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DD3IMP, 3D FULLY IMPLICIT FINITE ELEMENT SOLVER: 
IMPLEMENTATION OF CB2001 YIELD CRITERION 

P.D. BARROS1, D.M. NETO1, J.L. ALVES2, M.C. OLIVEIRA1, L.F. MENEZES1***†* 

Abstract. The strategies and algorithms adopted in the fully implicit FE solver 
DD3IMP to model the orthotropic behavior of metallic sheets, as well the procedure 
for parameters’ identification, are the main focus of this work; a special and detailed 
emphasis will be given to the numerical implementation of the Cazacu and Barlat 
(2001) yield criterion. The usage and application of the aforesaid solver and yield 
criterion will be exemplified with the deep drawing of a cylindrical cup, an example 
typically adopted to study the effect of the material’s orthotropy in forming 
operations. Two materials with distinct anisotropic behaviors are considered, namely: 
the AA5042 aluminum alloy and the AKDQ steel. The material parameters are 
identified from experimental data taking into account both flow stresses and r-values. 
The analysis of the results indicates that a good description of the anisotropy of both 
flow stresses and r-values are important to the overall accuracy of the predicted earing 
profile. However, either the global process history or the process parameters may 
influence the earing prediction, particularly the contact interactions with the flange 
during the forming process. 

Key words: DD3IMP, implicit time integration, sheet metal forming, elastoplasticity, 
orthotropy, CB2001 yield criterion. 

1. INTRODUCTION 

Nowadays, the virtual try-out of sheet metal forming components has become 
an indispensable tool for the automotive industry, providing a strong reduction of 
development times. The process parameters optimization can be performed by a 
computer system in a virtual environment, replacing the expensive trial-and-error 
procedures by numerical ones [1]. Despite recent developments in the numerical 
tools, the finite element analysis of sheet metal forming processes still represents a 
challenge from the computational and modelling point of view; the problem is 
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highly nonlinear due to the large deformations (geometry), the elastoplastic 
behavior (material) and the occurrence of frictional contact between the blank and 
the forming tools. Therefore, effective and robust finite element algorithms are 
required to provide accurate predictions when dealing with such complex industrial 
problems. 

The time integration scheme used in the problem formulation dictates the 
efficiency and robustness of numerical simulations [2]. The dynamic explicit and 
the static implicit procedures are the two main formulations currently adopted [3]. 
Historically, the sheet metal forming analysis has been mainly carried out using 
explicit time integration schemes, which do not require an iterative procedure in 
each time increment, and thus avoiding convergence problems. Nevertheless, this 
method is only conditionally stable, requiring extremely small time steps (smaller 
than a critical time step) to guarantee the stability of the numerical solution. Thus, 
for quasi-static processes like typical sheet metal forming operations, when using 
dynamic explicit schemes it is necessary to resort to artificial strategies such as 
higher tool velocities to artificially increase the time step and achieve admissible 
computational times. Besides, in opposition to the static implicit schemes, the 
explicit procedures do not check equilibrium requirements at the end of each time 
increment [4]. Therefore, particularly when analyzing the influence of constitutive 
models in the numerical results accuracy, it is consensual that implicit time 
integration schemes lead to more accurate results (see e.g. [5]). 

The elastoplastic behavior of the metallic sheet, namely the anisotropy and 
the work-hardening, are usually described by phenomenological constitutive 
models, which have a strong impact in the numerical solutions [6]. The material’s 
orthotropic behavior is modelled by the yield surface, used to describe the yielding 
and the plastic flow of the material: this dual role of the yield surface requires a 
particular care and accuracy in its modeling and numerical implementation. Also, 
due to the increasingly advanced materials, the yield surface modeling has become 
more complex, relying on an increasing number of material parameters. However, 
some authors point out that although they are capable of a more accurate 
description of the in-plane directional (uniaxial) properties, they may predict 
sensibly different plastic properties for neighboring stress states. 

The aim of this work is to present the algorithm adopted in the 
implementation of the non-quadratic yield criterion proposed by Cazacu and Barlat 
(2001) [7] in the implicit in-house code DD3IMP, and the strategies for parameters 
identification. The case study selected for analysis is a cylindrical cup deep 
drawing, since it is one of the typical forming operations in which the effect of the 
material’s orthotropic behavior is more pronounced. Since the numerical results are 
also influenced by other numerical aspects, such as the finite elements adopted and 
the algorithm for contact with friction treatment, a brief description of the state 
update algorithm of DD3IMP is presented in the next section. 
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2. DD3IMP FINITE ELEMENT SOLVER 

A brief description of the mechanical model and numerical methods currently 
implemented in the FE solver DD3IMP, which has been continuously developed 
and optimized to simulate sheet metal forming processes [8,  9], is given in this 
section. The evolution of the deformation process is described by an updated 
Lagrangian scheme. The mechanical model takes into account the large elastoplastic 
deformations and rotations of the deformable body (metallic sheet). Besides, the 
hypothesis of small elastic strains is adopted, assuming that the elastic strains are 
negligibly small with respect to unity. The forming tools are assumed as rigid bodies, 
while the frictional contact between the sheet and the tools is described by the 
Coulomb’s classical law. The augmented Lagrangian approach proposed by Alart 
and Curnier [10] is used to regularize the constraints arising from the frictional 
contact conditions. Both nodal displacements and contact forces are involved in the 
resulting system of nonlinear equations, leading to a mixed formulation. A fully 
implicit Newton–Raphson method is adopted to solve, in a single iterative loop, all 
problem nonlinearities (geometry, material and contact) [8]. 

