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Abstract. Recursive matrix relations for the joint forces in dynamics of a planar  
3-PRR parallel robot are established in this paper. Knowing the kinematics of the 
platform, we develop the inverse dynamic problem, using an approach based on the 
principle of virtual work. Some graphs of simulation for the internal joint forces are 
obtained. 
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1. INTRODUCTION 

Equipped with revolute or prismatic actuators, parallel manipulators have a 
robust construction and can move bodies of large dimensions with high velocities 
and accelerations. That is reason why the devices, which produce translation or 
spherical motion to a platform, technologically are based on the concept of parallel 
manipulators [1]. 

Parallel manipulators have received more and more attention from researches 
and industries. Among these, the class of manipulators known as Stewart-Gough 
platform focused great attention (Stewart [2]; Merlet [3]). The prototype of Delta 
parallel robot (Clavel [4]; Tsai and Stamper [5]) and the Star parallel manipulator 
(Hervé and Sparacino [6]) are both equipped with three motors, which train on the 
mobile platform in a general translation motion. 

A mechanism is said to be a planar robot if all the moving links in the 
mechanism perform the planar motions that are parallel to one another. In a planar 
linkage, the axes of all revolute joints must be normal to the plane of motion, while 
the direction of translation of a prismatic joint must be parallel to the plane of 
motion. 

Bonev, Zlatanov and Gosselin [7] describe several types of singular 
configurations by studying the direct kinematics model of a 3-RPR planar parallel 
robot with actuated base joints. Pennock and Kassner [8] present a kinematical 
study of a planar parallel robot, where a moving platform is connected to a fixed 
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base by three links, each leg consisting of two binary links and three parallel 
revolute joints.  

2. KINEMATICS ANALYSIS 

A recursive method is introduced in the present paper, to reduce significantly 
the number of equations and computation operations by using a set of matrices for 
kinematics and inverse dynamics of the 3-PRR planar parallel robot. 

The planar parallel robot of three degrees of freedom is a symmetrical 
mechanism composed of three planar kinematical chains 1 2 3A A A , 1 2 3B B B  and 

1 2 3C C C , having variable length and identical topology, all connecting the fixed 
base 0 0 0A B C  to the moving platform 3 3 3A B C . The parallel mechanism with seven 
links consists of three prismatic joints and six revolute joints (Fig. 1). 

 
Fig. 1 – Planar 3-PRR parallel robot. 
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For the purpose of analysis, we attach a Cartesian frame 0 0 0 0( )Ox y z T  to the 
fixed base with its origin located at triangle centre O , the 0z  axis perpendicular to 
the base and the 0x  axis pointing along the direction 0 0C B . A mobile reference 
frame G G GGx y z  is attached to the moving platform, with the origin located just at 
the centre G  of the triangle. 

One of three active legs (for example leg A ) consists of a prismatic joint, 
which is as well as a piston of mass 1m  linked at the 1 1 1 1

A A AA x y z  frame, having a 
rectilinear translation of displacement 10

Aλ . Second element is a rigid rod linked at 
the 2 2 2 2

A A AA x y z  frame, having a relative rotation about 2
Az  axis with the angle 21

Aϕ . 
It has the length 2l , mass 2m  and tensor of inertia 2Ĵ  with respect to 2

AT  frame. 
Finally, a revolute joint is introduced at a planar moving platform, which is 
schematised as an equilateral triangle with edge 3l r= , mass 3m  and inertia 
tensor 3Ĵ  with respect to 3A , which rotates with the angle 32

Aϕ  about 3
Az . 

At the central configuration, we consider that all legs are symmetrically 
extended with the angles / 3, 3 ,A B A C Aα α α α α= π = = −  of orientation of three 
edges of fixed platform. 

We call the matrix , 1k kaϕ − , for example, the orthogonal transformation 3 3×  

matrix of relative rotation with the angle , 1
A
k kϕ −  of link A

kT  around A
kz  axis. 

Starting from the reference origin O  and pursuing three independent legs 
0 1 2 3OA A A A , 0 1 2 3OB B B B , 0 1 2 3OC C C C , we obtain the following transformation 

matrices 

10 21 3221 32,   ,   ( , , ) ( , , )iq q q q q q a b c i A B C= = = = =ϕ ϕ
αθ θ θ , (1) 

where 

     , 1, 1 rot( , )i
k kk kq zϕ ϕ −− = ,  rot( , )i

izαθ α= ,  rot( , )
6

z πθ = . (2) 

It can be considered that the position of the mechanism, in the inverse 
geometrical problem, is completely given through the coordinates 0 0,G Gx y  of the 
mass centre G  of the moving platform and the orientation angle φ  of the mobile 
central frame G G GGx y z . The orthogonal known rotation matrix of the platform 
from 0 0 0Ox y z  to G G GGx y z  reference system is rot( , )R z φ= . 

