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Abstract. Recently, the robot technology research is changing from manufacturing 
industry to non-manufacturing industry, especially the service industry related to the 
human life. Assistive robot is a kind of novel service robot. It can not only help the 
elder and disabled people to rehabilitate their impaired musculoskeletal functions, but 
also help healthy people to perform tasks requiring large forces. This kind of robot has 
a broad application prospect in many areas, such as medical rehabilitation, special 
military operations, special/high intensity physical labour, space, sports, and 
entertainment. Assistive robots are required to autonomously identify human’s 
movement intention in order to provide adequate support. Research carried out focus on 
using muscle surface electro as a clue for intention identification [1–2]. However an 
advanced real-time operating system is needed for integrating the existing approaches 
with assistive robot control. Moreover, for autonomous intention identification, a 
formulation of neural network will need to be developed for establishing connections 
between surface electro signals and human movement intentions. In this paper, a neural 
network based human movement intention identification method is proposed. sEMG 
(Surface Electromyography) signal of muscles will be processed through a novel 
wavelet decomposition method and then be used as input signals to a neural network 
which identifies human intentions. Based on human intentions, adequate support will be 
given to the human elbow by a real-time QNX control system. Firstly, sEMG of 
Palmaris longus, brachioradialis, flexor carpiulnaris and biceps brachii are analysed 
with a wavelet transform method. Then, the absolute variance of 3-layer wavelet 
coefficients is distilled, and regarded as signal characteristics to compose eigenvectors. 
The eigenvectors are input data of a neural network classifier used to identify 5 
different kinds of movement patterns including wrist flexor, wrist extensor, elbow 
flexion, forearm pronation, and forearm rotation. Finally, a human arm elbow 
movement intention control experiment study is carried out in the QNX control system 
which has been established. The assistive robot can move according to the intention of 
the operator’s action and achieve good effect. The control algorithm is straightforward 
and real-time, using the QNX operating system. Experimental results verify the 
effectiveness and advancement of the proposed algorithm. 
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1. INTRODUCTION 

Assistive robots are a novel type of service robot and represent a high level of 
integration of robotics, ergonomics, control engineering, sensor technology, 
communications and signal processing. Assistive robots are designed for human 
limb power augmentation and have potential applications for elderly people, 
handicapped, care-workers, soldiers and firemen. There has been increased attention 
of research to assistive robots [3–8], and well-known systems include BLEEX [9] of 
Berkeley University and the Japan University of Tsukuba HAL system [10]. 

Robots reflect human long-held desire, for a machine, instead of people, 
which can engage in a variety of activities [11]. Assistive robots belong to the kind 
of human machine that the main function is to extend the human body function, and 
to amplify human power. It can not only help the elderly people and handicapped 
participate in the daily life, such as walking, but also be suitable for stroke patients 
to complete their normal rehabilitation training so as to achieve an auxiliary healing 
effect.  For a healthy person, an assistive robot can share normal tasks as bearing of 
weights, handling of goods and it can also assist large tasks requiring forces several 
times of one's own body weight, hence reducing the labour intensity. It can also 
provide people with force compensation and reduce the energy consumption of the 
people themselves. For those who have unusual sports behaviour, an assistive robot 
can provide auxiliary equipment and treatment based on orthopaedic features such 
as scheduled robot gait behaviour with users, thus completing corrective 
synchronous movement of the gait. 

On the other hand, from the point of view of the development of military 
equipment, soldiers have gradually transferred from handling battlefield weapons 
into being the core of a comprehensive weapon system. Through the close 
relationship between assistive robot and its user, soldiers can distribute equipment 
weight to its steel structure, thus transferring the load from the soldiers to the robot. 
This, potentially, can assist soldiers in loading shells, in long distance strikes, in the 
movement to carry the wounded and strengthen muscles and mobility, speed, 
endurance, action and load capacity. Assistive robots can also reduce the energy 
consumption of the soldiers, maximally keeping their fitness, and multiplied combat 
troops to fight against the enemy. 

