dimensional scene 
analysis. One of the sensors is an RGB camera which has a video resolution of 
30 fps. The image resolution given by this camera is 640×480 pixels. The second 
sensor has the aim of obtaining depth information corresponding to the objects 
found at the scene. The working principle of this sensor is based on the emission of 
an infrared signal which is reflected by the objects and captured by a monochrome 
CMOS sensor. A matrix is then obtained which provides a depth image of the 
objects in the scene, called DEPTH. 

Calibration is needed to relate both camera and robot coordinates reference 
systems. Therefore objects located by the camera can be handled by the robot. 

3.1. 3D VISION SYSTEM CALIBRATION 

The intrinsic and extrinsic parameters of the two Kinect optical sensors are 
different. Therefore, it is necessary to calibrate one optical sensor (RGB) with 
respect to the other (DEPTH) in order to relate the corresponding pixels in both 
images, as shown in Fig. 2. 

 

    
Fig. 2 – Left – RGB image; right – DEPTH image. 

 
Fig. 3 – Overlap of RGB and DEPTH images. 
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To correct the gap between pixels from the two images, the following 
procedure is used: 

1. Detect a 2D point prgb =(xrgb, yrgb) on the RGB image. 
2. Project pi into three-dimensional space PRGB = (XRGB, YRGB,1) through 

the following equations: 
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where: 

0u – x  coordinate of the main point of the RGB camera; 
0v – y  coordinate of the main point of the RGB camera; 

αx – focal length in pixels; 
α y – focal length in pixels. 

For the present case of study, the applied intrinsic values of the camera 
( )0 0, , ,x yu v α α  are presented in [9]. 

3. Transform point PRGB into three-dimensional point PD with reference to the 
coordinate system of the DEPTH image. 
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The transformation matrix is composed of: rotation matrix R  and translation 
vector t . The rotation matrix was obtained as described in [9]. The translation 
vector was obtained experimentally by overlapping the DEPTH and RGB images. 
The resulting transformation matrix is: 
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4. Once the three-dimensional point PD is obtained, it is projected into the 
DEPTH image plane, hence obtaining a 2D point ( ),d d dp x y= . 
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The implementation of this procedure allows to considerably reduce the gap 
between the images. Figure 4 shows the calibration results: 

 
 

 
Fig. 4 – Left – overlap of RGB and DEPTH images before calibration;  

right – overlap of RGB and DEPTH images after calibration. 

3.2. COORDINATE SYSTEM UNIFICATION 

As the robotic device and the vision system must be integrated, it is necessary 
to implement a calibration process in order to obtain the transformation matrix that 
relates the coordinate systems of both elements. The calibration process is 
performed as follows. 

A set of 3D points whose location with respect to the robot coordinate system 
is known, are processed and their locations in reference to the camera coordinate 
system determined. 

The point to be detected by the camera is assumed to be the Tool Center 
Point (TCP) of the tool applied in the process, which also coincides with the center 



158 Enrique Martinez Berti, Antonio José Sanchez Salmerón, Francesc Benimeli 8 

of the object grasped by the tool. This is shown in Fig. 5, where the white point 
corresponds to center of the object identified by camera. 

 
Fig. 5 – White point – TCP with vision system. 

As mentioned in section 3.1, 3D representation of a point in a picture can be 
performed through equations (1) and (2). The ZRGB coordinate of a pixel in the 
RGB image is obtained from the value of the interesting pixel in the DEPTH image 
(white point in Fig. 5), according to [28], as follows:  
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where Rd (Raw Disparity) is a value of depth provided by the Kinect. 
Once the locations of the points with respect to the camera coordinate system 

are obtained, the transformation matrix can be computed. Therefore, from at least 4 
points, the linear equation system (9) is obtained and solved by least squares. 

 ,Ax b=  (9) 

where A contains information from the 3D points in reference to the camera 
coordinate system and “b” contains information from the 3D points in reference to 
the robot coordinate system. Solution x  to this equation can be estimated using: 
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−
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which results in the following transformation matrix 
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This matrix allows us to estimate a 3D location of a point in space in 
reference to the robot coordinate system (PR) starting from its location in reference 
to the Kinect coordinate system (PK): 
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4. ROBOT FANUC 200IB CONTROL 

DH (Denavit-Hartemberg) is used to solve direct and inverse kinematics 
problems. Figure 2 shows coordinate systems and articulation axes used for this 
Fanuc robot. 