In order to improve the convergence rate of the numerical simulation, each 
time increment is divided into two steps: (i) the Predictor step, which determines 
the explicit trial solution, and (ii) the Corrector step, where this solution is 
iteratively corrected by an implicit method. Since the quality of the trial solution 
provided by the Predictor step is determinant for the convergence of the iterative 
process, a rmin strategy is employed to impose several restrictions and optimize the 
time step size [11]. Then, the equilibrium state of the deformable body is satisfied 
in each time step using the Newton-Raphson algorithm, which exhibits quadratic 
convergence in the vicinity of the solution (equilibrium). 

The forming tools are modelled with Nagata patches [12], which result from 
the surface smoothing procedure applied to a coarse mesh [13]. The blank sheet is 
discretized with 3D solid finite elements, allowing an accurate evaluation of the 
contact forces and the stress gradients through the thickness [14]. Since the equilibrium 
conditions are checked in each time step, the use of solid elements is more CPU 
time consuming. Therefore, some high performance computing techniques have been 
incorporated, such as OpenMP directives, in the most time consuming branches of 
the code [15]. 

The elastoplastic constitutive model adopted considers isotropic elasticity and 
anisotropic plasticity. The elastic regime is described by the generalized Hooke law, 
while the plastic behavior of the material is modelled by: (i) an associated flow 
rule; (ii) a yield criterion and (iii) a work-hardening law. Several yield criteria are 
currently implemented, namely: (i) Hill’48 [16]; (ii) Barlat’91 [17]; (iii) Drucker 
[18]; (iv) Karafillis & Boyce’93 [19]; (v) Cazacu & Barlat’01 [7] and Cazacu, 
Plunkett & Barlat’06 [20]. Concerning the work-hardening law, which describes 
the evolution of the yield surface with the plastic work, various laws are available: 
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(i) pure isotropic hardening by means of a power law (Swift) or a Voce type 
saturation law; (ii) the combination of these two laws with a linear (Prager type) or 
non-linear kinematic hardening law proposed by Lemaître and Chaboche [21]; and 
(iii) the microstructural hardening model proposed by Teodosiu and Hu [22]. 

2.1. THE CONSTITUTIVE MODEL 

The differential form of the elastoplastic behavior law is, in its general form, 

 J ep :=σ C D , (1) 

where Jσ  is the Jaumann derivative of the Cauchy stress tensor σ, given by 

 J = + −σ σ σW Wσ , (2) 

where σ  stands for the time derivative of the Cauchy stress tensor and W is the 
total spin tensor defined by 

 T=W RR , (3) 

with R being the orthogonal elastic rotation tensor. D is the strain rate tensor and 
epC  is a fourth-order tensor corresponding to the elastoplastic module. This tensor 

depends of the algorithms adopted in the integration of the constitutive model and 
the type of relation considered between the states at the beginning and at the end of 
the loading increment. Thus, it is possible to consider the tangent elastoplastic 
modulus or the consistent elastoplastic modulus. The tangent elastoplastic modulus 
can be defined as [23] 

 ep e
0tangent

f= − α ⊗C C V V , (4) 

where 0α =  if the material is in an elastic state, or during elastic unloading; and 
1α =  if the material is in an elastoplastic loading state. 0f  is a function of the 

isotropic and kinematic hardening law adopted. Although the example considered 
in this work does not include kinematic hardening, in order to keep the back-stress 
tensor in the equations, the Prager’s kinematic law, pk=X D , is considered, with 
the single parameter k .  Therefore, 0f  can be written in the general form 

 
( )

2

0
4

2 :
f

k H
μ

=
′+ μ +V V
, (5) 

where μ is the Lamé parameter. V is one of the tensorial quantities to be 
determined as function of the adopted yield criterion, and it is, by definition 
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( )

∂σ
=

′∂ −
V

σ X
, (6) 

where σ  is the equivalent stress given by the yield criterion, ′σ  the deviatoric 
Cauchy stress tensor, and X the deviatoric and symmetric second-order back-stress 
tensor. 

The strain rate can be decomposed into elastic and plastic parts as 

 e p= +D D D , (7) 

where pD , the plastic strain rate tensor, is a deviatoric tensor, given by the 
associated inviscid flow rule as 

 
( )

p ∂
= λ = λ

′∂ −
D V

σ X
F , (8) 

in which λ  is the plastic multiplier and F  is the plastic potential, identified as a 
scalar function defining the elastic limit surface, such that 

 ( ), 0Y Yσ = σ − =F , (9) 

where Y is the flow stress, modelled by the isotropic work-hardening law. From 
this definition, the consistency condition in rate form states that 

 ( ) p, 0Y H ′σ = σ − ε =F , (10) 

where 

 pH Y′ = ∂ ∂ε  (11) 

is the isotropic hardening modulus, and, if the yield function is a homogeneous 
function of degree one, one has that pε = λ . σ  and pε  are, respectively, the time 
derivatives of the equivalent stress and of the equivalent plastic strain. The total 
equivalent plastic strain is defined as 

 ( ) p
p

0

:
d

t
t

′ −
ε =

σ∫
σ X D

. (12) 

2.2. TIME INTEGRATION 

Since the elastic behavior is considered isotropic, the hypoelastic form of the 
Hooke’s law can be written as [23] 

 ( )e p:= −σ C D D  (13) 
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which, by integration, corresponds to the stress increment in [ ],t t t+ Δ , i.e. 

 e e p
F 0 : :− = Δ − Δσ σ C ε C ε  (14) 

with subscripts 0 and F denoting the quantities at the beginning and at the end of 
the time increment [ ],t t t+ Δ , respectively. pΔε  and Δε  are the increments of the 
plastic and total strain tensors, respectively, determined over the time increment. 
Applying the generalized middle point rule to determine the pD  evolution, and  
since p λ=D V , it can be written 

 p λ γΔ = Δε V , (15) 

with 

 ( ) 0 F1γ = − γ + γV V V   and  [ ]0, 1γ ∈ . (16) 