Myoelectric signals can reflect human’s intention of movements [12]. sEMG 
(Surface Electromyography) [13] topography is a novel method of visualizing the 
distribution of myoelectric signals during dynamic motion. sEMG topography 
provides a comprehensive examination and contraction coordination insight into 
the fundamental muscular strategies. The purpose of this study is to assess the 
feasibility of sEMG topography as an assessment tool in rehabilitation [14–18]. 
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Numerous active units are disseminated by the series of electrical potentials 
of active unit motion when muscles are excited. These series of electrical potentials 
spread along fibre and are filtered by the volume conductor which is made of skin 
and fattiness. And the electrode detector set on the surface of skin finally picks up 
these series of electrical potentials. The signals which are got by the electrode 
detector both in time and space compose the sEMG. 

In recent years, much work has been done with the wavelet transforming 
method. The features are evaluated from several selected frequency bands of the 
signal. Wavelet transformation represents different patterns of sEMG signal and 
improves the accuracy of signal classification. Blouin et al. [19] investigated the 
relations between the control of arm movement and sEMG signals through 
monitoring hand stableness during trunk rotation. Pal and Kumar [20] made a 
prediction of wavelet transformation before neural network classification. Zhang 
[21] used wavelet transformation to analyse sEMG, which was simulated with a 
fuzzy neural network method. This method could decrease the error of 
classification. In addition, a frequency amplifier is used to process sEMG, as the 
input of the artificial neural network (ANN) classification. The support vector 
machine (SVM) method has become prevalent. It can be based on the structural 
risk minimisation principle to automate the learning process. The structure model 
based on the statistical learning theory has a strong generalisation. The 
classification precision can converge to a globally optimal solution. SVM 
techniques are successfully used for pattern recognition and classification in the 
analysis of biological information. For example, Begg [22] put forward a SVM 
method to distinguish the gait of young people and old people and used neural 
network techniques to process gait information of time distance, kinematics and 
dynamics of a total of 24 gaits. This method can automatically identify the gait of 
the young/old people and can compare the adaptive level of two classifiers. 
Experimental results show that the SVM is suitable for gait analysis such as 
recognition of gait characteristics of young and old people. Osamu Fukuda [23] etc. 
proposed a human-assisting manipulator teleoperated by sEMG and arm motions. 
The proposed method can realise a new master-slave manipulator system that uses 
no mechanical master controller. Phongchai Nilas [24] developed an innovative 
human-robot communication paradigm for people with disability using sEMG via a 
Personal Digital Assistant (PDA). Wondae Ryu [25] etc. designed the control 
system which makes possible that 1 DOF manipulator replicate the wrist 
movements by estimating the wrist joint angle continuously from sEMG signals 
measured from the four muscles. This methodology can be applied to improve the 
control strategy for tele-operated robotic manipulator. Kim et al. [26] use sEMG 
signals and joint motion information to estimate multi-joint stiffness which can be 
applied to contact tasks where torque measurement is unavailable. In their 
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approach, an artificial neural network is trained for modelling the simplified central 
nervous system hierarchy. The weights of the connections between nodes are 
updated through standard Levenberg-Marquardt algorithm. Experiment results 
reported the joint stiffness of shoulder and elbow can be estimated accurately with 
the enhancement of joint motion information such as joint angle and velocity. 
However, the movement intention of humans, which could be the key to the 
success of task implementation, is not considered. Another challenge to the 
majority of the existing approaches is the experiments are often implemented 
through simulation. This could cause potential failure in the transportation to the 
real environments. 

