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Abstract. The paper presents a summary of the activity and research achievements of 
the Romanian researchers of Timisoara School in the field of stability of cold-formed 
steel members. Both, fundamental theory and applied instability contributions are 
focussed. Post-critical theory of elastic structures, the analysis of stable and unstable 
components of bifurcation load, coupling of bifurcations modes (e.g. mod interaction), 
erosion of critical load are the topics in which the theoretical contributions of 
Timisoara School are significant. Present paper focuses the mode interaction problems 
of thin-walled steel bar members only, integrating some relevant results obtained by 
the authors through a state-of-art review. 
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1. INTRODUCTION 

In the case of an ideal structure, the theoretical equilibrium bifurcation point 
and corresponding load, Ncr, are obtained at the intersection of the pre-critical 
(primary) force-displacement curve with the post-critical (secondary) curve. For a 
real structure, affected by a generic imperfection the bifurcation point does not 
appear anymore and, instead, the equilibrium limit point is the one characterizing 
the ultimate capacity, Nu, of the structure. The difference between Ncr and Nu 
represents the Erosion of the Critical Bifurcation Load (ECBL), due to the 
imperfections. This model applies in the instability mode interaction. The meaning 
of mode interaction inherently refers to the erosion of critical bifurcation load in 
case of interaction of two (or more) buckling modes associated with the same, or 
nearly the same, critical load. The theoretical and experimental studies and the 
contributions of Timisoara School to this topic along more than 30 years are 
relevant, being recognised by the scientific community in the field [10].  
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As a prove, in October 1982, the First Session of the Third SSRC International 
Colloquium of Stability of Steel Structures was organised in Timisoara. Ten years 
later, the First International Conferences on Coupled Instabilities in Metal 
Structures – CIM’92, took place in Timisoara on October 10-12, 1992. A number 
of 61 contributions prepared by 60 authors of 19 countries have been published in a 
Special Issue of Thin-walled Structures journal, with J. Rondal, D. Dubina and  
V. Gioncu as Guest Editors [1]. At the second conference, CIMS’96, held in Liege, 
on September 5-7, 1996, 166 authors from 23 countries presented 62 contributions 
published in a volume of 596 pages, edited by the same team [2]; and the series 
continues with the next CIMS,2000 in Lisbon, 2004 in Rome, 2008 in Sydney, 
2012 in Glasgow, the being planned to be held in 2016 in Baltimore. 

In 1997, the series of International Colloquia dedicated to Stability of Steel 
Structures promoted by Structural Stability research Council of USA through 
travelling Sessions ( e.g. as the one held in 1982 in Timisoara), extended the topic 
area and became International Colloquium on Stability and Ductility of Steel 
Structures (SDSS). First SDDS was organized in Nagoya, in august 1997; the next, 
SDSS’99, has been organised in 9-11 of September 1999 in Timisoara, by the 
Politehnica University of Timisoara, Technical University of Budapest and Romanian 
Academy – Timisoara Branch in co-operation with Structural Stability Research 
Council (USA) and European Convention for Constructional Steelwork [5] and. In 
2016, Politehnica University of Timisoara will organise the next edition of SDSS 
colloquium. In parallel with this events, the advanced courses focusing selected 
structural stability topics, organized by International Centre of Mechanical Sciences-
CIMS, in Udine, Italy , with the contribution of outstanding teams of outstanding 
international lectures , including t representatives of Timisoara School, must be 
emphasized i.e. 

– Coupled Instabilities in Metal Structures. Theory and Practical Aspects [6] 
in October 1996; 

– Light gauge metal structures. Recent advances [7] in June 2002; 
– Phenomenological and mathematical modelling of coupled instabilities [8] 

in October 2003. 
Continuing the line, in 2004 a Special Issue of Thin Walled Structures 

journal entitled Cold Formed Structures: Recent – Research Advances in Central 
and Eastern Europe has been published, under the coordination of Professor 
Dubina [9].  

On the following, this review paper, focuses the mode interaction problems 
of thin-walled steel bar members, presenting the theoretical background of ECBL 
method – Erosion of Critical Buckling Load , and selected results obtained with 
this method. ECBL is a creation of Timisoara School of Stability of Steel Structures.   
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2. PHENOMENON OF MODE INTERACTION 

In the case of an ideal structure, the theoretical equilibrium bifurcation point 
and corresponding load, Ncr, are observed at the intersection of the pre-critical 
(primary) force-displacement curve with the post-critical (secondary) curve (see 
Fig. 1). To evaluate the behaviour of a slender structure, which might loss its 
stability, needs for the control by design the three characteristic ranges of load-
deformation: 

• Pre-critical range, i.e. N∈(0, Ncr], defining the domain of structural 
stability; 

• Critical point (bifurcation of equilibrium); 
• Post-critical range, e.g. N > Ncr, the structural instability domain. 

bifurcation point (critical)

limit point

pre-critical

geometric imperfection
δ0

Ncr

Nu

erosion

Force

Displacement

ideal
structure

actual
structure

post-critical

 
Fig. 1 – Critical and post-critical behaviour. 

For a real structure, affected by a generic imperfection, δ0, the bifurcation 
point does not appear anymore and, instead, the equilibrium limit point is the one 
characterizing the ultimate capacity, Nu, of the structure. The difference between 
Ncr and Nu represents the Erosion of the Critical Bifurcation Load (ECBL), due to 
the imperfections. The model in Fig. 1 can also be applied in case of structures 
which might be prone to subsequent buckling modes interacting in the bifurcation 
point, i.e.: a primary mode which, if it does not cause the failure of the structure, 
play the role in the pre-critical path (e.g. local buckling in case of slender  
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thin-walled members), and the secondary mode which, at the end, that is the one 
causing the failure (this will be the post-critical mode). Roughly, this is the 
description of instability mode interaction. 

The meaning of the mode interaction refers to the erosion of critical 
bifurcation load in case of interaction of two (or more) buckling modes associated 
with the same, or nearly the same, critical load; it happens when the mode 
simultaneity is due to the results of design and/or imperfections. A well-known 
example of mode interaction is the coupling of local or distortional buckling with 
the overall buckling in the case of thin-walled cold-formed steel members, or the 
coupling between local buckling of class 4 web with the lateral-torsional buckling 
of plated beam. 