We suppose that the position vector of G  centre 0 0 0[ 0]G G G Tr x y=  and the 
orientation angle φ , which are expressed by following analytical functions 
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     0 0
* * *

0 0
1 cos

3

G G

G G
x y t
x y

φ π
φ

= = = − , (3) 

can describe the general absolute motion of the moving platform in its vertical 
plane. From the conditions concerning the orientation of the platform 

   30 30
Tq q R= ,  30 32 21 10 30, , ( , , )iq q q q q q a b cαθθθ= = =  (4) 

we obtain the following relations between angles 21 32 ( , , )i i i A B Cϕ ϕ φ+ = = . 
Pursuing the kinematical modeling developed in [9], six independent 

variables 10 21,A Aλ ϕ , 10 21,B Bλ ϕ , 10 21,C Cλ ϕ  will be determined by the analytical 
equations 

1 10 2 21 0 00( )sin sin( ) cos( )
6 3

i i G i
i i il l y y rπ πλ α ϕ α φ α+ + + + = − − + +  

1 10 2 21 0 00( )cos cos( ) sin( )
6 3

i i G i
i i il l x x rπ πλ α ϕ α φ α+ + + + = − + + +  

( , , )i A B C= . 

(5) 

Now, we compute in terms of the angular velocity of the platform and 
velocity of mass centre G  the relative velocities 10 21 32, ,A A Av ω ω , starting from 
following matrix conditions of connectivity 

10 10 1 21 20 3 32 32 3 32 30 3 3 0{ }A T T A T T A T GA A T T GA T G
j j j jv u a u u a u r a r u a u r u r+ + + =ω ω ( 1, 2)j = , 

              21 32
A Aω ω φ+ = . 

(6) 

Concerning the first leg A , the characteristic virtual velocities are expressed 
as functions of the pose of the mechanism by the general kinematical equations (6), 
where we add the contributions of successive virtual translations or rotations  
during some fictitious displacements of the prismatic joint 1A  and of the revolute 
joints 2A  and 3A , as follows: 

10 10 1 10 2 10 10 3 21 32 32 310

21 10 1 10 2 21 20 3 32 32 321

32 20 1 20 2 32 3032

{ }

   { }

   

Av T T Ayv T T Av T T T A T GA
j j j

Axv T T Ayv T T Av T T A T GA
j j j

Axv T T Ayv T T Av T T
j j j

v u a u v u a u u a u a r a r

v u a u v u a u u a u r a r

v u a u v u a u u a

ω

ω

ω

+ + + +

+ + + + +

+ + + 3 3 0 ( 1, 2),GA T Gv
ju r u v j= =

 

10 21 32 0
Av Av Av vω ω ω ω+ + = . 

(7) 
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Now, let us assume that the robot has successively some virtual motions 
determined by following sets of velocities: 

10 0iv
av = , 10 1Ayv

av = , 10 0Byv
av = , 10 0Cyv

av = , 10 0iv
aω = , 21 0ixv

av = , 21 0iyv
av = , 32 0ixv

av = , 32 0iyv
av = ; 

10 0iv
av = , 10 0iyv

av = , 10 1Av
aω = , 10 0Bv

aω = , 10 0Cv
aω = , 21 0ixv

av = , 21 0iyv
av = , 32 0ixv

av = , 32 0iyv
av = ; 

10 0iv
av = , 10 0iyv

av = , 10 0iv
aω = , 21 1Axv

av = , 21 0Bxv
av = , 21 0Cxv

av = , 21 0iyv
av = , 32 0ixv

av = , 32 0iyv
av = ; 

10 0iv
av = , 10 0iyv

av = , 10 0iv
aω = , 21 0ixv

av = , 21 1Ayv
av = , 21 0Byv

av = , 21 0Cyv
av = , 32 0ixv

av = , 32 0iyv
av = ;   (8) 

10 0iv
av = , 10 0iyv

av = , 10 0iv
aω = , 21 0ixv

av = , 21 0iyv
av = , 32 1Axv

av = , 32 0Bxv
av = , 32 0Cxv

av = , 32 0iyv
av = ; 

10 0iv
av = , 10 0iyv

av = , 10 0iv
aω = , 21 0ixv

av = , 21 0iyv
av = , 32 0ixv

av = , 32 1Ayv
av = , 32 0Byv

av = , 32 0Cyv
av = . 

These virtual velocities are required into the computation of virtual power and 
virtual work of all forces applied to the component elements of the manipulator. 