The main task in this paper is to build muscle signal acquisition system and 
the research in the application of assistive robots. The main part of the experiment 
is the design of circuit, the frequency gain testing and muscle signals acquisition on 
QNX operation platform. Firstly, multi-channel sEMG acquisition system is 
designed and the muscle signals are acquired through the amplification notch filter 
links. Palmaris longus, brachioracialis, flexor carpi ulnaris and biceps brachii are 
analysed with wavelet transform. The variance of absolute value of 3 layers 
wavelet decomposition coefficients are distilled, which regarded as signal 
characteristics to compose eigenvector. The absolute value of the wavelet 
coefficient is extracted as the characteristic matrix. The variance of wavelet 
coefficients are extracted which compared to the singular value method. Secondly, 
the characteristic matrix is brought into the neural network, which selected by the 
appropriate number of hidden nodes through training identification actions. The 
neural network classifier is the input to identify different 5 kinds of movement 
patterns including wrist flexor, wrist extensor, elbow flexion, forearm pronation 
and forearm rotation. Finally, the robot joint of assistive robot is designed by 
Solidworks software and the electrical torque linear model is established. It is the 
most important that the assistive robot compliant joints get the sEMG through the 
sensor signals for the perceived force of human muscle movements. The sEMG is 
used as the input of the assistive robot to perform tasks of daily life according to 
the human user’s intention as shown in Fig. 1. The experiments of human elbow 
flexion and stretched out are based on the torque simulation which the results show 
the effectiveness of the model.  

In this paper, an experimental platform for assistive robot control, which is 
required one of the most important parts, is established, and a recognition 
experiment of the assistive robot compliant joint intention is performed. Most 
research has been done on a computer system without a good real-time operating 
system. This work is based on the QNX operating system which is a real-time and 
multi-tasking system. 
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Fig. 1 – The structure of the task. 

2. THEORY AND METHOD OF WAVELET TRANSFORM 

In continuous wavelet transforms (CWT), a given signal of finite energy is 
projected on a continuous family of frequency bands (or similar subspaces of the  
function space . L presents spaces which are function spaces defined using 
natural generalisations of p-norms for finite-dimensional vector spaces. They are 
sometimes called Lebesgue spaces, named after Henri Lebesgue;  is the space 
of square-summable sequence, which is a Hilbert space. R presents real vector 
space.). For instance the signal may be represented on every frequency band of the 
form  for all positive frequencies . Then, the original signal can be 
reconstructed by a suitable integration over all the resulting frequency components. 
The frequency bands or subspaces (sub-bands) are scaled versions of a subspace at 
scale 1. This subspace in turn is in most situations generated by the shifts of one 
generating function , the mother wavelet. For the example of the scale 
one frequency band [1, 2] this function is: 
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 , (1) 

where  is Fourier transformation of the basic wavelet, ) = 0. Suppose, 
function family { } is named analysis wavelet. The subspace of scale a or 
frequency band [1/a, 2/a] is generated by the functions (sometimes called child 
wavelets): 

 , (2) 

where  is named basic wavelet, a is positive and defines the scale and b is any 
real number and defines the shift. Suppose  is a  dimensional function. The 
continuous wavelet transformation of function  is defined as: 

 . (3) 

Suppose  is a discrete sequence of instantaneous 
rotational speed signal .  is an approximation of  when . It is 
marked as . Then the discrete binary wavelet decomposition coefficient  of 
signal  can be calculated by the following recursion formula: 

,   (4) 

where  is the projection of signal  on scale j.  is the orthogonal projection 
of signal  in the wavelet space.  and  are specula direction filters. 
They have the following relationship with scale function  and wavelet function 

: , .   (5) 

Discrete signal  is finally decomposed to  (wavelet coefficients) 
and  (scale coefficient) by decomposing on scale . They comprise 
difference frequency information from a high frequency to a low frequency of signal. 
Meanwhile they also comprise time information of the signal. 

Choosing a basic wavelet function plays an important part in dealing with the 
signal. Most commonly, the wavelet transform function [27] comprises Harr 
wavelet, Daubechies wavelet, Biorthogonal wavelet and Coiflet wavelet. 