In almost all practical cases, the mode interaction, obtained by coupling of a 
local instability with an overall one, is a result of design (e.g. calibration of 
mechanical and geometrical properties of a member) and has a nonlinear nature: 

• Coupling by design occurs when the geometric dimensions of structure are 
chosen such as two or more buckling modes are simultaneously possible. 
For this case, the optimization based on the simultaneous mode design 
principle plays a very important role and the attitude of the designer 
towards this principle is decisive. This type of coupling is the most 
interesting in practice because, even the erosion of critical buckling load is 
maximum in the interactive range, the ultimate buckling strength still 
remains maximum in this range; 

• Nonlinearity characterizes the post-buckling behaviour of coupling of 
instability modes and is due to design and the presence of the geometrical 
imperfections which is indispensable for coupling; this coupling doesn’t 
exist for ideal structure. For instance, this is the case of the interaction 
between flexural buckling and flexural-torsional buckling of some mono-
symmetrical cross-section. 

Figure 2 illustrates such a case for a mono-symmetrical T-section in 
compression, studied in Timisoara [12], which is prone to the mode interaction 
between flexural and flexural-torsional modes. Due to the imperfections the 
erosion of critical bifurcation load occurs. The erosion is maximum in the coupling 
point vicinity (Fig. 1). For bar members, an interactive slenderness range, in which 
sensitivity to imperfections is increased, may be identified. Depending on imperfection 
sensitivity, classes of interaction types, characterized by specific levels of erosion 
intensity, may be defined. 
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Fig. 2 – Coupled instability by design: example for T-section [12]. 

Given a member in compression and assuming two simultaneous buckling 
modes which might couple (Fig. 3), the perfect member fails under interactive 
critical buckling load, Ncr, while the real capacity of the actual member will be the 
ultimate load, Nu. The erosion, ψ, can be expressed as follows: 

 1 /u crN Nψ = − , (1) 

and 

 (1 )u crN N= − ψ . (2) 
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Fig. 3 – Generic model of two mode interaction. 

An erosion factor ψ can be defined and used as a measure of erosion of 
Theoretical critical load. Gioncu [13] has ranked in four classes the mode 
interaction types in terms of erosion factor, as follows: 

• class I: weak interaction (WI), ψ ≤ 0.1; 
• class II: moderate interaction (MI), 0.1 < ψ ≤ 0.3; 
• class III: strong interaction (SI), 0.3 < ψ ≤ 0.5; 
• class IV: very strong interaction (VI), ψ > 0.5. 
Obviously, an appropriate framing of each mode interaction into a relevant 

class is very important because the methods of analysis used for design have to be 
different from one class to another. Week or moderate interactions could be 
controlled by code-based design procedures, the partial safety coefficients being 
able to keep safe those structures; higher interaction classes, particularly SI and VI, 
need for more refined examination, in principle using advance numerical methods 
and taking into account for relevant imperfection scenarios.  

Interaction classes can be associated with erosion levels (Fig. 4). 
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Fig. 4 – Erosion levels [13]. 
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In case of thin-walled members, two types of interaction might occur. The 
first one is due to multiple local modes, which leads to a so called localized mode, 
and gives rise to an unstable post-critical behaviour. The second interaction, 
between the localized buckling mode and the overall buckling one, yields to a very 
unstable post-critical behaviour, with great erosion due to the imperfections. The 
multiple local buckling modes’ interaction might generate a localized mode which 
subsequently can interact with an overall mode, with very destabilizing effects 
(Fig. 9, further on). Strong and very strong interactions are the result of this type of 
coupled instability. In such a case, very special design methods must be developed. 
Currently, such a phenomenon is characteristic for thin-walled columns in 
compression. Table 1 qualitatively indicates the erosion levels for mode interaction 
classes i.e. 

Table 1 
Coupled instabilities in bar members [14] 

No. Bar member type Instability modes Class of interaction 

1. Mono-symmetrical columns F + FT = FFT 
WI to MI 
ψ ≤ 0.3 

2. Built-up columns F + L = FL 
MI 

0.1 < ψ ≤ 0.3 
F + L = FL 

FT + L = FTL 
(F + FT + L = FFTL) 

SI to VI 
ψ ≥ 0.3 

3. Thin-walled columns F + D = FD 
FT + D = FTD 

(F + FT + D = FFTD) 

MI to SI 
0.3 ≤ ψ ≤ 0.5 

4. Thin-walled beams LT + L = LTL 
LT + D = LTD 

MI 
ψ ≤ 0.3 

Legend: F = flexural buckling ; FT = flexural-torsional buckling; 
L = local buckling ; D = distortional buckling 

WI = week interaction ; MI = moderate interaction ; SI = strong interaction; 
VI = very strong interaction. 

2. THEORETICAL BACKGROUND 

2.1. SELECTIVE REVIEW 

A number of important problems of structural stability are characterized by 
multiple buckling modes associated with the same critical buckling load [15]. Such 
problems are used to be known as instability mode interaction. The theoretical 
approach of this phenomenon, also addressed as interactive or coupled buckling 
involves the general asymptotic theory of instability. The background of structural 
theory and post-buckling behaviour of structures is given in books and state-of-art 
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articles by: Hutchinson & Koiter [16], Thompson & Hunt [17, 18], Budiansky [19], 
Koiter [20], and Flores & Godoy [21]. The books on bifurcation theory by Chow & 
Hale [22], Golubitsky & Schaeffer [23] and Gioncu & Ivan [24] related to the 
theory of critical and post-critical behaviour of elastic structures have to be 
considered as basic lectures for the readers interested on this topic. 

When speaking about the mode interaction, implicitly refers to the erosion of 
theoretical critical bifurcation load in case of interaction of two (or more) buckling 
modes associated with the same, or nearly the same, critical load; it happens when 
the mode simultaneity is due to the results of design and/or imperfections [25]. A 
well-known example of such a mode interaction is the one resulting from the 
coupling of local or distortional buckling with overall buckling in case of a thin-
walled cold-formed members. In such cases, the critical values corresponding to 
global buckling mode are significantly lower than local buckling modes, and their 
interaction can be considered within the first non-linear approximation [26]. 

