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required by a standard linearized stability analysis. It provides the initial post-
buckling behavior of the structure, including modal interactions and jumping-after-
bifurcation phenomena. Moreover, once the analysis has been performed, the 
presence of small loading imperfections or geometrical defects can be taken into 
account in a post-processing phase with a negligible computational extra-cost, so 
allowing an inexpensive imperfection sensitivity analysis [30, 7]. It is also possible 
to extract information about the worst imperfection shapes [34, 8], and it can be 
used to improve the imperfection sensitivity analysis or for driving more detailed 
investigations through specialized path following analyses (see [6, 8] and references 
therein). From this point of view the method could be an effective tool for the 
evaluation of the buckling curves used in European codes [11, 13, 12]. The 
asymptotic analysis can provide a very accurate recovery of the equilibrium path, 
as it is confirmed by numerical testing and theoretical investigations [4] but requires 
great care in both the mechanical modeling [17, 18] and its finite element 
implementation. As it will be shown in the paper accuracy cannot be obtained by 
an inappropriate finite element interpolation due to the occurrence of interpolation 
locking phenomena in the evaluation of the energy variation terms used to 
reconstruct the post-critical behavior [31, 6]; by an inappropriate format used in the 
control variables that can produce extrapolation locking phenomena [20, 15]) or by 
the use of non-objective structural models [17, 18]. 

The paper is organized as follows: section 2 presents the asymptotic method, 
section 3 discusses all the aspects regarding the FEM implementation and the 
accuracy, section 4 gives some numerical results showing the potentialities of the 
method and finally section 5 summarizes the discussion and suggests possible 
extensions. 

2. THE ASYMPTOTIC METHOD 

In this section an asymptotic algorithm capable of treating single or multiple, 
also not coincident, bifurcations and of considering the effects of a nonlinear pre-
critical behavior is presented. Further details can be found in [31–38]. 

2.1. A LYAPUNOV-SCHMIDT-KOITER ASYMPTOTIC METHOD 

A brief overview of the FEM implementation of Koiter’s asymptotic 
approach is presented here, for the convenience of the reader and to summarize the 
main notation and equations involved. Further details can be found in [18–31]. 

We consider a slender hyperelastic structure subjected to conservative loads 
λ increasing with an amplifier factor. The equilibrium is expressed by the virtual 
work equation: 
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 [ ] ˆ' 0,u u p u u− = ∀ ∈Φ δ λ δ δ J ,  (1) 

where u∈U  is the field of configuration variables, [ ]uΦ  denotes the strain energy, Ј 
is the tangent space of U at u and a prime is used for expressing the Fréchet 
derivative with respect to u. We assume that U will be a linear manifold so that its 
tangent space Ј will be independent from u. Eq. (1) defines a curve in the (u, λ) 
space, the equilibrium path of the structure, that can be composed of several 
branches. We are usually interested in the branch starting from an initial known 
equilibrium point u0, λ0  and without any loss of generality we can assume u0 = 0, 
λ0 = 0. It is worth mentioning that a mixed format is generally convenient to avoid 
the so called nonlinear locking phenomena [20, 15, 22], so configuration u usually 
collects both displacement and stress fields. 

The asymptotic method is based on an expansion of the potential energy, in 
terms of load factor λ and buckling mode amplitudes iξ , which is characterized by 

fourth-order accuracy. It provides an approximation of the equilibrium path by 
performing the following steps: 

1. The fundamental path is obtained as a linear extrapolation, from a known 
equilibrium configuration: 

 [ ] ˆ,fu u=λ λ  (2) 

where û  is the tangent {0; 0}, obtained as a solution of the linear equation 

 ˆ ˆ ,u u p u u0′′ = ∀ ∈JΦ δ δ δ  (3) 

and an index denotes the point along fu  for which the quantities are evaluated, that 
is [ ]0 .fu0′′ ′′  ≡  Φ Φ λ  

2. A cluster of buckling loads {λ0…λm} and associated buckling modes 
( ... mν ν ) are defined along [ ]fu λ by the critical condition 

 [ ] 0,f
i iu u u ,′′   = ∀ ∈ Φ λ ν δ δ J  (4) 

Buckling loads are considered to be sufficiently close to each other to allow 
the following linearization 