To calculate λΔ  and FV  it is necessary to determine ( )F F′ −σ X . Fσ  is calculated 
from Eq. 14, leading to deviatoric and hydrostatic components given by, 
respectively, 

 F 0 F2 ε 2 λG G′ ′ ′= + Δ − Δσ σ V    and (17) 

 ( ) ( ) ( )F 0tr tr tr
1 2

E′= +
+ υ

σ σ Δε . (18) 

G and E are the shear and Young’s modulus, while υ is the Poisson’s ratio. In order 
to determine both ( )F F′ −σ X  and pε λΔ = Δ , the consistency condition at the end 
of the time step is imposed, i.e., 

 ( ) ( )0 0p p
F FY′σ − − ε + Δε =σ X . (19) 

This allows to define the non-linear system of equations to be solved in the state 
update algorithm, with unknowns ( )F F′ −σ X  and pεΔ , i.e., 

 ( )p
F F , ε

0g
⎡ ⎤ ⎡ ⎤′ − Δ = =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

0
σ X

G
Q . (20) 

Assuming that the Prager’s kinematic law is considered, the system of equations 
defined in Eq. 20 can be re-written as  

 
( ) ( ) ( )

( ) ( )
p

F F 0 0 F
p p

F F F 0

2 ε 2 ε

0ε ε

G k G

Y

⎡ ⎤′ ′ ′− − − − Δ − + Δ ⎡ ⎤⎢ ⎥ = ⎢ ⎥⎢ ⎥′σ − − − Δ ⎣ ⎦⎣ ⎦

σ X σ X V 0
σ X

. (21) 
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The updated state variables are determined solving the non-linear system of 
equations Eq. 21 using the Newton-Raphson method. The calculation of Q  and 

∂ ∂ςQ  (with p
F F , ε⎡ ⎤′= − Δ⎣ ⎦ς σ X ) depends on the adopted yield criterion: the 

following matrix quantities must be analytically determined: 

 
[ ] [ ]
[ ] d

⎡ ⎤∂
= ⎢ ⎥∂ ⎣ ⎦

A c
bς

Q , (22) 

where 

 
( )F F

∂
=

′∂ −
A

σ X
Q ,  

( )F F

g∂
=

′∂ −
b

σ X
,  

( )pε
∂

=
∂ Δ

c G ,  
( )pε

gd ∂
=

∂ Δ
. (23) 

In the case of Prager’s kinematic hardening law, these expression can be written as: 

 ( ) p
4 F2 εk G= + + ΔA I Q ,  F=c V , (24) 

 F=b V ,  Fd H ′= − , 

where  

( )F
F F

∂σ
=

′∂ −
V

σ X
,  

( )

2

F 2
F F

∂ σ
=

′∂ −
Q

σ X
  and  p

FH Y′ = ∂ ∂ε . (25) 

The tensor Q corresponds to the second order derivative of the yield criterion with 
respect to the effective stress state ′= −Σ σ X , being used both in the state update 
algorithm and on the definition of the consistent elastoplastic modulus, 

 ( )ep e 2 pF F
F

F
4 1G

H
⎛ ⎞⊗

= − − β + Δε⎜ ⎟′⎝ ⎠

V VC C Q Λ , (26) 

where Λ also depends on the kinematic hardening law adopted. In case of Prager’s 
kinematic hardening law it can be written as 

 ( )1 pF F
4 F

F
2k

H
− ⎡ ⎤⎛ ⎞⊗

= + + μ + Δε⎢ ⎥⎜ ⎟′⎢ ⎥⎝ ⎠⎣ ⎦

V VΛ I Q . (27) 

Since the strain increment can be either elastic or plastic, parameter β  and ( )1− β  

is introduced in Eq. 26 to separate, respectively, the elastic and plastic parts of the 
total strain increment. 
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2.3. CAZACU AND BARLAT YIELD CRITERION 

The Cazacu and Barlat (2001) [7] yield criterion is a generalization of the 
Drucker’s isotropic criterion to orthotropy, and, in its general form, is given by:  

 ( ) ( )
1

3 2 60 0
2 327 J c J⎧ ⎫⎡ ⎤σ = −⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭

, (28) 

where 0
2J  and 0

3J  are the second and third generalized invariants of the effective 
stress tensor Σ, defined as  

 
0 2 2 231 2
2 11 22 11 33 11 33

2 2 2
4 12 5 13 6 23

( ) ( ) ( )6 6 6
       

aa aJ

a a a

= Σ − Σ + Σ − Σ + Σ − Σ

+ Σ + Σ + Σ
, (29) 

 

( ) ( ) ( ) ( )
( ) ( )
( )( ) ( )( )
( ) ( ) ( )
( ) ( )

( ) ( )

( )

0 3 3
3 1 2 11 3 4 22

3
1 4 2 3 33

2 2
1 22 2 33 11 3 33 4 11 22

2
1 2 4 11 1 3 4 22 33

1 4 11 22 33

2
13 9 22 8 33 9 8 11

2
12 10 33 5 22

1 27 1 27

 1 27 2

 1 9 1 9

 1 9

 2 9

 3 2 2

 3 2 2

J b b b b

b b b b

b b b b

b b b b b b

b b

b b b b

b b b

= + Σ + + Σ

+ + − − Σ⎡ ⎤⎣ ⎦

− Σ + Σ Σ − Σ + Σ Σ

− − + Σ + − + Σ Σ⎡ ⎤⎣ ⎦
+ + Σ Σ Σ

− Σ Σ − Σ − − Σ⎡ ⎤⎣ ⎦

− Σ Σ − Σ − ( )

( ) ( )
10 5 11

2
23 6 7 11 6 22 7 33 11 12 23 133 2 ,

b

b b b b b

− Σ⎡ ⎤⎣ ⎦

− Σ − Σ − Σ − Σ + Σ Σ Σ⎡ ⎤⎣ ⎦

 (30) 

where c, 1 6,...,a a  and 1 11,...,b b  are the anisotropy parameters. ,  , 1,2,3ij i jΣ =  are 

the effective stress components defined in the material frame. For metal sheets, 
parameters 5 6,  a a  and kb  ( )6,7,8,9,11k =  cannot be evaluated, thus the 
corresponding commonly isotropic values are adopted, i.e. 1.0. Although the 
anisotropy parameters reduce from 18 to 11, this yield function is flexible enough 
to enable the accurate description of the in-plane anisotropy of both r-value and 
flow stresses (or yield stresses). 