A comprehensive approach of the problem of elastic interaction between 
local and global buckling modes is due to van der Neut [27], who provided the 
evidence that the sensitivity to imperfections of thin-walled columns in compression is 
maximum into the interactive buckling range, where critical buckling loads 
corresponding to local and global modes are closed to each other. 

Koiter & Kuiken [28], two years after van der Neut, developed the method 
known as method of slowly varying local mode amplitude. In 1976 Koiter has 
published his General Theory of Mode Interaction in Stiffened Plates and Shell 
Structures [29], followed by the well-known book of Thompson & Hunt, A General 
Theory of Elastic Stability [17], in which the theory of interaction between 
coincident instability buckling modes is presented. On the same line, fundamental 
contributions to the problem of local-overall mode interaction of thin-walled 
sections are the studies of Thompson & Lewis [30]. Tvergaard [31,32] presented a 
method enabling to evaluate the erosion of ultimate capacity of interaction of 
overall mode, in post-buckling range, with plate local buckling mode, which is 
stable in post-buckling range, as it was the case of van der Neut problem. 

Based on van der Neut principle and applying the Ayrton-Perry equation 
[33], Dubina [14] proposed the Erosion of Critical Bifurcation Load (ECBL) 
approach, enabling to evaluate the theoretical erosion of critical load into the 
interactive buckling range. Later, based on the real behaviour of thin-walled stub 
columns and short beams, Ungureanu & Dubina [34,35] used in the interactive 
local-overall buckling analysis the sectional plastic mechanism strength instead of 
traditional effective section and, the ECBL approach, in order to express the plastic-
elastic interactive buckling of thin-walled cold-formed steel members. 

In the last two decades intensive progress in studying the mode interaction 
problems was achieved due to the development of specific numerical methods. 
Since the late 1980s, the Generalized Beam Theory (GBT) [36, 37, 38, 39, 40, 41] 
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has been developed extensively. Particularly connected to the present topic, Camotim & 
Dinis [42] performed extended numerical studies, using FEM and GBT, to study 
the elastic post-buckling behaviour of cold-formed steel columns affected by mode 
interaction phenomena involving distortional buckling, namely local/distortional, 
distortional/global (flexural-torsional), local/distortional/global mode interaction 
and also sensitivity to imperfections of thin-walled cold-formed steel members. 

Alternatively, another approach has been proposed based on conventional 
FSM, i.e. CUFSM [43], freely available at the www.ce.jhu.edu/bschafer/cufsm. 
The recently developed constrained Finite Strip Method (cFSM) provides a means 
to simplify thin-walled member stability solutions through its ability to identify and 
decompose mechanically meaningful stability behaviour, notably the formal 
separation of local, distortional, and global deformation modes. In this version the 
solution has been expanded to allow for general end boundary conditions [44]. 

Another design method, which can be framed in the class of semi-analytical 
methods, is Direct Strength Method [45], which practically replaces the effective 
width concept with the effective stress one. The method explicitly incorporates 
local or distortional and Euler buckling and does not require calculations of the 
effective properties. The procedure is an alternative to effective width method. 
Direct Strength Method has been adopted in 2004 as design method in Appendix 1 
to the North American Specification for the Design of Cold-Formed Steel Structural 
Members [46]. 

In the last years, very interesting developments based on the fundamental 
theoretical works of Koiter [25] have been developed by Garcea et al. [47, 48]. The 
asymptotic approach, derived as a finite element implementation of Koiter’s 
nonlinear theory of elastic stability, could be a convenient alternative by providing 
an effective and reliable strategy for predicting the initial post-critical behaviour in 
both cases of limit or bifurcation points. Its main advantage lies in the possibility of 
performing an efficient and reliable imperfection sensitivity analysis, even in cases 
of multiple, nearly coincident, buckling loads. 

2.2. THE VAN DER NEUT MODEL 

As already mentioned, a milestone achievement enabling for both under-
standing and practical characterisation of the local-global mode interaction 
problem is the pioneering study conducted by van der Neut [27], which has clearly 
demonstrated the erosion of theoretical critical coupling due to imperfections.  

In this case, the interaction occurred between the local buckling of the flanges 
and flexural buckling of a square box section column; only the flanges have been 
considered to be active, while the web role was to connect them. Fig. 5a shows the 
buckling curve of the van der Neut column without local or overall imperfections. 
For lengths greater than L1 the column fails in overall Euler buckling, i.e. 
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 2 2/EN EI L= π . (3) 

For shorter lengths, the local buckling load, i.e. 

 
22

, 22
12(1 )cr L

k E tN
d

σπ  =  − ν  
 (4) 

is reached before Euler buckling takes place (t is the thickness and d is the width of 
flanges, ν is the Poisson’s ratio and kσ = 4, the plate buckling coefficient). In the 
locally buckled shape, a reduced bending stiffness of the column, given by ηEI, is 
considered, where η is the slope of the load-strain diagram of the flange plate in the 
post-local buckling range. van der Neut has considered the results of work by 
Hemp [49], who demonstrated that η is fairly constant over an extended strain 
range past the local buckling point and can be taken as η = 0.4083 for plates of 
which the longitudinal edges are free to pull in. As a result, the reduced overall 
buckling load in the post-local buckling range is given by Nu = ηNE, with 

2 2/EN EI L= π . For column lengths between L1 and L2, the equilibrium at a load 
NL is stable if: 

 2
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Fig. 5 – a) The van der Neut curve [27]; b) effect of a local imperfection on the buckling load [27]. 

Eqn. (5) expresses that the column post-buckling capacity, given by 
Engesser’s double modulus formula, has to be greater than the local buckling load 
NL, and results in: L2 < L < L0, with L0 = 0.761L1. Columns with L0 < L < L1 are in a 
state of unstable equilibrium once the local buckling load is reached and collapse 
explosively (e.g. snap through effect). 