 ( ) ˆ 0, ,b i i b b iu u u u′′′′ ′′′+ − ν = ∀ ∈Φ ν δ λ λ Φ δ δ J  (5) 

bλ being an appropriate reference value of λ (e.g. the first of iλ or their mean 

value). Normalizing, we obtain ˆ ,b i j iju′′′ =Φ ν ν δ  where ijδ  is Kroneker’s symbol. 
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3. The tangent space Ј is decomposed into the tangent { }i i= Σ ν≡V ν  and 
orthogonal { }b iˆ: 0u′′′≡ Φ ν =w wW subspaces so that = ⊕J V W . Making and 0 =ξ λ  
and 0 ˆ,uν = the asymptotic approximation for the required path is defined by the 
expansion 

 [ ]
0 0

1

2
, ,

m m

k i i j ij
i i

u
= =

≡ ν +∑ ∑λ ξ ξ ξ ξ w  (6) 

where ijw are quadratic corrections introduced to satisfy the projection of eq. (1) 
onto W and obtained by the linear orthogonal equations 

 ,b ij i j ij
′′ ′′′ν ν ∈Φ δ Φ δ δb– ,w w = w w w W  

(7)
 

where, because of the orthogonality condition, 0 0.i =w  
4. The following energy terms are computed for i, j, k = 1…m: 

 [ ] ( )2 2 31 1

2 6
ˆ ˆ3k k b ku u2′′′ ′′′= ν + − νµ λ λ Φ λ λ λ Φb b  

ijk i j kA ′′′= ν ν νΦb  

 ( )ijhk i j h k ij hk ih jk ik jhB ′′′′ ′′= ν ν ν ν − + +Φ Φb b w w w w w w  (8) 

 2
00 00ˆjk i k ikB u′′′′ ′′= ν ν −Φ Φb b w w   

0 ˆijk i j kB u′′′′= ν ν νΦb  

 00 ,ik ikC ′′=Φb w w   

where the implicit imperfection factors κµ are defined by the 4th order expansion of 
the unbalanced work on the fundamental (i.e. [ ] [ ]( )ˆ ˆk k′= νµ λ λ Φ λp u– ). 

5. The equilibrium path is obtained by satisfying the projection of the 
equilibrium equation (1) onto V. According to eqs. (7) and (8), we have 

( )
1 , 1

1
2 2

m m

k k b i ik i j ijk
i i j

C A
= =

 − − + + 
 

∑ ∑λ
λ λ ξ λ λ − ξ ξ ξb  

 ( ) ( )2
00 0

1 , 1

1 1
2 2

m m

i ik i j ijk
i i j

B B
= =

+ + +∑ ∑λ− λ ξ λ − λ ξ ξb b   (9) 

[ ]
, , 1

1 0,
6

m

i j h ijhk k
i j k

B
=

+ + =∑ ξ ξ ξ µ λ      k = 1…m. 
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Equation (9) corresponds to a highly nonlinear system in the m + 1 unknowns 
i−λ ξ  and can be solved using a standard path-following strategy. It provides the 

initial post-buckling behavior of the structure, including modal interactions and 
jumping-after-bifurcation phenomena.  

2.2. IMPERFECTION SENSITIVITY ANALYSIS 

When analyzing a structure, it is difficult to characterize its geometry and 
loads exactly, for the presence of a random distribution of small external 
imperfections. This circumstance, also if the general behavior of the structure is 
preserved, changes some aspects of its response and often causes a reduction in the 
carrying capacity. 

In the proposed asymptotic algorithm the presence of small additional imper-
fections expressed by a load [ ]qqε λ and/or an initial displacement quε  affect Eq. (9) 

only with the imperfection term [ ]kµ λ  that becomes [31, 30, 6] 

 ( ) [ ] [ ]2 2 2 3 11 1ˆ ˆ3 ,
2 6

g
k k c k k ku u′′′ ′′′′= ν + − ν + +µ λ Φ λ λ λ Φ µ λ µ λc c  (10) 

with 

 [ ] [ ] [ ]1 ˆ, .g
k k k kq uu′′′= − ν = νµ λ ε λ µ λ cλΦ  (11) 

The aim of the imperfection sensitivity analysis is to link the presence of 
geometrical and load imperfections to the reduction in the limit load. For structures 
presenting coupled buckling even a small imperfection in loading or geometry can 
mean a marked reduction in collapse load with respect to the bifurcation load [11, 
13, 12]. So an effective safety analysis should include an investigation of all 
possible imperfection shapes and sizes to recover, albeit in a statistical sense, the 
worst case. 