The analytical expressions for the tensorial quantities V and Q, previously 
introduced in Eq. 24, are detailed in Appendix A in case of CB2001 yield criterion, 
along with the definition of the scalar quantity β (see Eq. 26). 
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3. DEEP DRAWING AND IRONING OF A CYLINDRICAL CUP 

The deep-drawing of an axisymmetric cylindrical cup, benchmark proposed 
in the framework of Numisheet 2011 conference [24], was the example selected in 
this work to highlight the overall performance and capabilities of DD3IMP. This 
example encompasses two forming stages: (i) deep-drawing and (ii) ironing of the 
cylindrical cup. The geometry of the forming tools for both operations is shown in 
Fig. 1 (a). The specific geometry of the die allows to perform both the drawing and 
the ironing operations within one punch stroke. Therefore, the process is modeled 
considering three phases: (i) closing of the blank-holder until attain a prescribed 
force of 8.9 kN; (ii) punch displacement of 72.1 mm and (iii) springback. Due to 
geometrical and material symmetries, only one quarter of the global structure is 
modeled. The radius of the blank sheet is 38.062 mm for both materials (AA5042 
aluminum alloy and AKDQ steel). The initial thickness of the blank is 0.208 mm 
for the AA5042 aluminum and 0.229 mm for the AKDQ steel. The blank sheet was 
discretized with 8-node hexahedral finite elements, combined with a selective 
reduced integration technique [25]. The use of solid finite elements is particularly 
important to simulate the ironing phase, due to double sided contact.  
Fig. 1 (b) presents the in-plane finite element mesh considered in the analysis. This 
mesh was built considering two layers of elements through thickness, leading to a 
total of 8464 finite elements [26]. The friction coefficient between the blank and 
the (rigid) forming tools is considered as μ=0.05, according with the benchmark 
description [24]. All simulations were carried out in a single multi-core CPU 
workstation: Intel® Core™ i7-2600K (3.4 GHz) CPU and the Windows7 
Professional (64-bits platform) operating system. 

The materials’ mechanical behavior is assumed isotropic in the elastic 
regime, being described by the Young’s modulus, E, and the Poisson ratio, υ. The 
plastic behavior is described using an isotropic work hardening Voce type law, 

 ( )p p
0 sat 0 Y( ) 1 exp( )Y Y Y Y C⎡ ⎤ε = + − − − ε⎣ ⎦ , (31) 

where 0Y , satY  and YC  are material parameters. The parameters assumed for the 
isotropic work hardening law adopted for both materials correspond to the ones 
identified by the benchmark committee for the tensile test performed along the 
rolling direction (Table 1). 

Besides the CB2001 yield criterion, also the well-known Hill’48 yield 
criterion was considered and used as reference for comparison purposes and 
analysis. In this case, the equivalent stress is defined as 

 
2 2 2 2

22 33 33 11 11 22
2 2 2

23 13 12

( ) ( ) ( )

       2 2 2 ,

F G H

L M N

σ = Σ − Σ + Σ − Σ + Σ − Σ

+ Σ + Σ + Σ
 (32) 
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where F, G, H, L, M and N are the anisotropy parameters. For thin metallic sheets, 
it is not possible to determine parameters L and M. Therefore, the values considered for 
these parameters are the ones corresponding to the isotropic case, i.e. 1.5. 

   x

y

 
(a) (b) 

Fig. 1 – Forming tools and blank geometry: a) main dimensions; b) in-plane blank sheet discretization. 

Table 1 

Elastic and work hardening properties for both materials 

  AA5042 AKDQ 
E [GPa] 68.9 210.0 

Elastic properties 
υ 0.33 0.30 

Y0  [MPa] 267.80 297.79 

satY  [MPa] 375.08 471.76 Voce law 

YC  17.859 15.889 

The anisotropy parameters for both yield criteria were determined using the 
DD3MAT in-house code [27], taking into account the experimental data reported 
by the benchmark committee for uniaxial tensile, equi-biaxial tension and the disc 
compression tests [24]. In DD3MAT, the identification procedure adopted is based 
on the minimization of an error function that evaluates the differences between the 
estimated values and the experimental ones, as follows 

 
( ) ( )( ) ( )( )

( )( ) ( )( )

T

90 902 2T T

0 0
2 2

1 1

 1 1
b b

r

b b r b b

F w w r r

w w r r

θθ
θ θ θ θσ

θ= θ=

σ

= σ σ − + −

+ σ σ − + −

∑ ∑A A A

A A

, (33) 
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where A represents the set of parameters associated with the selected yield 
criterion, T

θσ  and rθ are the experimental yield stresses in tension and r-values, 
respectively, obtained from the uniaxial tensile tests for a specific orientation ( )θ  
with respect to the rolling direction (RD). σb is the experimental yield stress 
obtained from the equibiaxial tensile test, rb is the experimental r-value obtained 
from the disc compression test, and ( )T

θσ A , ( )rθ A , ( )bσ A  and ( )br A  are the 
correspondent values predicted from the adopted yield criterion. Such procedure 
can be considered a generalization of the one proposed by Banabic et al., 2005 
[28], where the weighting factors, Tw

θσ , rw
θ

, 
b

wσ  and 
brw  are used to balance the 

influence of the experimental data. Nevertheless, the selection of the weighting 
factors is normally a manual procedure, strongly dependent on users’ expertise and 
knowledge. In this study, all the weighting factors are considered equal to 1.0. 