In a second step, van der Neut considered a local imperfection affine with the 
local buckling mode. In this case, η was obtained from a Ritz-Galerkin approximate 
solution of the von Karman equations. Fig. 5b displays the non-dimensional 
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buckling load N/NL,cr function of NE/NL,cr for different values of w0/t, where w0 is 
the local imperfection amplitude and t, is the flange thickness. It is seen that the 
local imperfection can cause a severe reduction in column capacity, and that the 
effect is most pronounced in the vicinity of the point where NE = NL,cr. For instance, 
a reduction (e.g. erosion) of 30% was calculated for w0/t = 0.2. It was also 
demonstrated that, in the region where the perfect column displays unstable 
collapse, the peak of the load-bar shortening curve gets smoothened out as a result 
of the imperfection and the instability almost vanishes for w0/t = 0.2. Van der Neut 
[50] also investigated the effect of overall imperfections on the idealised column. 
The research concluded that the presence of an overall imperfection (e.g. bar 
deflection) has a similar negative effect on the column strength. 

At the end, the most important observation of this study is the reduction of N, 
due to the initial imperfection of flanges which is most significant when NE = NL,cr. 
The ECBL approach, proposed by Dubina [14], presented on the following is based 
on that conclusion. 

2.3. EROSION OF CRITICAL BIFURCATION LOAD – ECBL 

To understand better mode interaction problem, let consider the theoretical 
elastic buckling modes (bifurcation) characterizing the instability of a thin-walled 
member in compression. The local mode could be local buckling (L) or distortional 
buckling (D), the lower of NL,cr or ND,cr being considered. Similarly, the overall 
mode might be either flexural (F) or flexural-torsional (FT). In Fig. 6, (L) and (F) 
modes are assumed in order to identify and qualify the erosion of (L) – (F) 
interaction. These modes are interacting into the theoretical coupling point (Cth), 
while the lowest value N = NL,cr with (F) into the practical coupling point (Cpr), 
allowing the theoretical, ψth, and practical, ψpr, erosions to be evaluated. In case, 
distinction can be made between local buckling strength NL,cr or ND,cr and ultimate 
stub column strength, NL,u or ND,u, respectively. The NL,u and ND,u values are 
obtained considering the relevant imperfections, while for NL,cr and ND,cr there are 
no imperfections taken into account. 
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Lint,th

N(L) 

Lint,pr
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Cpr
ψth

ψpr 

LL,cr Length (L)  
Fig. 6 – Theoretical and practical interaction of two buckling modes: distortional (L) and flexural (F). 
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To introduce the ECBL approach, firstly, the interpretation in terms of 
erosion of equation of European buckling curves, expressed in Ayrton-Perry format 
has to be done. The Ayrton-Perry equation, for the case of a member in 
compression, which is not prone to local buckling, but can undergoes buckling in 
post-elastic range, can be written in the form: 

 2
(1 )(1 ) ( 0.2)N N N− − λ = α λ − , (6) 

where λ  is the non-dimensional slenderness (flexural, Fλ , or flexural-torsional, 
FTλ ). It is easy to show the relation between the imperfection factor, α, and 

erosion coefficient, ψ [14]. In this case, the erosion of theoretical ultimate capacity 
in compression is due to the effect of imperfections and plastic deformations. The 
negative sign solution of Eqn. (6), in the point 1λ =  has to be taken equal with 
(1 )− ψ , because it corresponds to the maximum erosion of theoretical critical load 
when no local buckling occurs, as shown by Eqn. (7), i.e. 

 21( 1, ) 2 0.8 (2 0.8 ) 4 1
2

N  λ = α = + α − + α − = − ψ  
, (7) 

that gives 

 
2

0.8(1 )
ψ

α =
− ψ

 (8) 

or 

 ( )20.4 5ψ = α + α − α . (9) 

In this case the erosion can be associated to the plastic-elastic interaction 
between the rigid plastic mode (plastic strength) of stub column ( 0.2λ ≤ ) and the 
overall elastic buckling mode of the bar given by Euler formula, as shown in Fig. 7. 
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Fig. 7 – The erosion of bar buckling curve. 
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For local-overall mode interaction, the two theoretical simple instability 
modes assumed to interact in a thin-walled compression member are: (1) the Euler 
bar instability mode, /E E plN N N= , 2

1 /EN = λ , and (2) the local instability mode, 

/L L plN N N=  (Fig. 8). 
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Fig. 8 – Definition of erosion in local-overall mode interaction via ECBL approach. 

In this case, the maximum erosion of critical load, due to both, imperfections 
and coupling effect occurs in the coupling point, C ( 1 /C LNλ = ), where: 

• / plN N N= , pl yN A f= ⋅ , where A is the area of the member cross-section 
and fy is the yielding strength; 

• /L L plN N N= , where NL is either local buckling mode or distortional 
buckling mode; 

• /E E plN N N= , the Euler critical buckling load. 

The interactive buckling load, ( , , )LN Nλ ψ , pass through this point where the 
corresponding value of ultimate buckling load is ( ) (1 )C LN Nλ = − ψ . It must be 
underlined that LN  does not rigorously represents the theoretical local buckling, 
but it is assumed to be the lower bound of that, and can be used as reference for 
strength of the cross-section corresponding to the local or distortional buckling 
mode. It enables to estimate the strength of the stub column and to obtain the 
coupling point C. On the other hand, the occurrence of local or distortional 
buckling, the stiffness of the member decreases significantly, resulting in a jump of 
equilibrium onto the overall buckling path. In this case, if compares Fig. 8 with 
Fig. 7, the effect of mode interaction is added to those of plastic deformations and 
imperfections, and the reference load for evaluation of erosion is not anymore 

/ 1plN N N= = , but / 1L plN N < . 
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When local buckling occurs prior to bar buckling (as it was in the case of van 
der Neut problem), then the corresponding solution of Eqn. (10), i.e.: 

 
2

( )(1 ) ( 0.2)LN N N N− − λ = α λ −  (10) 

in the coupling point C of  Fig. 8 is: 

 

2 22 2
2 2
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which leads to 
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This represents the formula of α imperfection factor which should be 
introduced in European buckling curves in order to adapt these curves to local – 
overall buckling. Of course, following this approach, the definition of stub column 
(i.e. the lower value in the buckling curve) has to be adapted correspondingly. 