The asymptotic approach provides a powerful tool for performing this 
extensive investigation. In fact, the analysis for a different imperfection only needs 
to update the imperfection factors [ ]g

kµ λ  and [ ]l
kµ λ  through Eq. (11) and to solve 

once more the nonlinear system (9). Even if this system, collecting all the nonlinear 
parts of the original problem, proves to be highly nonlinear and some care has to be 
taken in treating the occurrence of multiple singularities, its solution through a 
path-following process is relatively simple because of the small number of 
unknowns involved. 

However, exhaustive results can only be obtained in a statistical context 
linking the distribution probability of the imperfection to that of the load. An 
effective imperfection sensitivity analysis can be performed by a Monte-Carlo 
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statistical technique, where both the magnitude and the form of the imperfections 
are treated as random variables. The analysis is then performed by taking the 
additional imperfection factors in the form 

 [ ] [ ] [ ]( )ˆ ,l g
k k k kq uu′′′+ = − ν =µ λ µ λ λ λ Φ λµc  (12) 

and producing a random sequence of imperfection vectors { }2, ... ,1= µ µ µmµ , 
modeling possible small deviations in the loads and in the geometry of the 
structure, and repeating a path-following solution of (9) for each of these. By a 
statistical treatment of the obtained results we obtain the probability distribution 
function for the limit load multiplier and all the other useful statistical information. 
This solution process, can be considered as a standard approach for imperfection 
sensitivity analysis [8]. The number of repetitions needed to obtain statistically 
reliable results increases (quite) exponentially with the number of the buckling 
modes and for large m can become very expensive. The imperfection sensitivity 
analysis can however be performed in a simple and efficient way when a criterion 
for defining the (few) ‘significant’ imperfection forms is available [34]. 

2.3. ATTRACTIVE PATH THEORY 

A large number of different imperfections (up to several thousands) has to be 
considered to obtain statistically significant results, so, while the analysis for a 
single imperfection can be considered an easy task, the entire solution process 
performed proves to be computationally expensive, especially when a large number 
of coupled buckling modes have to be considered. We can, however, noticeably 
reduce the computational effort by exploiting information given by the knowledge 
of the complete set of attractive radial paths 

 * , 1... ,i it i m t= = ∈ξ ξ  (13) 

which are local minimizers for the cubic form 

 
( )

* * * * *

, , 1 1

1 , 1
2 *

k

m m

b ijh i i h i i
i j h i

A min
= =

= = =∑ ∑
ξ

λ ξ ξ ξ ξ ξ  (14) 

or for the quartic form 

 * * * * * *

, 1 1

1 , 1
3 *

k

m m

ijhk i i h k i i
i j i

B min
= =

= = =∑ ∑
ξ

λ ξ ξ ξ ξ ξ ξb  (15) 

on the unit hypersphere. 
Attractive paths theory [8, 25, 26, 29, 34] can actually provide a helpful tool 

for driving the analysis and reducing its total cost. In fact, it suggests that each 
imperfect path obtained from the solution of (9) will be attracted by one of the 
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imperfection directions as discussed in subsection 2.2.1. Today this is not a 
completely solved problem and it can also be expensive. Nevertheless, relative 
minimum solutions can be (quite easily) obtained by using the iterative scheme 
suggested in [34]. Furthermore for the case of symmetric buckling, problem (15) 
can be transformed into a non-convex Quadratic Problem subject to linear 
constraints and solved using the strategy presented in [8]. 

3.2. ON THE ACCURACY OF THE ASYMPTOTIC FORMULATION 

The method, as will be shown in the numerical results section, is potentially 
capable of furnishing accurate results if a series of modelling and implementation 
aspects are carefully tuned. In the following we quickly present some of the 
sources of inaccuracy referring readers to the references for a deeper discussion. 

3.2.1. Interpolation locking 

In the asymptotic algorithm a locking phenomenon related to the dis-
cretization process can arise from the evaluation of the fourth-order terms 

),ijhk c i j h k c ij hk ih jk ik jhB ′′′′ ′′= ν ν ν ν − + +(Φ Φ w w w w w w  

that define the initial curvature of the post-buckling path. The coefficients ijhkB  are 
obtained as the difference between two quantities derived from the fourth and 
second variations. In compatible formulations the single term of this difference is, 
usually, very large while the difference is small. The discretization error on the 
single term could in this case be greater than the small results in their difference. 
Obviously, the numerical response given by the asymptotic algorithm in this case is 
completely unreliable. 