The parameters identification procedure takes into account, for both yield 
criteria, the yield stresses and r-values for 7 orientations to RD, the rb value and 
the biaxial yield stress, σb (a total of 16 values). This results in an over constrained 
problem for both yield criteria, since the Hill’48 has only 4 parameters to be 
identified and CB2001 has 11. Nevertheless, recent studies indicate that the 
accurate prediction of the earing profile requires an accurate fit of the in-plane r-
values anisotropy, but also of the yield stresses. Moreover, rather than capture 
values for specific orientations, it seems to be more relevant to be able to describe 
the trend of the anisotropy of the in-plane yield stresses [29]. For each orientation 
to the rolling direction ] [0 ,90iθ ∈ ° ° , two auxiliary vectors are defined: 

 
1 1

1 1exp
exp expi

i i

i i

+ −

+ −
θ

θ θ

θ − θ⎧ ⎫⎪ ⎪= ⎨ ⎬σ − σ⎪ ⎪⎩ ⎭
v   and  

1 1

1 1
i

i i

i i

+ −

+ −
θ

θ θ

θ − θ⎧ ⎫⎪ ⎪= ⎨ ⎬σ − σ⎪ ⎪⎩ ⎭
v , (34) 

using the experimental and the numerical yield stress values, respectively. This 
enables the evaluation of the trend error for each angle θi , using the dot product 
between both vectors (i.e. the trend is the same for a value of exp

ii θθ ⋅v v  equal to 

1.0). In order to integrate the two objectives in the optimization problem, a new 
objective function was added to the one defined in Eq. 33, in order to avoid the use 
of multi-objective optimization algorithms. The new objective function adds the 
difference in the yield stress trend, between two consecutive orientations, being 
defined as: 

 ( ) ( )
exp90

trend trend exp
0

1 ii

ii

F F w θθ

θ= θθ

⎛ ⎞⎛ ⎞⋅⎜ ⎟⎜ ⎟= + −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑

v v
A A

v v
. (35) 
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trendw  corresponds to the weight given to the function that tries to improve the 
correlation between the experimental and the predicted trend for the in-plane yield 
stresses directionalities. As for the weight used in function F(A), the selection of 
this weighting factor is also a manual procedure. Another comment should be 
added concerning the fact that the conditions that guarantee the convexity of 
CB2001 are unknown. Therefore, following Soare et al. [30], the minimization 
process adopted for this yield criterion includes testing the convexity of the yield 
surface, for several planes in the stress space [31]. The algorithm implemented in 
DD3MAT to minimize the cost function is based on a downhill simplex method. 

Table 2 presents a summary of the parameters determined for both yield 
criteria and both materials, using the optimization procedure previously described. 

trendw  was considered null except in case of the identification of the aluminum 
alloy and CB2001 yield criterion. Besides, the Hill’48 yield criterion is not flexible 
enough to enable an accurate description of the anisotropy of both r-values and 
yield stresses. Moreover, the inclusion of the new objective functions tends to 
penalize the accuracy of the r-values anisotropy. 

Table 2 

Identified parameters for both materials (AA5042 and AKDQ) and yield criteria 
(Hill’48 and CB2001) 

  AA5042 AKDQ 
F 0.2457 0.4028 
G 0.9553 0.4261 
H 0.2704 0.4730 
N 1.6459 1.3951 

Hill’48 

L = M  1.5000 1.5000 
a1 0.9425 1.0462 
a2 0.6986 0.9568 
a3 1.0778 0.9681 
a4 0.9792 1.0599 
b1 6.0000 1.1731 
b2 −0.3273 1.1183 
b3 2.8941 1.1681 
b4 −2.5143 1.0252 

b5 −2.4348 0.8815 
b10 1.2299 1.0622 

CB2001 

c 0.2397 1.6209 
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Fig. 2 – Experimental and predicted: a) r-values; b) yield stresses for AKDQ. 
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Fig. 3 – Experimental and predicted: a) r-values; b) yield stresses for AA5042. 

Figures 2 and 3 present the comparison between the numerical and 
experimental r-values and the normalized yield stresses, for the AKDQ steel and 
AA5042 aluminum, respectively. The tensile yield stresses are normalized with the 
yield stress predicted by the hardening law, i.e. Y0, which is different from the 
value reported for T

0σ  (see [24]). The AKDQ steel presents an almost isotropic 
distribution of the in-plane r-values and yield stresses. The CB2001 yield criterion, 
as expected, allows a better description of both yield stress directionalities and r-values. 
The AA5042 aluminum alloy presents a strong anisotropy of the r-values, while 
being almost isotropic in the tensile yield stresses. Therefore, the Hill’48 only 
captures the proper trend for the r-values. The CB2001 yield criterion allows the 
description of the anisotropy of both yield stresses and r-values. 

The yield surfaces predicted for the AKDQ steel and the AA5042 aluminum 
for the plane 11 22,σ σ , with 33 0σ = , are presented in Fig. 4a and b, respectively. 



 P.D. Barros, D.M. Neto, J.L. Alves, M.C. Oliveira, L.F. Menezes 14 118 

Since the AKDQ is quite isotropic, as expected the yield surfaces are very similar, 
and the points related with the yield stress in RD, transverse direction (TD) and the 
biaxial one are very close for both yield criteria. On the contrary, for the AA5042, 
the yield surfaces predicted by both yield criteria are completely different. 
Moreover, the CB2001 yield surface exhibits sharper corners, for both materials. 
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Fig. 4 – Predicted yield surfaces in the σ11,σ22 plane for: a) AKDQ; b) AA5042. 