When speaking about the erosion of theoretical buckling curve in the 
coupling point, distinction should be made between the erosion, ψ, which refers to 
the effect of both imperfections and coupling, and the reduced ultimate strength of 
member, characterized by the normalized local buckling strength, LN . This 
approach applies similarly for both local (L) and distortional (D) buckling modes, 
providing they are not interacting each other; the basic Ayrton-Perry formula, 
presented by Eqn. (6) does not change. 

In case of a thin-walled steel member prone to local buckling, ,L L crN N=  
can be approximated by Q = Aeff /A, where A is the area of gross cross-section, 
while Aeff is the effective area calculated using effective width method. In case of 
distortional buckling, , , /L D cr D cr yN N N Af= = , where ND,cr is the critical value of 
distortional buckling. 

In order to evaluate the ψ erosion factor, two different methods are possible 
to this purpose i.e.: experimental and numerical method, respectively [14]. 

a) Experimental method. The experimental calibration method requires a 
relevant set of experimental values located in a close neighbourhood of the 
coupling point, called coupling range. Most often available experimental results 
scatter, as a result of unavoidable mechanical and geometrical imperfections. 
Consequently, the concerned specimens do not meet the main requirement of 
ECBL approach to have reduced member slenderness identical to the one locating 
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the coupling point ( 1 /C LNλ = , see Fig. 8). Even in case of own dimensioned 
specimens, sized to be theoretically located in the coupling point, the imperfections 
produce an unavoidable scatter of the experimental results and require the work 
with a coupling range as well. 

The selection of the relevant set of specimens should be performed by 
choosing among existing results experimental samples reasonably close to the 
instabilities coupling point (in terms of reduced slenderness). This is leading to the 
idea of using a coupling range, defined in terms of reduced slenderness as a 
vicinity of the coupling point, instead of working strictly in this point. A correct 
definition of coupling range limits is therefore of paramount importance for the 
selection of a relevant set of specimens. Extensive parametric studies [51] have 
indicated as acceptable an unsymmetrical coupling range defined around cλ  with 
left limit 1 0.85 cλ = ⋅ λ  and the right limit 2 1.075 cλ = ⋅λ . All specimens with a 
reduced slenderness comprised between these two limits should be considered as 
reasonably close to the coupling point and selected as relevant experimental set. 

b) Numerical method. Based on an advanced nonlinear inelastic FEM 
analysis and taking into account for the imperfections and cold-forming effect, the 
numerical models have to simulate relevant experimental values into the coupling 
range. However, the numerical method requires also some experimental results in 
order to calibrate the FEM model. 

The previous approach can be very easily extended to the case of interactive 
local/lateral-torsional buckling of thin-walled beams [52]. Following the same 
procedure, the LTα  imperfection factor can be determined, i.e.:  

 
2

1 1 0.4
LTLT

LT
LT LT

Q
Q

ψ
α = ⋅

− ψ −
. (13) 

The new ECBL interactive approach for lateral-torsional buckling of thin-
walled beams is similar to that of EN 1993-1-1, but instead of φLT given in EN 
1993-1.1 the following value should be used: 

 
2

0.5[1 ( 0.4) ]LT LTLT LTφ = + α λ − + λ , (14) 

with LTα  calculated from Eqn. (13) in terms of the erosion factor ψLT. 
Finally, it appears easier to evaluate experimentally and/or numerically the 

erosion coefficients, ψ, for specific types of cold-formed steel sections and, on this 
basis, to calibrate relevant α imperfection factors, in order to be implemented in the 
EN 1993-1-1. Examples of calibration of α imperfection factors are presented in 
[14, 34, 35, 52–57]. 
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3. EXAMPLES OF α IMPERFECTION FACTORS CALIBRATION 

3.1. PLASTIC-ELASTIC INTERACTIVE BUCKLING  
VIA ECBL APPROACH [34,35] 

Cold-formed steel sections are traditionally considered with no plastic 
capacity, and consequently non-ductile, mainly due to wall slenderness involving 
local instability phenomena. However, even they do not have sufficient plastic 
rotation capacity to form plastic hinges, they can form local plastic mechanisms. 

In case of a thin-walled member multiple local buckling modes may occur 
simultaneously under the same critical load. For a long member, multiple local 
buckling modes, e.g. m-1, m, m+1, characterized by Lm-1, Lm and Lm+1 half wave-
lengths, respectively may interact each other and give rise to an unstable post-critical 
behaviour called localization of the buckling pattern (Fig. 9). 
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Fig. 9 – Periodical local modes and localization of buckling patterns in case of flanges 

of a plain channel section in compression. 

The localized buckling mode is in fact an interactive or coupled mode. This is 
a first interaction, which may occur prior the overall buckling mode of the member. 
The second interaction, between the localized buckling mode and the overall one is 
really dangerous because it is accompanied by a very strong erosion of critical 
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bifurcation load. When localization of buckling patterns occurs, the member post-
buckling behaviour is characterized by large local displacements, in the inelastic 
range, which produce the plastic folding of walls, and the member, falls into a 
plastic mechanism [58]. 

Starting from this real behaviour of thin-walled stub columns and short 
beams, Ungureanu & Dubina [34, 35] used the ECBL approach in order to express 
the plastic-elastic interactive buckling of thin-walled members. The main problem 
of this approach is to evaluate properly the plastic strength of thin-walled members, 
via the local plastic mechanism theory and after, the erosion of critical load into the 
plastic-elastic coupling range. 
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Fig. 10 – Numerical/Experimental comparison for compression members [34]. 

Following exactly the same way as for the elastic local-overall interactive 
buckling, it results the α imperfection factor for the plastic-elastic interactive buckling: 
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and Npl,m is the local plastic mechanism strength. 
In case of members in compression, Fig. 10 presents the ECBLpl-el results, 

compared with those from FEM elastic-plastic analysis, the ECBL elastic-elastic, 
ECBLel-el, and experimental tests [34]. It is easy to observe the quality of ECBLpl-el 
results are excellent, particularly in the interactive zone, e.g. 0.4< λ <1.6. 