The size of the error produced by this locking pathology depends on the finite 
element interpolation functions and decreases for an appropriate balancing of the 
polynomial functions used to describe each displacement component. The phenomenon 
is particular evident for beam and plate structures where the buckling modes iν  usually 
contain only flexural displacement components while ijw  only in plane or axial ones. 
The locking is sanitized when a mixed finite element is used [31, 6]. 

Figure 1, which refers to a planar Euler rod case reports numerical results for 
the post-buckling factor 1111b B=λ  obtained for different values of the ratio EAL2/EJ 
between the axial and the flexural stiffness, by using an element called HC [31] 
that uses the same quadratic spline functions for both the transversal and the axial 
components and standard beam elements (linear and cubic interpolation for the 
axial and transversal displacements, respectively). 
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Note that, for EAL2/EJ = 1.2·105, 20 HC elements are sufficient to contain the 
error in bλ  at under 1% while standard discretizations do not yield reliable results 
even using a large number of elements. A mixed finite element completely sanitizes 
this pathological phenomenon. 

3.2.2. Extrapolation locking 

Mixed or compatible formats, while completely equivalent in principle, 
behave very differently when implemented in asymptotic but also in path-following 
solution strategies. This is an important, even if frequently misunderstood, point in 
practical computations which has been widely discussed in [21, 20, 15, 16, 6]. By 
referring readers to these papers for more details, we only recall here that both 
numerical strategies need function Φ  and its Hessian [ ]K u  to be appropriately 
smooth in its controlling variables. In path-following analysis, this ensures a fast 
convergence of the Newton iterative process; in asymptotic analysis, it implies that 
the higher-order energy term neglected in the Taylor expansion be really irrelevant, 
allowing an accurate recovery of the equilibrium path. We know that the 
smoothness of a nonlinear function strictly depends on the choice of the set of its 
control variables, that is on the format of its description, and can change noticeably 
when referring to another, even corresponding, set. As a consequence, the mixed 
and compatible format, even if referring to the same problem, can be characterized 
by a different smoothness and so they behave differently in practice, when used 
within a numerical solution process. Actually, the compatible format is particularly 
sensitive to what we call extrapolation locking in [20, 15] which can produce a loss 
in convergence when used in path-following analyses, or unacceptable errors in the 
path recovery in the asymptotic case. These inconveniences are easily avoided by 
changing to a mixed format. 
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Fig. 1 – Locking in the Euler case [30]. 
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3.2.3. Objective structural model 

The asymptotic analysis makes great use of information attained from a 
fourth-order expansion of the strain energy and then requires a fourth-order 
accuracy be guaranteed in the structural modeling. Small inaccuracies, deriving 
from geometrical incoherencies in the higher-order terms of the expansion of the 
kinematical laws or in its finite element representation, significantly affect the 
accuracy of the solution and can make it unreliable. Structural models not affected 
by rigid body motions or by changes in observer are then required. This aspect is 
more important with respect to the path-following case where only the first 
variation needs to be correctly evaluated. With this aim the Implicit Corotational 
Method (ICM) [17, 18] has been proposed as a tool to obtain geometrically exact 
nonlinear models for structural elements, such as beams or shells, undergoing finite 
rotations and small strains starting from the solutions for the 3D Cauchy continuum 
used in the corresponding linear modeling. The main idea is to associate a 
corotational frame to each point of the 3D continuum so allowing the motion in the 
neighbor of the point to be split in a pure stretch followed by a pure rotation, 
according to the decomposition theorem. It is possible to show how, using the 
small strain hypothesis and rotation algebra, the linear stress and linear strain fields, 
when viewed in this corotational frame, can provide accurate approximations for the 
Biot nonlinear stress and strain fields. Once the corotational rotation is appropriately 
defined, the local statics and kinematics of the model are recovered from the linear 
solution as a function of the stress/displacement resultants. Stress and strain fields 
are then introduced within a mixed variational principle in order to obtain the 
constitutive laws directly in terms of stress/strain resultants. This completes the 
ICM definition of the nonlinear model. 