Wavelet transformation has a periodic characteristic and self time-frequency. 
The substance of wavelet transformation is that it decomposes information from 
different original frequency signals which are then shown in the time axis. That is 
not only reflects the characteristic of the time-region of signal, but also the 
characteristic of the frequency-region. Meanwhile, a small scale transformation 
comprises a high-frequency signal, and a large scale transformation comprises a 
low-frequency signal. To deal with signal validly, a different scale of transformation 
can be selected to describe the characteristics of the signal. 
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The coefficient of the wavelet of each grade scale can comprise an eigenvector. 
Each variance of eigenvector represents a stable of the eigenvector. When the 
element of the eigenvector is changes slightly, the variance of the eigenvector 
changes slightly as well. Consequently, this reflects the information and 
characteristics of the eigenvector. 

3. A BACK-PROPAGATION (BP) NEURAL NETWORK APPROACH 

This paper employs a 3-layer BP neural network classifier. The neural 
network comprises an input layer, a hidden layer and an output layer. There are 12 
nodes in the input layer and 5 nodes in the output layer.  An S function is adopted 
as the transformation function for the hidden layer and a linear function as the 
transformation function for the output layer. The network structure is shown in 
Fig. 2. 

 
Fig. 2 – BP neural network structure. 

The inputs to the neural network are 12 eigenvectors extracted from the 
surface electrodes of 4 human muscles. A 3-layer Daubechies4 wavelet is used to 
decompose surface electrodes of the muscles. The muscles include palmaris 
longus, brachioradialis, flexor carpi ulnaris and biceps brachii. To acquire surface 
electrodes, sEMG electrode-array is adhered to the skin overlying the muscles. The 
inputs will be classified into 5 movements, which are flexor, wrist extensor, elbow 
flexion, forearm pronation and forearm rotation. The movements will be modelled 
as output nodes. The neural network can be trained through standard BP method. 
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4. ASSISTIVE ROBOT CONTROL SYSTEM 

4.1. QNX REAL-TIME OPERATION SYSTEM 

QNX real-time platform [28–29] provides all essential functions including 
multi-tasking, driven by the priority scheduling and rapid pre-emptive context 
switching etc.  The micro kernel of QNX is of small size and the minimum 
configuration only takes10 KB memory. The QNX real-time operating system is a 
micro kernel real-time operating system and it is straightforward to program the 
hardware interface. The QNX operating system offers four kinds of core services: 
process scheduling, inter-process communication, underlying network 
communication and interrupt handling; especially the process operates in the 
address space independently.  The QNX minimum clock resolution can reach 10 
microseconds. Within QNX, the scheduling has 32 priorities from 0 to 31 based on 
a first-come, first served priority policy for context switch in order to satisfy the 
waiting requirements for the CPU time. 

At the same time, the process switch-time of QNX is very short according to 
the POSIX protocol API that makes it an interconnected system and convenient to 
implant to the UNIX/LINUX system. Therefore, QNX has been widely applied in 
embedded systems, robot engineering, industrial control, aerospace and other fields. 

Because of the data acquisition and control of assistive robot has strong real-
time requirement, PC operating system must have real-time kernel. Based on the 
characteristics of QNX, this paper chooses QNX as operating system platform. 

4.2. ASSISTIVE ROBOT CONTROL SYSTEM 

The assistive robot in the experiment system is shown in Fig. 3. The assistive 
robot system has three parts: sEMG system, QNX control system and the joint 
actuator. The assistive robot equipment is treated as a controlled plant the close 
loop, including the robot mechanism system, QNX system (host computer), motor 
driver circuits and torque sensor. The operating system of the PC is adapted as the 
QNX which enables the measurement, the control and the monitoring in real time. 
The real-time processing and communication using the network are required for the 
control purpose. A LAN card which has 11 Mbps transmission rate and an A/D 
(Analogue to Digital) converter card which has 16ch (8bit resolution) input are 
selected. The sensor system is used to detect the assistive robot and operator’s 
condition and estimate the assistive force. The rotary encoder is prepared to 
measure the joint angle, and force sensors are installed between the two couplings. 
This is effective to estimate the torque generated by the EC motor. 

