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ON THE BEHAVIOUR OF THE HYSTERETIC WIRE-ROPE 
ISOLATORS UNDER RANDOM EXCITATION 

IULIAN GIRIP1, ŞTEFANIA DONESCU2, MIHAELA POIENARIU3, LIGIA MUNTEANU1 

Abstract. Difficulties in characterizing of behavior of the wire-rope isolators under 
random excitation is the motivation for investigation of the modified Bouc-Wen 
model in the spirit of Baber and Noori, in order to include the experimentally 
observed stiffness and strength degradation, and pinching, respectively. The 
prediction of the behavior of such structures with hysteretic shear behavior under 
random excitation is investigated in this paper. The model is verified for the case of 
harmonic excitation with a range of exciting frequencies and amplitude levels, on the 
base of reported data in literature. 

Key words: Wire-rope isolator, Bouc-Wen model, stiffness and strength degradation, 
pinching. 

1. INTRODUCTION 

The wire-rope isolators are assemblies made of stranded wire ropes which are 
wrapped around a metallic or fibrous core (Fig.1a). The section of a rope is shown 
in Fig.1b. The rope is wound in the form of helix and held between metal retainers 
(Fig.1c) [1–2]. The diameter of the wire rope, the number of strands, the rope 
length, the cable twist or lay, the number of ropes per twist section and the fashion 
of metal retainer are the main parameters that characterize the assembly. The 
rubbing and sliding friction between the strands of wire rope define the damping 
and the deformation of isolators.  

For steady periodic excitation, the wire-rope isolators exhibit nonlinear 
hysteretic behavior due to the fact that the hysteretic loops depend on the vibration 
level, being almost independent of frequency [3–6]. Information from damage of 
the wire-rope isolators surveyed after realistic cyclic and arbitrary dynamic 
loadings and the experimentally observed characteristics, indicate that such 
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structures exhibit a wide variety of hysteretic features including inelastic load-
displacement law without distinct yield point, progressive loss of lateral stiffness in 
each loading cycle (stiffness degradation), degradation of strength when cyclically 
load is done to the same displacement level (strength degradation) and pinching [7, 
8]. The pinching behavior is due to slipping during force reversal. 

 

Fig.1 – a) Thw wire-rope geometry; b) section A-A of the rope; c) helical shape of isolators. 

The smoothly varying Bow-Wen model is widely used for different loadings 
of hysteretic systems [9–16]. The model can be used also for including the 
pinching and degradation features [11, 17]. 

This paper tries to predict the behavior of the wire-rope isolators with 
hysteretic shear behavior under random excitations such earthquakes. The idea is to 
augment the Bouc-Wen model in the spirit of Baber and Noor [18], in order to 
include the experimentally observed characteristics such as the stiffness and 
strength degradation and pinching, respectively. The model is verified for the case 
of harmonic excitation with a range of exciting frequencies and amplitude levels, 
on the base of reported data in literature [5, 16].  

2. MODEL DESCRIPTION 

The helical wire-rope devices are used as vibration isolation systems. Fig.2 
shows the model of the wire-rope isolator arranged as a hanging shaking platform 
[5]. Two rigid plates are hung in parallel on a trestle, through frictionless hinges 
connected with four rigid steel tubes to form a double pendulum system. 
Additional guiding rollers prevent lateral motion of the system. The isolator is 
mounted and fixed with its aluminum retainer bars to the upper and lower plates for 
hysteretic shear behavior tests. The upper plate of the mass m  on the top of the 
isolator is fixed horizontally to the trestle through a force transducer. The lower 
plate of mass m  under the isolator is excited on one end and connected to the 
displacement transducer on the others. The lower mass is acted by the forcing 
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force ( )F t . The relative displacement between plates is  2 1u x x= − . The motion 
equation written with respect to u  is 

 ( , , ) ( )mu cu R u z t F t+ + = , (1) 

where cu  is damping restoring force, with c  the damping coefficient, and 
( , , )R u z t is the non-damping restoring force   

 ( , , ) (1 )R u z t ku kz= α + −α , (2) 

composed by the linear restoring force kzα , and the hysteretic restoring force 
(1 )kz−α , where 0 1< α <  is the rigidity ratio representing the relative 
participations of the linear and nonlinear terms. Here, ( )z t  is the hysteretic 
auxiliary variable representing the hysteretic displacement function of the time 
history of u . It is related to ( )u t  through the constitutive law the force-
displacement [17] 

 ( )1d ( ) ( sgn( ) | | | | )
d

n nz h z A u z z z
u

−η = − ν β + γ , (3) 

where ( )h z  is the pinching function (for 1h =  the function is not pinch), A  a 
parameter that controls  the  tangent stiffness and ultimate hysteretic strength, 
β , γ , n  are the hysteretic shape parameters and ν , η  the strength and stiffness 
degradation functions (for 1ν = η =  the model is not degrading). These functions 
depend on the dissipated hysteretic energy. The law (3) extends the Bouc-Wen 
model by including the pinching function. 