The nonlinear model so obtained retains all the details of the 3D linear 
solution, including torsion/shear warping, while its objectivity is ensured implicitly. 
Furthermore, the use of the mixed formulation and the greater accuracy with which 
the ICM recovers the stress field, allows an accurate description of the constitutive 
laws in terms of resultants. ICM does not require any ad-hoc assumption about the 
structural model at hand, nor depends on any particular parametrization of the 
rotation tensor, but actually behaves as a black-box tool able to translate known 
linear models into the corresponding nonlinear ones. Moreover, the direct use of a 
mixed (stress/strain) description provides an automatic and implicitly coherent 
methodology for generating models free of the nonlinear locking effects previously 
discussed, in a format directly suitable for use in FEM implementations. The 
method was applied in [17] to derive 3D beam and plate nonlinear models starting 
from the Saint Venànt rod and Kirchhoff and Mindlin-Reissner plate linear theories, 
respectively.  
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4. NUMERICAL RESULTS 

Some results regarding the analysis of both 3D beams and plates are reported 
and compared with particular reference to accuracy as previously discussed. In the 
monomodal buckling tests, to compare the accuracy with known solutions, the 
following quantities, defining the postcritical tangent and curvature to the bifurcated 
path, have been introduced 

2
1111 0111 0011111

011 011

3 31 , .
2 3

b
b b

B B BA
A A

+ +
= − = −

2λ λ
λ λ b  

The results are compared with known analytical solutions (see [6]) and with 
the ones obtained using the LC (Complete Lagrangian) and LS (Simplified 
Lagrangian) technical plate models (see [15, 22] for a discussion on these models) 
already implemented in the code named KASP. An independent analysis has also 
been made using the commercial code ABAQUS. 

4.1.  THE INFLUENCE OF THE STRUCTURAL MODEL 

The test refers to the Euler beam shown in Fig. 2. The beam is analyzed 
forcing the buckling to have in-plane or out-of-plane components only. Despite its 
simplicity, when analyzed with an asymptotic approach, the problem is taxing with 
regard to the accuracy of the structural model and its FEM discretization [18]. In 
Fig. 2 the values of the buckling loads and post-critical curvatures are compared 
with the values obtained by using the Antman beam model and exact interpolation 
functions [6]. The ICM model recovers the analytical solution for sufficiently fine 
grids exactly. The LC and LS models provide a correct answer for the buckling 
load, but have a different post-buckling behavior in the in-plane or out-of-plane 
analysis: LC agrees perfectly with the exact solution in the in-plane case, whereas 
LS provides the wrong result  / 2,B =λ λ which is eight times greater; conversely, 
LS behaves better in the out-of-plane case, by providing the approximation / 0,B =λ λ  
while LC gives a completely erroneous unstable postbuckling curvature / 0.75.B =λ λ  
The resulting paths in Fig. 3 show a good agreement with those computed by path-
following analyses. 

Table 1 

Out plane  In plane 
 N. elm. LC LS ICM LC LS ICM 2D Beam(*) 

16 9.901 9.901 9.901 9.918 9.918 9.918 
32 9.877 9.877 9.877 9.870 9.870 9.870 λb  
64 9.872 9.872 9.871 9.867 9.870 9.870 

9.870 

16 -0.354 0.020 0.145 0.166 1.03 1.03 
32 -0.375 0.000 0.125 0.126 1.00 1.00 b

2
λ
λb

 
64 -0.375 0.000 0.125 0.125 1.00 1.00 

9.870 
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Fig. 2 – Euler beam: problem description and buckling  

and post-buckling parameters [31]. 

 
Fig. 3 – Euler beam: out-plane and in-plane equilibrium path [31]. 

4.2. TEST WITH NONLINEAR PRECRITICAL BEHAVIOUR 

The test in Fig. 4 is relative to a structure characterized by a highly nonlinear 
pre-critical behavior. The first two buckling loads are equal to 1 4.52=λ  and 

2 7.11,=λ while the limit load is almost an half of the minimum buckling value and 
is evaluated exactly as can be observed by the comparison with the asymptotic and 
path-following (ABAQUS) curve denoted respectively CR4 and SR8. It is worth of 
noting that only the implicit imperfection acts on the structure. 
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Fig. 4 – Hinged cylindrical shell [41]. 

4.3. MULTIMODAL BUCKLING AND ATTRACTIVE PATH 

The first test is the thin-walled beam in Fig. 5 modeled as a plate assemblage.  

 
Fig. 5 – T beam: problem description, buckling modes and equilibrium paths [31, 6]. 

The model is that proposed in [17, 18] on the basis of the ICM and is denoted 
as MP in the results. The results are compared with those of an ABAQUS analysis 
using a path-following approach and of the technical plate models [15]. The greater 
accuracy of the objective structural model is evident in Fig. 5 where the equilibrium 
paths are depicted. 
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Fig. 6 – C-shaped cantilever beam [41]. 

 
Fig. 7 – Geodetic dome: modal interaction between 20 critical modes [8]. 
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