4. RESULTS AND DISCUSSION 

The r-values and yield stresses directionalities (the anisotropy) are the input 
parameters for the phenomenological constitutive models, and are directly linked 
with the earing phenomenon. In fact, it has been stated that a good prediction of 
such material directionalities controls the overall behavior of the earing profile. 
Based on these results, Yoon et al. 2011 [29] proposed an analytical function to 
estimate the cup height directionality, 

 ( ) 90 90cup
0

90

1
1

A Ab
c

RH t r d B
A d

θ+ θ+
θ

θ+

⎛ ⎞θ = + + −⎜ ⎟+ ⎝ ⎠
, (36) 

where t0 is the initial blank thickness, Rb is the blank radius and rc is the radius of 
the cup defined by the punch fillet radius. The r-value and the yield stress 
directionalities influence is dictated by 

 90
90

901
r

A
r

θ+
θ+

θ+
=

+
  and  ref

TB
′β

θ
θ

⎛ ⎞σ
= ⎜ ⎟⎜ ⎟σ⎝ ⎠

, (37) 
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respectively. As shown in Fig. 5, the behavior of the rim in the direction defined by 
θ (to the RD) is controlled by the material compression properties in the direction 
defined by θ+90. Assuming that the uniaxial tension and compression lead to 
identical r-values, these can be expressed as a function of the plastic strains at the 
rim 

 90
r r

t r
rθ+

θ

ε ε
= = −

ε ε + ε
, (38) 

were subscripts r, θ and t correspond to the radial, circumferential and thickness 
directions, respectively. Based on Fig. 5, it is also assumed that the radial tensile 
traction can be modelled from the yield stress directionality T

θσ , such that 

 ( )
2 T

ref T T T T T T T0
0 15 30 45 60 75 90

d 1 2
2 12

π
θσ θ

⎡ ⎤σ = = σ + σ + σ + σ + σ + σ + σ⎣ ⎦π
∫ , (39) 

for an orthotropic material, for which data is known for every 15°. The deceleration 
β′ factor is introduced to take into account the variation of the stress mode along 
the flange, as shown in Fig. 5, i.e. β′=1 corresponds to the assumption that the 
stress mode at the inner most flange is applied to the entire flange; β′=0.5 
corresponds to a linear distribution of the radial tensile stress; the recommended 
value is 0.5 β 1′≤ ≤ . Finally, d corresponds to the ratio between the blank radius Rb 
and the cup radius Rc . 
 

0tσ σ=
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Fig. 5 – Deformation of an element on the flange: a) stress states on the flange;  
b) stress states on the yield surface (adapted from Yoon et al. 2011 [29]). 
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The numerical, experimental and analytical predictions of the cup height at 
the end of the deep drawing stage are compared in Fig. 6, for both materials. The 
analytical height was estimated based on the r-value and yield stress 
directionalities predicted using the CB2001 yield criterion, since it allows a better 
correlation with the experimental values (see Fig. 2 and Fig. 3). Globally, the cup 
height is relatively well predicted by either the analytical function or the numerical 
simulations. However, the number of ears and their peak-to-peak amplitude differs. 
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Fig. 6 – Experimental, numerical and analytical predictions of the cup height after deep drawing:     
a) AKDQ; b) AA5042. 

In order to try to understand the differences in the predictions, the stress and 
strain states evolutions were analyzed for points located in the outermost flange, at 
every 15° with RD. Figure 7 presents the evolution of the ratio between the plastic 
strain along the radial and the thickness direction, estimated from the numerical 
results, and the r-values estimated with the CB2001 for each angle with RD, for 
both materials. The results presented correspond to the simulations performed with 
the CB2001, until a maximum value of the punch stroke of 20 mm, corresponding 
approximately to the instant at which the blank holder loses the contact with the 
blank. In case of AKDQ, the estimated r tε ε  values are always higher than the 

rθ+90 predicted by the CB2001. However, for the AA5042, there is a correlation 
between the r tε ε  and the rθ+90, except for θ=60° and θ=75°. These different 
behaviors of the outer most flange can be explained based on the stress component 
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in the thickness direction, as shown in Fig. 8. For the AKDQ the blank-holder force 
is distributed more or less evenly in the entire flange, due to the almost isotropic 
behavior. Thus, for each in-plane direction, the stress component in the thickness 
direction is nonzero, and tends to increase with the punch displacement as a result 
of the decrease of the flange area. In case of AA5042, the blank-holder force is 
unevenly distributed, leading to null values except for θ=60°, θ=75° and θ=90°. 
These results indicate the influence of nonzero stress components in the thickness 
direction, modifying the shear stress state assumed by Yoon et al. [29] in their 
analytical formulation. 
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Fig. 7 – Evolution, with the punch displacement, of r tε ε  and  r-values estimated 
with the CB2001, for each angle with RD: a) AKDQ; b) AA5042. 
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Fig. 8 – Evolution of the stress component in the thickness direction as function  
of the punch displacement, for several angles with RD: a) AKDQ; b) AA5042. 

The numerical simulation of the deep drawing of the cylindrical cup was also 
performed considering a constant gap between the blank-holder and the die (0.27 
mm), for the AA5042 using the CB2001. In this condition, the stress component in 
the thickness direction remains always close to zero for all directions, until a punch 
displacement of approximately 14.0 mm (see Fig. 9b). Therefore, the estimated 

r tε ε  values are always close to the 90rθ+  values predicted by the CB2001, as 

shown in Fig. 9a. However, the stress directionalities can have more impact than 
the r-values in the estimative of the cup height and ears profile [29]. Therefore, 
Fig. 10 presents the evolution of the ratio between the circumferential stress and 
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the flow stress, estimated from the numerical results, and the ratio between the 
yield stress estimated with the CB2001 and Y0, for each angle with RD. Also in this 
case the estimated Yθσ  values are always close to the 90 0Yθ+σ  values predicted 

by the CB2001, for the simulation performed with a constant gap between the 
blank holder and the die (see in Fig. 10b).  