As for the relative accelerations 10 21 32, ,A A Aγ ε ε  of the robot, new conditions of 
connectivity are obtained by the derivative of above equations (6): 

10 10 3
A T T

ju a uγ + 21 20 3 32 32 3{ }A T T A T GA
ju a u r a rε + 32 30 3 3

A T T GA
ju a u r+ =ε  

0 21 21
T G A A T
j ju r u= −ω ω 20 3 3 32 32 3{ }T A T GAa u u r a r+ − 32 32 30 3 3 3

A A T T GA
ju a u u rω ω −  

21 32 20 3 32 3 32 A A T T T GA
ju a u a u rω ω− ,   21 32

A Aε ε φ+ =   ( 1, 2)j = . 

(9) 

3. DYNAMICS EQUATIONS 

The dynamics of parallel mechanisms is complicated by existence of multiple 
closed-loop chains. In the context of the real-time control, neglecting the friction 
forces and considering the gravitational effects, an important objective of the 
dynamics is first to determine the input torques or forces which must be exerted by 
the actuators in order to produce a given trajectory of the end-effector, but also to 
calculate all internal joint forces or torques. 

Upon to now, several methods have been applied to formulate the dynamics 
of parallel mechanisms, which could provide the same results concerning these 
actuating torques or forces. First method applied to formulate the dynamics 
modelling is using the Newton-Euler procedure [10], the second one applies the 
Lagrange’s equations and multipliers formalism [11] and the third approach is 
based on the principle of virtual work [12]. 

Knowing the position and kinematics state of each link as well as the external 
forces acting on the planar 3-PRR parallel manipulator, in the present paper we 
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apply the principle of virtual work for the inverse dynamic problem in order to 
establish some definitive recursive matrix relations for the calculus of internal 
forces in the joints. 

Three independent mechanical systems acting along the planar directions 

1 1
AA x , 1 1

BB x  and 1 1
CC x  with the forces 10 10 1,A Af f u=  10 10 1

B Bf f u= , 10 10 1
C Cf f u=  can 

control the general motion of the moving platform. The force of inertia 

( )0 0 0 0 0
inA A A A A A CA

k k k k k k kf m rγ ω ω ε = − + +   and the resulting moment of inertia forces 

0 0 0 0 0
ˆ ˆ[ ]inA A CA A A A A A A

k k k k k k k k km m r J Jγ ε ω ω= − + +  of an arbitrary rigid body A
kT , for 

example, are determined with respect to the centre of joint kA . On the other hand, 
the wrench of two vectors A

kf
∗  and A

km∗  evaluates the influence of the action of 
the weight A

km g  and of other external and internal forces applied to the same 
element A

kT  of the manipulator. 
Two significant recursive relations generate the vectors 

0 1, 1
A A T A

k k k k kF F a F+ += + , 

0 1, 1 1, 1, 1
A A T A A T A
k k k k k k k k k kM M a M r a F+ + + + += + + , (10) 

with the notations 0 0
A inA A

k k kF f f ∗= − − ,  0 0
A inA A
k k kM m m∗= − − . 

As example, starting from (10), we develop a set of six recursive matrix 
relations for the leg A : 

3 30
A AF F= ,  2 20 32 3

A A T AF F a F= + ,  1 10 21 2
A A T AF F a F= + , 

3 30
A AM M= ,  2 20 32 3 32 32 3

A A T A A T AM M a M r a F= + + ,  

1 10 21 2 21 21 2
A A T A A T AM M a M r a F= + + . 

(11) 

The fundamental principle of the virtual work states that a mechanism is 
under dynamic equilibrium if and only if the virtual work developed by all 
external, internal and inertia forces vanish during any general virtual displacement, 
which is compatible with the constraints imposed on the mechanism. Assuming 
that frictional forces at the joints are negligible, the virtual work produced by all 
remaining forces of constraint at the joints is zero. 

Total virtual work contributed by the inertia forces and moments of inertia 
forces, by the wrench of known external forces and by some internal joint forces, 
for example, can be written in a compact form, based on the relative virtual 
velocities. 