In case of slender beams, experimental data were used to compare the 
ECBLpl-el and ECBLel-el results with those of EN1993-1-3 and AISI-1996 results. 
Figure 11 shows again that ECBLpl-el model confirm its accuracy [35]. 
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Fig. 11 – Numerical/Experimental comparison for bending members [35]. 
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The local rigid-plastic model, describes properly the behaviour of thin-walled 
short members. This model is consistent with the real phenomenon of stub columns 
and short beams failure and is confirmed by test results and advanced elastic-
plastic FEM analysis. The plastic-elastic interactive model naturally describes the 
phenomenon of the interactive buckling of thin-walled members. The ECBL 
plastic-elastic interactive approach, based on the erosion theory of coupled 
bifurcation, is much more rigorous and understandable than the semi-empirical 
methods used for the buckling curves in existing design codes. 

3.2. EROSION OF BUCKLING STRENGTH DUE TO THE INFLUENCE  
OF THE SHAPE OF SECTIONAL GEOMETRICAL IMPERFECTIONS [53] 

Based on numerical simulations and applying the ECBL approach, Dubina & 
Ungureanu [53] have systematically studied the influence of size and shape of 
sectional geometrical imperfections on the ultimate buckling strength of plain and 
lipped channel sections, both in compression and bending, in order to evaluate the 
erosion of theoretical strength when sectional and overall buckling modes interact. 
Fig. 12 explains the erosion phenomenon applied to this problem [14]. 

The following notations were used: 
plN N N= , where N is the ultimate strength of the member; Npl is 

corresponding full plastic strength; 
, ,L th L th plN N N= , with NL,th the ultimate theoretical stub column strength; 

L L plN N N= , NL being the ultimate strength of imperfect stub column; 

/L crN Nλ = , the reduced slenderness of the member. 
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Fig. 12 – The interactive buckling model based on the ECBL theory [53]. 

ψc,th = theoretical erosion due to 
coupling effect only; 
ψL = actual erosion due to local 
imperfections only; 
ψc = actual erosion due to coupling 
effect and global imperfection; 
ψ = actual total erosion due to both 
coupling and imperfections. 
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Maximum erosion ψ of theoretical interactive buckling strength is calculated 

in regard with the theoretical interaction point, M int ,( 1 / )L thNλ = , and is: 

 , - ( 1 / )L th LN N Nψ = λ = . (16) 

The total erosion can be associated with the α (αLT) imperfection factor used 
in European buckling curves for members in compression (bending), by means of 
ECBL formula: 

Compression Bending 
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(17) 

The N  and M  values can be computed for perfect and imperfect shapes of 
both, cross-section and member. Therefore, the erosion can be evaluated for 
different imperfection cases. If no imperfections, the evidence of interactive 
buckling effect only will be observed. Further, the values of α (αLT) imperfection 
sensitivity factor used in European buckling curves have been evaluated for all 
these imperfection shapes. Tables 2 and 3 show the main results of this study [53]. 

Table 2  
α imperfection sensitivity factor for members in compression [53] 

Plain channel 96×36×1.5 Lipped channel 96×36×12×1.5 

Shape of 
imperf. 

Imperfection 
mode ψ α 

Buck-
ling 

curve 

Shape of 
imperf. 

Imperfection 
mode 

ψ α 

Buck-
ling 

curve 

 

- local buckling 
PL1 (symmetric 

sine shape) 
0.450 0.322 b 

 

- local buckling 
LL1 (symmetric 

sine shape) 
0.286 0.109 ao 

 

- local buckling 
PL2 

(asymmetric 
sine shape) 

0.442 0.304 b 
 

- local buckling 
LL2 

(asymmetric 
sine shape) 

0.283 0.105 ao 

 

- distortional 
buckling PD3 

(symmetric sine 
shape) 

0.466 0.354 c 
 

- distortional 
buckling LD3 

(symmetric sine 
shape) 

0.492 0.461 c 

 

- distortional 
buckling PD4 
(asymmetric 
sine shape) 

0.471 0.365 c 
 

- distortional 
buckling LD4 
(asymmetric 
sine shape) 

0.404 0.265 b 
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Table 3 
αLT imperfection sensitivity factor for members in bending [53] 

Plain channel 96×36×1.5 Lipped channel 96×36×12×1.5 
Shape 

of 
imperf. 

Imperfection 
mode ψLT αLT 

Buck-
ling 

curve 

Shape of 
imperf. 

Imperfection 
mode 

ψLT αLT 

Buck-
ling 

curve 

 

- distortional 
buckling PD2 
(the imperf. is 
constant over 

the length) 

0.311 0.140 a 

- distortional 
buckling LD1 
(the imperf. is 

constant over the 
length) 

0.355 0.292 b 

 

- distortional 
buckling PD7 
(asymmetric 
sine shape) 

0.312 0.142 a 

- distortional 
buckling LD4 

(asymmetric sine 
shape) 

0.411 0.422 c 

The appropriate identification and selection of imperfection shape and size 
associated to the relevant instability mode is crucial for ultimate strength analysis. 
In a two-mode interacting buckling (e.g. local-overall interaction) different shapes 
of local-sectional imperfections have different effects on the ultimate strength of 
the member. The values of α imperfection factor prove the higher sensitivity of 
distortional-overall interactive buckling to sectional imperfections. This fact can be 
explained by the lower post-critical strength reserve of distortional mode if coupled 
with local one. 

3.3. DISTORTIONAL-OVERALL MODE INTERACTION OF PERFORATED 
PALLET RACK UPRIGHTS. IMPERFECTION SENSITIVITY ANALYSIS 

The sections currently used in pallet rack uprights are particularly prone to 
distortional-overall interaction. An extensive experimental study on pallet rack 
uprights in compression has been carried out at the Politehnica University of 
Timisoara on the aim to observe the erosion of theoretical buckling load due to 
both coupling effect and imperfections for this type of interaction. The experimental 
program was extensively presented in [54]. 

Two cross-sections of the same typology but different sizes, RS125×3.2 and 
RS95×2.6, have been considered, of perforated-to-brut cross-section ratios (AN/AB) 
of 0.806 and 0.760, respectively. Their brut and perforated (i.e. net) sections are 
shown in Fig. 13 together with the perforations details. The pitch is 50mm for both 
studied sections. 

Both perforated and unperforated section specimens have been tested, of 
calibrated lengths for: stub columns (s); upright member specimens for distortional 
buckling (u); specimens of lengths equal with the half-wave length for distortional 
buckling (d); specimens of lengths corresponding to interactive buckling range (c). 
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Fig. 13 – a) Brut and perforated specimen cross-section; b) perforation details [54]. 

