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APPLICATION OF CANONICAL REPRESENTATIONS 
TO RANDOM VIBRATIONS OF MDOF LINEAR SYSTEMS 

FELICIA-EUGENIA NICOREŞTIANU1, ANA-MARIA MITU2 

Abstract. In this paper is presented the canonical representations method for analyzing 
the random vibrations of a multiple degrees of freedom linear system. The general 
method is exemplified in the case of a two degrees of freedom quarter-car model for a 
given covariance function of road induced excitation. 
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1. INTRODUCTION 

The application of the canonical representations method in the study of 
dynamical systems with random excitations is analogous with the function series 
expansion method used for deterministic dynamical systems [1–3]. 

Consider a mechanical linear system with the m  random processes as inputs 
{ } { }0 01( ) ,..., ( ) mx t x t . It is known that the state of the system is described by the r  

outputs random processes { } { }1( ) ,..., ( ) rx t x t . If the m  random processes applied at 
the inputs of the system form a random stationary vector with normal repartition, 
than due to the linearity properties, the movement of the system will be described 
by a random stationary vector with normal repartition, too. 

Denoting by (ω)H  the transfer matrix and by 
0
(ω)xS  the bilateral spectral 

density matrix of the random process { }0 ( )tx  with m inputs and r outputs, one can 
obtain the relations between the first and second order characteristics of the 
excitation and response of a mechanical system with m inputs and r outputs as [4]: 
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and 

 
0

T(ω) (ω) (ω) (ω)=x xS H S H . (2) 

The equation of motion for the linear systems used in vehicle dynamics can 
be written as[4]: 

 
{ } { } { }

{ } { }
T T

T v T v
0 0 0 0

( ) + ( ) + ( ) =

= [ ( ) + ( ) ],

t t t

t t−

M q A CA q A KA q

A C x A K x
 (3) 

where matrix M covers the inertial properties of mechanical systems used in modeling 
the vehicles vibrations and q the vector of generalized coordinates is expressed as: 

 =x Aq , (4) 

using the matrix A of the geometric constraints. The matrices K  and C  are 
embedding the matrices of stiffness and damping coefficients of the suspension and 
tires and 0K , 0C  are embedding the stiffness and damping coefficients of the tires. 

2. APPLICATION OF CANONICAL REPRESENTATION METHOD 
USING THE TRANSFER FUNCTIONS METHOD 

We will use the canonical representations of the excitation and of the 
generalized coordinates of the system respectively: 
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Introducing these expansions in relation (4), and equalizing the coefficients 
of the linear independent functions exp(iω )lt  for the same values of the l one 
obtains the solution: 
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where (ω )l0q xH  is the transfer matrix: 

 
12 T T T T

0 0(ω ) ω + iω + iω +l l l l
−

⎡ ⎤ ⎡ ⎤= − −⎣ ⎦ ⎣ ⎦0q xH M A CA A KA A C A K . (7) 

The input random variables 0
1lX , 0

2lX ,.... 0
mlX  are independent Gaussian 

random variables with zero mean and known dispersions 

 
20 0E = ;  = 1,..., ;  = 1,...,k l k lX D k m l N⎡ ⎤

⎢ ⎥⎣ ⎦
. (8) 

The coefficients 0
k lD  can be considered the coefficients of the canonical 

representations of the covariance functions of the excitation: 
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So that, starting from a set of de realizations of the random process which 
represents the canonical expansion of the system input, one can determine the set 
of realizations of the independent variables k lQ , 1,..., ;  1,...,k m l N= =  from 
relation (6). From relation (5)2 we find the set of realization of the random process 
which is the canonical representation of the system output. 

3. CANONICAL REPRESENTATION METOD FOR TWO DEGREE OF 
FREEDOM QUARTER CAR MODEL 

The equations of motion of the two degree of freedom system used for a 
quarter car model are: 

 s 1 s 1 2 s 1 2

u 2 s 1 2 s 1 2 t 2 0

( ) ( ) 0
( ) ( ) ( ) 0,

m x c x x k x x
m x c x x k x x k x x

+ − + − =
− − − − + − =

 (10) 

where 1x  and 2x  are the vertical displacements of sprung and unsprung masses sm  
and um  measured with respect to their static equilibrium position considered when 
the tire-road contact point is placed on road profile reference axis. 
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Introducing the following notations: 

 s t u
s t s

s u ss s
ω ,  ω ,  ζ ,  η

2
sk k c m

m m mk m
= = = = , (11) 

equations (10) can be rewritten as: 