 
Fig. 6 – Coordinate systems and articulation axes. 
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Hence, the following DH parameter is obtained (Table 1): 

Table 1 

Denavit-Hartemberg 

ART θ  id  ia  αi  
1 0º 0 150 90º 
2 90º 0 250 0 
3 0º 0 75 90º 
4 0º 290 0 90º 
5 0º 0 0 90º 
6 0º 0 0 0 

 
The direct and inverse kinematics problems are solved using these 

parameters. These kinematic models allow tracking the robot by using the Kinect, 
so that the end effector position is identified on the image and the state of the robot 
joints is calculated. The Kalman filter is necessary to filter the information 
captured by vision sensor and realize robot tracking. 

4.1. KALMAN FILTER 

The Kalman filter [11] is used in sensor fusion and data fusion. Typically real 
time systems produce multiple sequential measurements rather than making a 
single measurement to obtain the state of the system. These multiple measurements 
are then combined mathematically to generate the system's state at that time 
instant. 

Data fusion using a Kalman filter can assist computers to track objects in 
videos with low latency (not to be confused with a low number of latent variables). 
The tracking of objects is a dynamic problem, using data from sensor and camera 
images that always suffer from noise. This can sometimes be reduced by using 
higher quality cameras and sensors but can never be eliminated, so it is often 
desirable to use a noise reduction method. 

The iterative predictor-corrector nature of the Kalman filter can be helpful, 
because at each time instance only one constraint on the state variable needs to be 
considered. This process is repeated considering a different constraint at every time 
instance. All the measured data are accumulated over time and help in predicting 
the state. 

Video can also be pre-processed, using a segmentation technique, to reduce 
computation and hence latency. 

The discrete Kalman filter [11] is implemented as follows: 
1) State prediction: 

 
*

1
ˆ ˆ .t tX AX −=   (13) 
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1) Prediction of error covariance: 

  
* T

1 .t tP AP A Q−= +   (14) 

2) Calculate the constant gain K: 

   ( ) 1* T * T .t t tK P H HP H R
−

= +  (15) 
3) Update: 

   ( )* *ˆ ˆ ˆ .t t t t tX X K Z HX= + −
  

(16) 

4) Update error covariance: 

  ( ) *
t t tP I K H P= − .  (17) 

The Kalman filter has been applied to depth information. The values returned 
by depth images are not always right. This happens because the sensor does not 
detect the depth correctly when the infrared light is not properly reflected on the 
object. In this case, the input value to the Kalman filter is the depth value of zd 
(state) corresponding to the distance between the camera and the object. In (13) and 
(14) the zd value and covariance is predicted to the next step. Equations (15), (16) 
and (17) are the equations to correct the discrete Kalman filter. In (15), a new gain 
of Kalman is calculated. Equations (16) and (17) calculate a new value of zd 
predicted, and new covariance of error, respectively. 

Three Kalman filters have been implemented: one for each of the three points 
used to locate (position and orientation) the end effector. Figure 7 shows a pose 
estimated during the robot movement. It can be seen the three points detected on 
the end effector. 

 
Fig. 7 – Robot arm pose tracking. 
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Fig. 8 – Kalman Filter evolution. 

Figure 8 shows the evolution of depth information for comparing results 
obtained with Kalman filter and without applying the Kalman filter. The first graph 
shows parameter zd over time without applying the Kalman filter. The second 
graph shows zd over time applying the Kalman filter. At time 100, incorrect zd 
values can be observed when not applying the filter because the camera does not 
get properly information. It can be seen that the Kalman filter makes a correction 
of these values. 

5. MONITORING HUMAN SKELETON 

To monitor the skeleton of a human being, the toolbox [7] and [8] has been 
used in Matlab. The NITE tracking human body module aim is based on extracting 
the most important features of the human skeleton and following them over time. 
Figure 5 shows the result of the skeleton detection by the kinect. 

Tracking the human skeleton is necessary to control the actions in order to 
interact with the robot. In the present case study, it is used to insert virtual parts in 
the scene. A virtual piece will be created on the hand using a set gesture and with 
another set gesture the object will be fixed in that position. Fig. 10 shows the 
gesture to pick up a virtual object and Fig. 11 shows the gesture to place the object 
in a fixed position. 
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Fig. 9 – Skeleton pose control. 

 
Fig. 10 – Take object. 

 
Fig. 11 – Place object. 

The act of creating a virtual object is performed by placing the arm and 
forearm in an angle of 90 degrees. Once the piece appears on the image, it follows 
the arm movements until the subject performs the gesture for placing the piece, 
which consists on stretching out the arm to the desired position. 