Table 4 presents the failure modes for each type of the tested specimen/ 
section. The following notations have been used: S – Squash, DS – symmetrical 
distortional buckling, FT –flexural-torsional buckling, F – flexural buckling 
Additional experimental tests have been done in order to determine the mechanical 
properties of the material. A set of samples were tested from the base material. 
Additional series of tests on coupons cut over the cross-section of specimens 
without perforations was done for both types of sections to determine the increase 
of yield strength, ultimate tensile strength and residual stresses. In what concerns 
the geometric imperfections, all tested specimens were measured. Two types of 
imperfections were recorded, i.e. (a) sectional and (b) global. 

Table 4 
Failure modes for tested sections 

Section 
Test type 

RS95×2.6 
brut 

RS95×2.6 
perforated 

RS125×3.2 
brut 

RS125×3.2 
perforated 

Stub (s) S S/DS DS DS 
Distortional (d) DS DS DS DS 

Upright (u) F or FT F or FT DS DS 

Interactive buckling (c) DS+F or 
DS+FT 

DS+F or 
DS+FT 

DS+F or 
DS+FT 

DS+F or 
DS+FT 

Advanced numerical models (i.e. GMNIA) have been applied to simulate the 
behaviour of studied sections, using the commercial FE program ABAQUS/CAE. 
The numerical models were calibrated to replicate the physical experimental tests. 
It must be underlined that for all considered numerical models, the failure modes 
were in accordance with the failure modes observed in experimental tests (see Fig. 14). 
The calibrated numerical models were validated against experimental tests for all 
tested sets of profiles. Table 5 presents the values of ultimate load from numerical 
simulations and the experimental ones for all types of members ((s), (u), (d), (c)), 
for both RS125×3.2 and RS95×2.6 cross-sections, with and without perforations. 
For details see [55, 56]. 
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On the following the numerical investigations on the sensitivity to 
imperfections of pallet rack sections in compression, having the member length 
equal to the interactive buckling length, using ECBL approach are summarized [57, 
59]. On this purpose, FE analyses were performed to simulate the influence of 
different types of imperfections in the coupling point. Because the interest is to 
observe the erosion of critical bifurcation load, this time, the ECBL approach is 
applied considering the distortional critical load, obtained for the relevant section 
by an eigen buckling analysis, in interaction with Euler buckling of the cor-
responding bar member 

 

RSBs 125×3.2 
RSNd 

125×3.2 
RSNu 
95×2.6 RSBc95×2.6 

Fig. 14 – Failure modes: Experimental vs. FE models [55, 56]. 

Table 5 
Ultimate load [kN]: experimental vs. FEM [55, 56] 

RSBs125×3.2 RSNs125×3.2 RSBs95×2.6 RSNs95×2.6 
EXP FEM EXP FEM EXP FEM EXP FEM 

487.05 486.13 411.02 422.98 338.88 335.15 274.33 272.01 
RSBd125×3.2 RSNd125×3.2 RSBd95×2.6 RSNd95×2.6 

EXP FEM EXP FEM EXP FEM EXP FEM 
440.79 440.78 394.62 397.04 325.10 331.05 262.67 255.47 

RSBu125×3.2 RSNu125×3.2 RSBu95×2.6 RSNu95×2.6 
EXP FEM EXP FEM EXP FEM EXP FEM 

386.72 384.40 347.26 344.00 279.65 285.96 223.33 231.89 
RSBc125×3.2 RSBc125×3.2 RSBc95×2.6 RSBc95×2.6 

EXP FEM EXP FEM EXP FEM EXP FEM 
317.89 316.67 293.62 292.9 220.29 220.26 168.88 177.11 

(s) Stub columns; (d) Specimens of lengths equal with the half-wave length of distortional buckling; 
(u) Upright member specimens; (c) Specimens of lengths corresponding to interactive buckling 
range. N/B – perforated/brut 



 Dan Dubina, Viorel Ungureanu 24 32 

Table 6 shows the reference values for critical and ultimate sectional loads 
obtained numerically and experimentally for the studied sections. Table 7 presents 
the lengths corresponding to the theoretical interactive buckling loads determined 
via the ECBL approach, in the interactive buckling point for each section [57, 59]. 

Table 6 
Sectional capacity and distortional buckling load [57] 

Section RSN125×3.2 RSN95×2.6 
Length [mm] 600 500 

Distortional buckling load* 
(Ncr,D) [kN] 370.48 340.78 

Distortional ultimate load** 
(ND,u) [kN] 388.35 --- 

Stub ultimate load*** 
(NS,u) [kN] 407.79 279.27 

Squash load**** 
(Npl) [kN] 480.94 286.72 

* distortional buckling load determined using LBA; ** experimental failure load corresponding to 
“distortional” specimens – mean values; *** experimental failure load corresponding cu stub 
column specimens – mean values; **** Npl=A.fy 

Table 7 
Lengths corresponding to the theoretical interactive buckling [57] 

Profile Ncr,D [kN] Npl [kN] DN  
Coupling length [mm] 

RSN125 370.48 480.94 0.770 2559 
RSN95 340.78 286.72 1.000 1667 

It can be observed that for RS95N cross-sections, the critical load 
corresponding to distortional buckling is greater than the cross-section squash load. 
In this case the DN  value has to be limited to 1.00. Based on this limitation for 
RS95 section, with and without perforation, there is no classical interactive buckling, 
but we could speak about a local plastic – elastic global buckling interaction. 

On the following, an imperfection sensitivity study was conducted in order to 
identify the most critical imperfection or combination of imperfections. 

Fig. 15 shows the geometrical imperfections, considered in the analysis,  
i.e. distortional (d ±), flexural about the minor axis (f ±), and coupling of these two 
(f ± d ±). Also, load eccentricities, located on the axis of symmetry, were taken into 
consideration. 

Ecc. z
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Fig. 15 – Example of considered simple imperfections (f and d) [57, 59]. 
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In case of flexural-torsional buckling (FT), both initial deflection and initial 
twisting imperfection (ft) were considered together, according to Australian 
Standard AS4100 [60]. Due to the fact that the global flexural buckling mode about 
the minor axis has the minimum value for the studied sections the global 
imperfection considered for coupling was considered a global bow imperfection. 