0.0

0.6

1.2

1.8

0 5 10 15 20
Punch displacement [mm]

0º RD
15º RD
30º RD
45º RD
60º RD
75º RD
90º RD

 o
r 

r
t

r θ
ε

ε

 
(a) 

-250

-200

-150

-100

-50

0

50

0 5 10 15 20

σ t
[M

Pa
]

Punch displacement [mm]

0º RD
15º RD
30º RD
45º RD
60º RD
75º RD
90º RD

RD

 
(b) 

Fig. 9 – Numerical simulation of AA5042 considering a fixed position of the blank-holder:  
evolution with the punch displacement of: a) r tε ε  and  r-values estimated  

with the CB2001, for each angle with RD; b) the stress component  
in the thickness direction, for each angle with RD. 
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Fig. 10 – Evolution with the punch displacement of Yσθ  and ratio between the yield stress 

estimated with the CB2001 and Y0, for each angle with RD. Numerical simulation of AA5042 
considering: a) a constant blank holder force; b) a fixed position of the blank-holder. 

For a constant blank holder force, there is a correlation between the Yθσ  
and the 90 0Yθ+σ , except for 60ºθ ≥  (see in Fig. 10a). Consequently, the 
numerically predicted cup height becomes closer to the analytical one when using 
the fixed gap (labelled CB2001F), as shown in Fig. 11a. The comparison between 
both numerical results shows that the higher differences occur for 60ºθ ≥ , which 
corresponds to zone of the flange with compressive stresses in the thickness 
direction (see Fig. 8b. Yoon and Cazacu [32] reported a similar trend with the 
friction coefficient change, i.e. the decrease of this value lead to a smaller cup 
height mainly for 60ºθ ≥ . The same was observed for the simulation performed 
with a null value for the friction coefficient (labelled CB2001(f  = 0), as also 
shown in Fig. 11a. Although not shown here, the stress component in the thickness 
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direction vanishes, in the must outer flange, for 90ºθ = , when using a null friction 
coefficient. Both results highlight the importance of the stress state in the cup’s 
flange for an accurate description of the cup height, number and amplitude of the 
ears. The analysis of Fig. 6b and Fig. 11a indicates that the value predicted for the 
peak-to-peak amplitude of the cup height is closer for the numerical results 
obtained with a constant blank-holder force with the Hill’48 yield criterion and a 
fixed blank-holder with the CB2001, than with both conditions using the CB2001 
yield criterion. This is also related with the stress state in the flange, since the 
Hill’48 predicts a higher blank thickening in the flange area leading to a maximum 
value of the gap between the blank-holder and the die similar to the one imposed in 
the simulation performed with a fixed value (see Fig. 11b). For the AKDQ steel the 
friction coefficient does not change the earing trend and only slightly changes the 
cup height, as shown in Fig. 12a, for a friction coefficient of zero (labelled 
CB2001(f  = 0)) and 0.1 (labelled CB2001(f  = 0.1). This is related with the small 
change in the blank-holder displacement (see Fig. 12b), influenced by the small 
increase of the radial stress, induced by the increase of the friction coefficient. 
Nevertheless, this effect is similar for the entire flange, leading to a negligible 
effect in the earing trend. Thus, a good prediction of the material directionalities 
controls the overall accuracy of the earing profile, because it dictates the 
interaction with process parameters such as the blank holder force distribution. 
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Fig. 11 – a) Experimental, numerical and analytical predictions of the AA5042 cup height after deep 
drawing; b) evolution with the punch displacement of the blank holder gap with the die. 
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Fig. 12 – a) Experimental, numerical and analytical predictions of the AKDQ cup height after deep 
drawing; b) evolution with the punch displacement of the blank holder gap with the die. 

The computational efficiency of the proposed integration algorithm is shown 
in Table 3, by means of both elapsed real time and total number of time increments 
to carry out the simulation of the deep drawing phase, using the two yield criteria, 
i.e. Hill48 and CB2001. The number of increments with its size reduced (NTrial 
Strategy), caused by convergence problems during the iterative loop, was selected 
in this study to indicate the robustness of the integration algorithm. Indeed, the so-
called NTrial strategy, currently implemented in DD3IMP, allows overcoming 
most of convergence issues by automatically reducing the increment size, when 
convergence is not attained within the allowed number of iterations. The results 
show that the computational efficiency is not directly penalized by the selection of 
the CB2001 yield criterion. In fact, the numerical simulations performed with 
AKDQ steel, presenting a more isotropic behavior, tends to require more iterations. 
This is mainly related with the difficulties associated with contact status 
convergence for a higher number of nodes, in each iteration. This effect is more 
visible for AKDQ due to the alignment of the nodes along the circumferential 
direction, enabling the simultaneous change of the contact conditions that results in 
higher oscillations of the contact forces and, consequently, of the non-equilibrated 
forces and stress fields (see Fig. 8). 

Nevertheless, during the deep drawing phase, only small differences in the 
punch force evolution predicted with both yield criteria can be observed. These 
results are shown in Fig. 13a and Fig. 14a, for the AKDQ and the AA5042, 
respectively. For AKDQ, the higher thickening predicted for the outermost flange, 
for a punch displacement of 35 mm (see Fig. 13b), results in a slightly higher value 
for the maximum punch force, visible also for the ironing stage. In case of 
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AA5042, the maximum value of the punch force is always slightly higher when 
using CB2001. However, it is more difficult to correlate this result with the 
thickening predicted for the most outer flange, for a punch displacement of 35 mm 
(see Fig. 14b). As expected the ironing process increases the cup height, although 
not changing the peak-to-peak amplitude, for both yield criteria. The results for the 
cup height at the end of the ironing stage are shown in Fig. 15 for both materials. 
They should be compared with the ones presented in Fig. 6 to confirm that also the 
experimental results show a similar profile before and after the ironing stage. 
Globally, the conditions for the ironing phase are quite different for both materials, 
since the blanks present distinct thickness profiles at the end of the drawing stage 
and similar at the end of the ironing (see Fig. 1). Moreover, conditions differ for 
both yield criteria, since the deep drawing stage imposes cups with different 
heights and maximum thickness values. Therefore, the analysis of the 
computational performance based on the number of increments for the ironing 
stage is biased. 