6. EXAMPLE 

The platform used to perform the human-robot interaction is described below. 
The main application in the platform performs a hybrid assembly operation 

[3]. This operation is performed by a robot arm and a human. Tracking of the robot 
arm and the human skeleton is performed using a Kalman filter.  

The necessary information from the environment is obtained through two low 
cost 3D cameras (Kinect), each one with a different function. The first one detects 
and identifies the objects in the assembly and provides their corresponding 3D 
locations (Kinect-1). The second one tracks the robot arm and human locations 
using information about space (Kinect-2). The objects in the assembly can be real 
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objects or virtual objects. Virtual objects are visualized in the RGB image from 
Kinect-2 using augmented reality. Figure 12 shows the distribution of the 
components in the physical system. 

 
Fig. 12 – Low cost 3D vision system. 

Figure 13 shows a scheme describing the system integration. 

 
Fig. 13 – Integration scheme. 
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According to the type of objects in the space, two different sections can be 
considered in the system: a section with real objects and a section with virtual 
objects generated through augmented reality. The information for each one of these 
sections is provided by the corresponding Kinect. 

In order to develop the example a multiplatform scheme, involving Matlab 
and Visual Studio is applied. Matlab is used to track the robot arm (augmented 
reality section). The communication with the robot and the detection of real objects 
is implemented in Visual Studio (real objects section). 

6.1. LOCALIZATION OF REAL OBJECTS 

The real objects section is responsible for acquiring images of the 
environment where the real objects are and sending the necessary commands to the 
robot. 

1. Identification of real objects: acquiring and processing images from the 
environment in order to identify real objects that correspond to objects to be 
assembled. Both the orientation and 3D location are obtained. 

2. Interaction with real objects: necessary calculations are performed so that 
the robot moves to positions where real objects are detected, grasps the 
detected objects and finally leaves them in the assembly using a default 
position and location. 

 
Fig. 14 – Visualization real objects detected. 
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6.2. HUMAN-ROBOT INTERACTION WITH VIRTUAL OBJECTS 

The main functions of this platform are: 
1. Tracking joint variables of the robot arm: using a Kalman filter 

according to the values provided by Kinect-2. 
2. Tracking human skeleton: using a library of functions to estimate the 

location of each body part. 
3. Create the augmented reality scene, where real objects and virtual objects 

are visualized. 
The use of virtual parts allows the simulation of assembly operations where 

the possibility of collision with the environment or with other parts is critical. 
The safety standard requires the introduction of guardrails ensuring that 

humans never invade the workspace of an industrial robot. In this case, the aim is 
allowing that a human can interact with the robot. Therefore, a security protocol 
has been established that provides such interaction without risk of serious 
accidents. The system determines the locations of the human and the robot arm, so 
that as they approach the robot speed is reduced. 

6.3. COMUNICATION WITH THE ROBOT 

For this study, a 200iB Fanuc robot has been used which performs the 
functions of localized assembly of pieces using one of the two available vision 
systems. 

Given that the communication is a critical component of the system, it is 
performed via an Ethernet network using the RT-Score system. RT-Score [6] is a 
real time communication system based on the distributed blackboard model, which 
is able to send and receive messages with ease. 

As can be seen in Fig. 13, computers in a distributed system are connected to 
the internal network. Communication between applications running on these 
computers and the server is done by applying RT-Score. The management 
information input to the server is controlled by the "event handler" application. The 
applications responsible for the two sections send messages to the robot, 
corresponding to real and virtual parts in the assembly. The event handler, whose 
main function is to manage the information that the applications send to the robot, 
assigns priorities to eventually simultaneous messages according to the logic of 
integration. Once a message has been received by the event handler, it is 
interpreted and sent to the "software robot" application, which is responsible for 
executing the corresponding command on the robot control unit. The robot 
software is a generic robot programming interface that allows to program for 
different types of robots using XML [5]. This interface allows configuration 
instructions to be send in order to move and control robot units connected through 
an Ethernet network. 
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7. CONCLUSION 

A platform that serves as the basis for developing applications which 
establish interaction between humans and robots has been created. 

Using this platform we have carried out a simple case study of interaction 
between a human being and a robotic system that allows the handle of virtual and 
real parts between a human and a robot. 

A discrete Kalman filter is used to reduce noise in data get it from the low 
cost vision system which allows tracking robot arms. A human body can be 
modeled like some interconnected robots. Therefore this method can be 
extrapolated for tracking human skeletons. 

In a future work, we will explore new methods to track articulated objects 
based on efficient robot models, like screw theory instead of DH model. 
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