 
2

1 s s 1 2 s 1 2
2 2 2

2 s s 1 2 s 1 2 t 2 t 0

2ζ ω ( ) ω ( ) 0
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 (12) 

Considering the canonical representations of the random input process 0 ( )x t  
and the output process 1 2( ), ( )x t x t  of the oscillating system described by the 
equations (10), we can write [1], [3]: 

 iω iω iω
0 0 1 1 2 2( ) e ,   ( ) e ,   ( ) en n nt t t

n n n
n n n

x t X x t X x t X
∞ ∞ ∞

=−∞ =−∞ =−∞

= = =∑ ∑ ∑ , (13) 

where 0nX  are independent random variables with zero mean and dispersions 

{ } 0

2 2
0 x 0E n nX D= σ . The random variables 1 2,n nX X  will be determined 

introducing relations (4) in (1) and identifying the coefficients of the same spectral 
components. It is considered that the random process 0 ( )x t  is a Gaussian stationary 
random process in the broad sense with zero mean and the covariance function 

0 0
( )x xc τ . The dispersions 

1 2e e,x xσ σ  of the exact solution are compared with the 

dispersions 
1 2
,x xσ σ  of the approximate solution, obtained by the canonical 

representations method, for different expressions of the covariance function used in 
practice [4]. 

4. QUARTER CAR RESPONSE TO A STATIONARY RANDOM INPUT 
WITH EXPONENTIAL COSINE COVARIANCE FUNCTION 

In this case the covariance function, 
0 0

( )x xc τ , and the one sided spectral 

density, obtained by applying the Fourier transform of 
0 0

( )x xc τ  are: 

 
0 0 0 2 2 2 2
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( ) ( )x x xc e G−α τ ⎡ ⎤ατ = βτ ω = + ω ≥⎢ ⎥π α + ω+β α + ω−β⎣ ⎦

(14) 
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Figure 1 illustrates typical plots of exponential covariance function and its 
one sided spectral density. 

Fig. 1 – Typical plots for the exponential cosine covariance function and its one sided spectral density. 

Considering a unit value for 
0xσ  with the physical dimension of the random 

process 0 ( )x t , it can be written: 
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The coefficients 0nD  are given by: 
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Introducing the canonical representations (13) in equations (12) and identifying 
the coefficients of the same spectral components, yields the following systems of 
linear algebraic equations: 
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By solving these systems one obtains: 
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1 21 0 2 0( ) ,   ( )n x n n n x n nX H X X H X= ω = ω , (18) 

where 
1
( )xH ω  and 

2
( )xH ω  are the frequency response functions of system outputs 

1( )x t  and 2 ( )x t , corresponding to the system input 0 ( )x t : 
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Figure 2 shows the amplification factors of absolute displacements 
1 2( ), ( )x t x t  for a set of typical values of vehicle suspension parameters: 

 s t s2 rad s,  20 rad s,  0.25,  10ω = π ω = π ζ = η = . (20) 

The discret components of the output one sided spectral densities can be 
calculated for canonical representations of system output (13), by using the 
estimates [5,6]: 
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The exact one sided spectral densities of system output are given by: 
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Fig. 2 – Amplification factor of: a) sprung mass; b) amplification factor of unsprung mass. 
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The mean square values of approximate solution are: 
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The mean square values of the exact solution are given by: 
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Introducing the notations: 
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the relations (23) become: 
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where 
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The exact solutions (25) are: 
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The value of T  can be taken of the form tT N= ω , and writing: 
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one obtains: 
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and 
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5. NUMERICAL RESULTS 

Taking for example the values from (18), the normalized values 
k 0

* 2
nx xG σ  

values from (21), obtained by canonical representations, can be plotted 
comparatively with the exact normalized spectral densities ( )

0

2
kx xG ω σ , 

calculated for the same parameter values (Fig. 3). 
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Fig. 3 – Spectral densities for the covariance function exponential-cosine. 
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The graphics of the relative errors 
k k kr e e , 1, 2x x xe k= σ − σ σ =  for 

different values of the damping coefficient sζ  are given in Fig. 4. 
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Fig. 4 – The relative errors of the response displacements dispersions. 

6. CONCLUSIONS 

The results obtained in this paper demonstrate the applicability of canonical 
representations method to analysis of linear random vibrations. 

The canonical representations of the relative displacements of a quarter car 
model allow the assessment of optimum suspension damping with respect to a 
trade-off between comfort and road- holding criteria formulated in terms of sprung 
mass acceleration and dynamic road-tire contact force [4]. 
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