By setting d / dz u  to zero in (3) and solving it for z , we obtain the ultimate 
hysteretic strength uz  

 
1/

( )

n

u
Az

⎛ ⎞
= ⎜ ⎟ν β + γ⎝ ⎠

. (4) 

The pinching function ( )h z is taken under the form [15] 

 2 2
1 2( ) 1 exp( ( sgn( ) ) / )uh z z u z= − ζ − − ζ , (5) 

where 1 1ζ <  is a variable which controls the magnitude of initial drop in the slope 
d / dz u , and 2ζ  a variable which controls the rate of change of the slope d / dz u . 

By dividing the equation (1) by m , we obtain 

 2 2
0 0 0 02 (1 ) ( )u u u z f t+ ζ ω + αω + −α ω = , (6) 
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where ( )f t is the mass-normalized forcing function, 0 /ik mω = , with ik , the 

initial stiffness, 0 / 2 ic k mζ = – the linear stiffness. 
The identification procedure is based on the signification of each unknown 

parameter 1 2{ , , , , , , }A nα β γ ζ ζ and two unknown functions{ , }ν η . We are interested 
to identify what parameters and functions of interest can be evaluated directly from 
the features of the experimental data. 

In the following we will see that , ,α β γ and n  can be directly evaluated from 
the experiment, i.e. the restoring force against displacement.  

The system properties are evaluated from the model. The first natural 
frequency is calculated as /ik m , where m  is the estimated mass of the system 
and ik  the initial stiffness.   

The value of the linear damping ratio 0ξ may be chosen within the range 0.01 
and 0.05 [17].  

The problem of the redundant parameters in (3) was discussed in [19]. It was 
proved that A is redundant and, as a consequence, it is assumed to be 1. The 
parameter α  is calculated as the ration of the final tangent stiffness fk  to initial 

stiffness ik    

 f

i

k
k

α = , (7) 

 0
d |
di z u
Rk k
u = == = ,  d |

d uf z z
Rk k
u == = α . (8) 

The equations for loading paths are obtained from (3) for 1ν = η =  and 1h =  

 d 1 ( )
d

nz z
u
= − β + γ , 0zu > , (9) 

and for unloading case 

 d 1 ( )
d

nz z
u
= − γ −β , 0zu < . (10) 

The parameters β  and γ  are determined from (3) for 1h =  and 1ν = η =  
written as 

 d 1 ( )
d

nz z
u
= − β + γ , 0z ≥ , 0u ≥ , (11) 
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 d 1 ( )
d

nz z
u
= − γ −β , 0z ≥ , 0u < , (12) 

 1d 1 ( 1) ( )
d

n nz z
u

+= + − β + γ , 0z < , 0u < , (13) 

 1d 1 ( 1) ( )
d

n nz z
u

+= + − γ −β , 0z ≤ , 0u ≥ . (14) 

 

Fig. 2 – The model of the wire-rope isolator arranged as a hanging shaking platform [5]. 

In what concerns the parameter n , we obtain from (4) and (9) for non-
degrading case 1ν =  
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The shape parameters are chosen so that 0β + γ >  and 0γ −β ≤ , with 0β >  
in order to have a positive energy dissipation.  

In what concerns the stiffness and strength degradation functions ν and η , 
they are related to the dissipated hysteretic energy W [17]  

 ( ) 1W Wνν = + δ ,  ( ) 1W Wηη = + δ , (16) 

where  
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The energy W is the cumulative dissipated hysteretic energy, in other words 
the sum of the loops areas. The functions ( )Wν and ( )Wη  control the strength and 
stiffness degradations. The 0νδ >  and 0ηδ > , are unknown parameters. The 
stiffness degradation occurs when the elastic stiffness degrades with increasing 
ductility, as shown in Fig. 3 to left. This behavior occurs due to geometric effects. 
The strength degradation is described by reducing the capacity in the backbone 
curve, as shown in Fig. 3 to right. Fig. 4 shows the pinching behavior in the 
diagram d / dz u  against / uz z , where uz is the ultimate hysteretic strength given by 
(4). The pinching is the typical behavior of structures that buckle when subjected to 
compressive loads. This behavior usually is the result of cracks or slips. 

To identify the remaining parameters 1, ,ν ηδ δ ζ and 2ζ , that cannot be directly 
evaluated from the experiment, a genetic algorithm can be applied in the same 
manners as in [11], by using experimental data.  

 

Fig. 3 – Stiffness degradation behavior (left); strength degradation behavior (right) [17]. 
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Fig. 4 – Pinching behavior for ( ) 1h z ≠  [17]. 