The compliant actuation of assistive robot is compared with the theory 
analysis of human body’s joint, a passive compliance method. A motor controlled 
compliant joint with a torque sensor is designed. The scheme of the assistive 
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robot’s actuated joint system is shown in Fig. 4. The joint is for an arm joint, and 
has one degree of freedom. This is an experimental device for an assistive robot 
where restriction is imposed at the joint mobile angle to ensure user safety. 
Aluminium alloy and steel are used as the material of the frame in consideration of 
weight constraint. The actuator system of the assistive robot provides the assistive 
force for the arm joint. The actuator consists of an EC-motor and harmonic drive to 
generate the torques needed at the joint. The actuator using the harmonic drive is 
packed compactly with a large reduction gear ratio and smooth drive. 
 

 
Fig. 3 – QNX system-based experimental platform for the assistive robot’s compliant joint. 

 
 

Fig. 4 – The experimental equipment of assistive robot. 



226 Shuang Gu et al. 10 

a. Peripheral Component Interconnection. Peripheral Component 
Interconnection (PCI) is the external devices. PCI bus is located in Interconnection 
of microprocessor with the standard of local bus to expand the bus structure. PCI is 
used to bridge road connecting with local bus PCI but not directly connected with 
the microprocessor. In addition, PCI has good compatibility and suitable for all 
kinds of models, high-efficiency, obligate space for development, etc. Through the 
data acquisition module software can display real-time data changes and dynamic 
curves. In addition, the data acquisition module will write a specified file. 

b. The motor controller. The control system uses a FAULHABER motor as 
the driver device. The motor controller is designed for EC micro-motor MCD2805 
and with embedded encoder IE2-512. The motor can run with slow speed and the 
position precision of the motor can achieve 0.18. These advantages benefit that the 
motor is applied to robots. MCD2805 is developed from a powerful 16 bits 
microprocessor. The controller also has an excellent digital filter. 

c. Data Acquisition Card. Data acquisition card adapts PCL-818HD A/D 
board, which contains 1K sampling FIFO buffer that can get faster data 
transmission and better properties. It is suitable for signal acquisition and 
measurement. PCL 818-HD is 16 road with single or 8 analog input, differential 12 
adc sampling rate, 100KHz, 2 function switches and 11 jumpers. The software of 
data acquisition can be used to control. For example, the software can be used to 
choose analog input range, the available range of dual polarity is ±1.625V, ±1.25V, 
±1.625V, ±2.5V, ±5V, ±10V and the available range of single polarity is 0–125V, 
0–2.5V, 0–5V, and 0–10V. 

d. Sensor Device. A robot system needs real-time monitoring and is to 
achieve joint torque accuracy requirements of experiment. This experiment 
platform of the sensor is abroad by HBM company T22 models of torque sensor 
(1D). The properties of the torque sensor is , for example, the range of torque 
measuring accuracy is ±5Nm, the supply voltage is 24V ac voltage and the range of 
output range is –5V to +5V. Then the torque signal is sampled by A/D card to 
transmit to PC. 

5. EXPERIMENT RESULTS 

5.1. TORQUE ANALYSES OF HUMAN BODY JOINT 

When people move their elbow joint, the biceps muscles and triceps play an 
important role. The biceps muscles contract when the elbow joint flexes whilst the 
triceps muscles contract when the elbow joint extends [10–11]. The models and 
calculation formula between human muscle electromyography torque signals and 
surface electromyography signal can then be built as follows: 

 , (6) 
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where, presents the electromyography torque of biceps muscles or triceps,  
presents surface electromyography signals, and K presents undetermined coefficient. 
K can be determined by measuring the difference between the measured muscle 
torque  and the estimated torque : 

 . (7) 

According to the least-square method: 

 , (8) 

 . (9) 

Thus 
 . (10) 

Put K into the equation (6), we can get the elbow electromyography torque 
signals. 