The imperfections used for this study were: distortional symmetric imper-
fection (ds), distortional asymmetric imperfection (da) (only for RSN125×3.2 section), 
flexural bow imperfection about the minor inertia axis (f), loading eccentricities on 
both axes (independent and coupled – EY, EZ, EY-EZ) and flexural-torsional 
imperfection (FT). The distortional imperfection, symmetric and asymmetric, was 
scaled to 0.5t, 1.0t and 1.5t, the flexural bow imperfection was scaled to L/750, 
L/1000 and L/1500, while the flexural-torsional imperfection was considered in 
accordance with the provisions of Australian design code [3.60]. The loading 
eccentricities were varied on both sectional axes, with ± 2 mm, ± 4 mm, ± 6 mm, 
independently (e.g. EZ-4 means –4 mm eccentricity about z-axis) and together, as 
an oblique eccentricity (e.g. EY-EZ4 means + 4 mm eccentricity about y-axis and  
+4 mm about z-axis). 

Table 8 presents the considered simple imperfections, sectional, global and 
loading eccentricities for RSN125×3.2 section together with ψ erosion coefficient 
and α imperfection factors for simple imperfections. 

In Table 8 can be easily observed that, for simple imperfections, symmetric 
distortion imperfection and major axis eccentricities give higher values for erosion 
coefficient than those corresponding to flexural and flexural-torsional imperfections. 

Table 9 presents the coupled imperfections considered for the RSN125×3.2 
section, i.e. f – L/750, ds – 0.5t; f – L/750, ds – 1.5t; f – L/1500, ds – 0.5t and f – 
L/1500, ds – 1.5t, combinations coupled with various types of eccentricities. It is 
easy to observe that the combination (f – L/750, ds – 1.5t) of imperfections is the 
most critical one. However, statistically is not recommended to combine all 
imperfections to cumulate their negative effects, because their random compensation. 

Table 8 
ψ erosion coefficients and α imperfection factors for simple imperfections 

RSN125×3.2 RSN125×3.2 Imperfection 
ψ α Imperfection 

ψ α 
ds – 0.5 t 0.236 0.078 EZ -6 0.313 0.152 
ds – 1.0 t 0.339 0.185 EZ -4 0.272 0.108 
ds – 1.5 t 0.398 0.280 EZ -2 0.210 0.059 
da – 0.5 t 0.152 0.029 EZ +2 0.216 0.063 
da – 1.0 t 0.245 0.085 EZ +4 0.255 0.093 
da – 1.5 t 0.321 0.162 EZ +6 0.285 0.121 
f – L/750 0.240 0.081 EY-EZ 0 0.157 0.031 

f – L/1000 0.216 0.063 EY-EZ +6 0.321 0.162 
f – L/1500 0.181 0.043 EY-EZ +4 0.276 0.112 

ft 0.240 0.081 EY-EZ +2 0.215 0.063 
EY +2 0.169 0.037 EY-EZ -2 0.223 0.068 
EY +4 0.196 0.051 EY-EZ -4 0.270 0.106 
EY +6 0.224 0.069 

 

EY-EZ -6 0.307 0.145 
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Table 9 
ψ erosion coefficients and α imperfection factors for coupled imperfections 

Imperfection ψ α  ψ α ψ α ψ α 
 f – L/750, ds – 0.5t  f – L/750, ds – 1.5t f – L/1500, ds – 0.5t f – L/1500, ds – 1.5t 

EY 2 0.339 0.185  0.440 0.368 0.302 0.139 0.422 0.328 
EY 4 0.342 0.189  0.442 0.373 0.305 0.142 0.423 0.330 
EY 6 0.346 0.195  0.443 0.375 0.310 0.148 0.425 0.334 
EZ 6 0.425 0.334  0.493 0.510 0.411 0.305 0.483 0.480 
EZ 4 0.404 0.292  0.479 0.469 0.384 0.255 0.467 0.436 
EZ 2 0.376 0.241  0.461 0.420 0.350 0.201 0.447 0.385 
EZ -2 0.279 0.115  0.413 0.309 0.174 0.039 0.387 0.260 
EZ -4 0.194 0.050  0.374 0.238 0.228 0.072 0.326 0.168 
EZ -6 0.240 0.081  0.276 0.112 0.264 0.101 0.261 0.098 

EY-EZ 0 0.240 0.081  0.440 0.368 0.301 0.138 0.421 0.326 
EY-EZ 6 0.430 0.345  0.495 0.517 0.414 0.311 0.485 0.486 
EY-EZ 4 0.406 0.295  0.480 0.472 0.386 0.258 0.467 0.436 
EY-EZ 2 0.377 0.243  0.462 0.422 0.351 0.202 0.447 0.385 
EY-EZ -2 0.280 0.116  0.413 0.309 0.182 0.043 0.387 0.260 
EY-EZ -4 0.218 0.065  0.376 0.241 0.247 0.086 0.330 0.173 
EY-EZ -6 0.271 0.107  0.298 0.135 0.289 0.125 0.285 0.121 

A precise framing for coupled instabilities is very important in order to 
choose a suitable design strategy. For weak and moderate interaction class, simple 
design methods based on safety coefficients can be used. In case of strong and very 
strong interaction, special design methods must be developed [14]. 

It can be observed that for the case of RSN125×3.2 pallet rack section, the 
computed erosion can classify the section into medium up to very strong 
interaction, depending on the considered imperfection. 

4. CONCLUDING REMARKS 

The main aim of this chapter was to provide evidences that the activity in the 
field of structural stability, particularly focussing the mode interaction problems, 
developed by the Timisoara researchers can be characterised as an activity of a 
“school”. Among the different subjects which have been subjects of theoretical, 
experimental and numerical investigation of the “school” in connection with that 
topic, those referring to coupled bifurcations, erosion of critical bifurcation load 
and ultimate post-critical strength are, in our opinion the most significant, leading 
to the so called ECBL approach, actually known as an available procedure 
enabling to calibrate buckling curves for mode interaction problems. 

Received on July 16, 2014 
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