4. RESULTS 

The model is verified firstly for the case of harmonic excitation. The 
numerical simulation was conducted using experimental data reported in [3] and 
[11]. The excitation signal is supplied by sine harmonic excitation. The restoring 
hysteretic force, acceleration and displacements signals are measured for a number 
of 11 frequencies ranging from 5Hz to 50Hz, with at least 5 different amplitudes 
levels in each case, recorded in a synchronous manner on a tape recorder and 
observed with a digital signal analyzer. Figure 5 shows the experimental loop of 
the hysteretic restoring force against the displacement, for the case of steady 
periodic excitation without filtering [5]. After filtering, the loop is shown in Fig. 6. 
The necessity of filtering is due to the non-synchronism which may appear between 
the restoring force and displacement during recording. This non-synchronism can 
distort the shape and area of the loop. Therefore, these signals must be 
simultaneously measured at each recording time.  

The parameters , ,α β γ and n  are evaluated directly from the experiment (Fig. 6), 
while the parameters 1, ,ν ηδ δ ζ and 2ζ  are obtained from an identification procedure 
based on the genetic algorithm.   

The parameters are summarized in Table 1. 

Table 1 
The parameter values used in the numerical simulation for the case of harmonic excitation 

α  β  γ  n  
1ζ  2ζ  νδ  ηδ  

0.26 0.33 0.88 1.89 0.42 0.33 0.11 0.10 
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The results for harmonic excitation agree very well with the results presented 
in [5]. The obtained hysteretic loops show typical nonlinearity (for example Fig. 7 
shows the restoring force against the displacement for 6 Hz).  

 

Fig. 5 – Experimental hysteretic loop of restoring force against displacement without filtering [5]. 

 
Fig. 6 – Experimental hysteretic loop of restoring force against displacement loop with filtering [5]. 
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Fig. 7 – Restoring force against displacement at 6 Hz. 

Next, the case of the random excitation is analyzed. The excitation signal is 
represented as the sum of a number of sinusoids of random phase and 
frequency 0.25 /100l + π , 20,...,40l =  [20]. The frequency range is approximately 
5–10Hz. The amplitude of the excitation is chosen so that the strong 
nonlinearities and sliding of the isolator to be manifested. As written by other 
researchers [13], the genetic algorithm gives best results with a few cycles of the 
non-linear response. The first results are presented in Figs. 8 and 9. 

The numerical simulation of the hysteretic loop of the excitation against the 
displacement is shown in Fig. 8. Although this diagram looks like to 
experimental hysteretic loop without filtering shown in Fig. 5, it has nothing to 
do with the synchronism between the excitation force and displacement. Its 
character is done by the random feature of the loading. A similar behavior was 
obtained in [21] for friction pendulum systems under severe dynamic loading such 
as earthquakes.  

The parameters are summarized in Table 2. 

Table 2 

The parameter values used in the numerical simulation in the case of random excitation 

α  β  γ  n  
1ζ  2ζ  νδ  ηδ  

0.47 0.87 0,90 2.15 0.94 0.72 0.21 0.22 

Effects of degradation parameters upon the time variation of u  is shown in 
Fig. 10 at 5 Hz. The numerical simulation of the evolution of the hysteretic 
displacement function ( )z t with respect to the relative displacement between plates, 
u  is shown in Fig. 11, for 5Hz. Reducing the capacity in the backbone of the 
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hysteretic curve and the increasing ductility in material leads to large displacement 
in both situations.  

The effect of pinching in the hysteretic loop of the restoring force against 
displacement 5 Hz is presented in Fig.11. The double-valued of the restoring force 
for all times except when passes through the origin leads to pinching of the curve 
in origin.   

 
Fig. 8 – Theoretical hysteretic loop of the excitation against the displacement. 

 
Fig. 9 – Theoretical hysteretic loop ( )z t against the relative displacement u . 
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Fig. 10 – Effect of the stiffness degradation vδ parameter on u  at 5 Hz (left); 

effect of the strength degradation parameter ηδ on u at 5 Hz (right). 

 
Fig. 11 – Effect of pinching in origin of the hysteretic loop of restoring force 

against displacement at 5 Hz. 
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5. CONCLUSIONS 

This paper tries to predict the behavior of the wire-rope isolators with 
hysteretic shear behavior under random excitation. The Bouc-Wen model is 
modified in the spirit of Baber and Noori in order to include the experimentally 
observed characteristics such as the stiffness and strength degradation and 
pinching, respectively. The model is verified for the case of harmonic excitation 
with a range of exciting frequencies and amplitude levels, on the base of reported 
data in literature. For random excitation, the wire-rope isolator was subjected to 
large deformations. It was observed that the isolator exhibits reducing of its 
capacity in the backbone of the hysteretic loop and the increasing ductility, 
respectively, as effects on the degradation. The hysteretic loop of restoring force 
against displacement is pinched at the origin for the random excitation. 
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