Applying the fundamental equations of the parallel robots dynamics [13, 14, 
15] the following compact matrix relations results: 
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10 2 1 3 21 2 32 3 21 2 21 2{ }A T A T Av A Av A Bv B Cv C
y a a a af u F u M M M Mω ω ω ω= + + + +  (12) 

for the external joint force acting in the prismatic joint 1A , 

10 3 1 3 21 2 32 3 21 2 21 2{ }A T A T Av A Av A Bv B Cv C
a a a am u M u M M M Mω ω ω ω= + + + +  (13) 

for the  joint torque acting in the prismatic joint 1A , 

21 1 21 2 3 21 2 32 3 21 2 21 2{ }A T T A T Av A Av A Bv B Cv C
x a af u a F u M M M Mω ω ω ω= + + + +  (14) 

for the first joint force and 

21 2 21 2 3 21 2 32 3 21 2 21 2{ }A T T A T Av A Av A Bv B Cv C
y a af u a F u M M M Mω ω ω ω= + + + +  (15) 

for the second joint force acting in the joint 2A , 

32 1 32 3 3 21 2 32 3 21 2 21 2{ }A T T A T Av A Av A Bv B Cv C
x a af u a F u M M M Mω ω ω ω= + + + +  (16) 

for the first joint force and 

32 2 32 3 3 21 2 32 3 21 2 21 2{ }A T T A T Av A Av A Bv B Cv C
y a af u a F u M M M Mω ω ω ω= + + + +  (17) 

for the second joint force acting in the joint 3A . 
In what follows we can apply the Newton-Euler procedure to establish the set 

of analytical equations for each compounding rigid body of a prototype robot in a 
real application. These equations give all connecting forces in the external and 
internal joints. Several relations from the general system of equations could 
eventually constitute verification for the input forces already obtained by the 
method based on the principle of virtual work. 

As application let us consider same planar mechanism 3-PRR analysed in [9], 
which has the following geometrical and architectural characteristics: 

* *
0 0 1 2 2

1 0 2

0.025m , 0.025m , , 1kg, 1.5kg, 3kg12
0.1m, 3, 0.3m, 0.2m, 3 s.

G Gx y m m m

r l l r l l t

∗ π= − = = = = =

= = = = = ∆ =

φ
 

Using the MATLAB software, a computer program was developed to solve 
the inverse dynamics of the planar parallel manipulator. To illustrate the algorithm, 
it is assumed that for a period of three second the platform starts at rest from a 
central configuration and rotates or moves along rectilinear directions. 

Assuming that there are no external forces and moments acting on the 
moving platform, a dynamic simulation is based on the computation of the joint 
forces 10

i
yf , 21 21 32 32, , ,i i i i

x y x yf f f f  and of the external joint torques 10
im  

( , , )i A B C=  during the platform’s evolution. 
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   Fig. 2 – Joint forces 10

A
yf , 10

B
yf , 10

C
yf .                            Fig. 3 – Joint torques 10

Am , 10
Bm , 10

Cm . 

      
   Fig. 4 – Joint forces 21

A
xf , 21

B
xf , 21

C
xf .                     Fig. 5 – Joint forces 21

A
yf , 21

B
yf , 21

C
yf . 

      
   Fig. 6 – Joint forces 32

A
xf , 32

B
xf , 32

C
xf .                    Fig. 7 –  Joint forces 32

A
yf , 32

B
yf , 32

C
yf . 

If the platform’s centre G  moves along a rectilinear planar trajectory 
without rotation of platform, the intensities of internal joint forces or torques are 
calculated by the program and plotted versus time as follows: Fig. 2–Fig. 7. For the 
second example we consider the rotation motion of the moving platform about 0z  



204 Ştefan Staicu 9 

horizontal axis with variable angular acceleration while all the other positional 
parameters are held equal to zero (Fig. 8–Fig. 13). 

         
  Fig. 8 – Joint forces 10

A
yf , 10

B
yf , 10

C
yf .                  Fig. 9 – Joint torques 10

Am , 10
Bm , 10

Cm . 

         
 Fig. 10 – Joint forces 21

A
xf , 21

B
xf , 21

C
xf .                     Fig. 11 – Joint forces 21

A
yf , 21

B
yf , 21

C
yf . 

         
    Fig. 12 – Joint forces 32

A
xf , 32

B
xf , 32

C
xf .                           Fig. 13 – Joint forces 32

A
yf , 32

B
yf , 32

C
yf . 

The simulation through the MATLAB program certify that one of the major 
advantages of the current matrix recursive formulation is a reduced number of 
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additions or multiplications and consequently a smaller processing time of 
numerical computation. 

4. CONCLUSIONS 

The present dynamics model takes into consideration the mass, the tensor of 
inertia and the action of weight and inertia force introduced by all compounding 
elements of the parallel mechanism. Based on the principle of virtual work, this 
approach establishes a direct determination of the time-history evolution for the 
internal forces or torques in joints. Choosing appropriate serial kinematical circuits 
connecting many moving platforms, the present method can easily be applied in 
forward and inverse mechanics of various types of parallel mechanisms, complex 
manipulators of higher degrees of freedom and particularly hybrid structures, when 
the number of components of the mechanisms is increased. 
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