5.2. EXPERIMENT AND ANALYSIS OF THE RESULTS 

In the experiment, the surface electrodes are stuck respectively on biceps and 
triceps of the operator’s arm. When the operator stretches the elbow up and down 
respectively, the experimental equipment for the assistive robot’s compliant joint 
will follow the operator’s intention accordingly. The experimental results validate 
the effectiveness of the design of experiments and movement intention using a trial 
and error method. 

Through a surface electromyography amplifier circuit in the experiment, the 
surface electromyography of human arm biceps and triceps is measured with a data 
acquisition card shown as Fig. 5. The horizontal axis (x-axis) is concerned with the 
length of the sEMG and the vertical axis (y-axis) is concerned with the voltage. As 
shown in the figure, it can be seen that the property of sEMG is non-linear and the 
microvolt of sEMG can be amplified to the highest, 0.9 V. At the same time, the 
electromyography torque signal of the stretch movement and extension movement 
are analysed respectively. The torque is measured with the data acquisition card 
when the elbow joint moves. 

Fig. 6a and 6b are concerned respectively with the measured torque and the 
estimated torque when the operator’s elbow joint is flexed. Fig. 6c and 6d are 
concerned with the measured torque and estimated torque when the operator’s 
elbow joint is extended. In Fig. 6a, it can be seen the value of the measured torque is 
negative when the operator’ elbow is flexed whilst in Fig. 6b. The estimated torque 
is also negative accordingly.  The value of the measured torque ranges from 0.8 to 
1.2 Nm. In Fig. 6c, the value of the measured torque is positive when the operator’ 
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elbow is extended whilst in Fig. 6d, it can be seen the estimated torque is also 
positive accordingly. The value of the measured torque ranges from 2 to 2.4 Nm. 
The collaboration torque curve is shown in Fig. 7 when the operator’s elbow joint 
reciprocates. To sum up, whatever the stretch movement or extension movement is 
the direction of the calculated torque and measured torque is basically the same. It 
can be proved that the linear relationship established between sEMG and 
electromyography is feasible. 

Then, sEMG electrode-array is secured with an adhesive interface between 
the skin overlying the muscle of Palmaris longus, brachioradialis, flexor carpi 
ulnaris and biceps brachii. The 5 movements of flexor, wrist extensor, elbow 
flexion, forearm pronation and forearm rotation are tested in a total of 20 data 
groups with a 4-channel EMG amplifier. 

Comparisons have been made between various wavelets that are proved 
experimentally, and the Daubechies4 wavelet has been chosen. The absolute 
variance and the singular value of the 3-layer wavelet coefficients is extracted and 
used to compose 12 eigenvectors. The eigenvectors are used as input data of the 
neural network classifier. The input vector dimensions correspond to the testing 
muscle numbers multiplied by the decomposition layers, and the output vectors 
correspond to the number of movements. 

10 training samples are chosen from each group of movements. The 
corresponding output node value is set to 1, and the other output node value is set 
to 0 which will be training as expected value. The remaining 10 groups serve as 
test samples. In the classification test, if one output node value is more than 0.5, it 
will be set to 1. At the same time the rest of output nodes are all less than 0.5, it 
will be set to 0. The result will be the motion patterns of the corresponding nodes. 

The eigenvector extracted from wavelet coefficients and the numbers of 
hidden layer nodes are the two important factors that will influence the 
effectiveness of motion recognition. Each scale class of wavelet coefficients can 
constitute a matrix, and each matrix has its singular value and absolute variance 
which reflect the stability of the matrix. The changes of the matrix elements are 
small, reflecting the information and characteristics of the matrix. Therefore the 
singular value and absolute variance of wavelet coefficients are extracted as 
eigenvectors in the experiment. 

If the number of nodes in hidden layer is too small, it would be impossible to 
fully split the feature space into multiple models. If the number of nodes in hidden 
layer is too large, network training will take a considerably longer time and real-
time implementation may be impossible. Therefore a trade-off is necessary in 
determining the number of hidden layer nodes. In the experiments, 16, 14, 12 
nodes in the hidden layer are selected for 500 training steps with a learning rate of 
0.5. 



13 sEMG based intention identification of human body movement research on assistive robot 229 

1) With 16 nodes in the hidden layer, the average recognition rates for 
training and testing samples are summarised in Table 1. 

Table 1 

Average recognition rates  
(with 16 nodes in the hidden layer) 

Sample 
classification 

Elbow  
flexion 

Wrist  
flexor 

Wrist 
extensor 

Forearm 
pronation 

Forearm 
rotation 

Training 100% 100% 100% 100% 80% 

Testing 90% 70% 100% 90% 50% 

2) With 14 nodes in the hidden layer, the average recognition rates for 
training and testing samples are summarised in Table 2. 

Table 2 

Average recognition rates  
(with 14 nodes in the hidden layer) 

Sample 
classification 

Elbow  
flexion 

Wrist  
flexor 

Wrist  
extensor 

Forearm  
pronation 

Forearm  
rotation 

Training 100% 100% 100% 100% 100% 

Testing 100% 100% 100% 80% 90% 

3) With 12 nodes in the hidden layer, the average recognition rates for 
training and testing samples are summarised in Table 3. 

Table 3 

Average recognition rates  
(with 12 nodes in the hidden layer) 

Sample 
classification 

Elbow  
flexion 

Wrist 
flexor 

Wrist  
extensor 

Forearm 
pronation 

Forearm  
rotation 

Training 100% 100% 100% 100% 100% 

Testing 100% 100% 100% 70% 80% 

4) With 14 nodes in the hidden layer, the results for the singular value 
algorithm and absolute variance algorithm are compared in Table 4. 
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Table 4 

Recognition rates comparison  
(with 14 nodes in the hidden layer) 

 Elbow 
flexion 

Wrist 
flexor 

Wrist 
extensor 

Forearm 
pronation 

Forearm 
rotation 

Singular value 
algorithm 100% 100% 80% 90% 70% 

Absolute 
variance 

algorithm 
100% 100% 100% 80% 90% 

Tables 1–3 show the number of nodes in the hidden layer has an impact on 
the neural network classification. When the number of hidden nodes is 14, the best 
movement recognition rates are achieved. The method of using wavelet 
coefficients to constitute feature matrix can recognise the motion accurately when 
an appropriate number of hidden layer nodes are chosen. Table 4 shows using the 
absolute variance algorithm has better recognition rate than the singular value 
algorithm. 
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Fig. 5 – sEMG of biceps and triceps muscles when human arm elbow joint movement. 
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Fig. 6 – Curves of electromyography torque signals and calculated torque signals are collected  
when elbow joint is moving. 
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Fig. 7 – Curves of collaboration torque when elbow is reciprocating. 



232 Shuang Gu et al. 16 

6. CONCLUSIONS 

This paper presents a 4 channel sEMG of Palmaris longus, brachioradialis, 
flexor carpi ulnaris and biceps brachii with the Daubechies4 wavelet transformation. 
The variance of absolute value wavelet decomposition coefficients is used as signal 
characteristics to compose eigenvectors. The eigenvectors are used as input data of 
the neural network classifier to identify 5 different movement patterns of wrist 
flexor, wrist extensor, elbow flexion, forearm pronation and forearm rotation. This 
method has the advantages of a small amount of data needed, fast computation and 
real-time control. We have studied the sEMG acquisition method of human elbow 
joint related biceps and triceps muscles based on the QNX real-time operation 
system platform and used least-squares method to calculate models and the 
relationship between sEMG and electromyography torque. Experimental results 
verify the effectiveness and advancement of the proposed algorithm.  
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