Table 3 

Computational performance of the deep drawing stage using different yield criteria 

 AKDQ AA5042 
 Hill’48CB2001Hill’48CB2001
N° of increments 553 667 553 512 
N° of iterations 5727 5853 5298 4075 
NTrial strategy 73 226 137 78 
Computational time [hours] 5.35 5.96 4.34 3.35 
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Fig. 13 – AKDQ: a) punch force evolution with its displacement; b) thickness distribution  
on the most outer flange, for a punch displacement of 35 mm. 
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Fig. 14 – AA5042: a) Punch force evolution with its displacement; b) thickness distribution  
on the most outer flange, for a punch displacement of 35 mm. 
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Fig. 15 – Experimental and numerical predictions of the cup height after the ironing process for:       
a) AKDQ; b) AA5042. 

5. CONCLUDING REMARKS 

The numerical simulation of the deep drawing of a cylindrical cup is 
performed with the implicit in-house finite element solver DD3IMP. The analysis 
is focused in the accurate description of the orthotropic behavior of metallic sheets 
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using the non-quadratic anisotropic yield criterion CB2001. Two different 
materials are considered for the blank: AA5042 aluminum alloy and AKDQ steel. 
The material parameters are identified from experimental data, by best fit to the 
experimental results of conventional uniaxial tensile tests, biaxial yield stress and 
rb . The results shown that the accuracy of the earing profile prediction is strongly 
influenced by the description of the anisotropy of both r-values and yield stresses. 
Additionally, for materials with a strong anisotropic behavior of the r-values (e.g. 
AA5042 aluminum alloy), the earing profile is influenced by the global process 
modeling, particularly the contact conditions in the flange. This is related with the 
uneven thickness strain distribution in the sheet plane, which leads to a non-
uniform contact force distribution, more concentrated in a limited region of the 
flange. Also, the computational time of the numerical simulations is mainly 
dictated by the contact conditions between the die and the blank-holder, with a 
negligible influence of the sharper curvature of the yield surface. Thus, when using 
analytical partial derivatives of the yield surface in the constitutive model 
numerical integration, the use of non-quadratic anisotropic yield criteria does not 
affect the computational performance efficiency. 

APPENDIX A: ANALYTICAL EXPRESSIONS OF THE DERIVATIVES  
OF THE CB2001 YIELD CRITERION 

This section is related to the calculations of the following quantities, 

 β ,   
( )F F

∂σ
=

′∂ −
V

σ X
,   

( )

2

2
F F

∂ σ
=

′∂ −
Q

σ X
. (40) 

specifically related with the numerical implementation of the CB2001 yield 
criterion in the FE solver DD3IMP. 

Taking into account the isochoric character of plasticity, the implementation 
of the state update algorithm in DD3IMP is done in a five-dimensional deviatoric 
space, instead of the Cartesian space, given that any symmetric deviatoric tensor 
has only 5 independent components [23]. Thus, considering the effective deviatoric 
stress state tensor ijΣ , , 1,2,3i j = , represented in the Cartesian space, its 

components in the five-dimensional deviatoric space IΣ , 1,...5I = , are given by 
the following transformations 
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 ( )1 11 22
1
2

Σ = Σ − Σ ;     ( )2 11 22 33
3 3
2 2

Σ = Σ + Σ = − Σ ; 

 3 232Σ = Σ ;     4 132Σ = Σ ;     5 122Σ = Σ . 

(41)

 

This transformation from ijΣ  ( , 1,2,3i j = ) to IΣ  (with 1,...,5I = ) can also be 

written in matrix form using Voigt notation of the symmetric tensor ijΣ  

( , 1,2,3i j = ), introducing the following transformation matrix: 
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22
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33
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23
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13
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12

1 2 1 2 0 0 0 0

3 2 3 2 0 0 0 0

0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 2
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Σ⎪ ⎪ ⎪ ⎪⎢ ⎥⎩ ⎭ Σ⎣ ⎦ ⎪ ⎪⎩ ⎭

. (42) 

The inverse transformation, from the five-dimensional space to the Cartesian one, 
i.e. from IΣ  (with 1,...,5I = ) to ijΣ  ( , 1,2,3i j = ), can also be written as: 
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Σ⎪ ⎪ ⎪ ⎪⎩ ⎭⎢ ⎥Σ⎪ ⎪⎩ ⎭ ⎢ ⎥⎣ ⎦

. (43) 

The same can also be applied for any fourth-order symmetric and deviatoric tensor 
T, which corresponds to KLT  (with , 1,...6K L = ) using the Voigt notation. Thus, 
the use of the five-dimensional deviatoric space enables expressing this tensorial 
quantity as IJT  (with , 1,...5I J = ). This reduces the number of independent terms 
and simplifies the notation, as shown afterwards, for the second-order tensor V and 
particularly for the fourth-order tensor Q. 
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In the case of CB2001 yield criterion, the equivalent stress is given by 

Eq. 28, but the invariants 0
2J  and 0

3J  can be written as a function of the 
components of the effective stress tensor in the five-dimensional deviatoric space, 
i.e. 

 0 2 2 2 2 2
2 1 1 2 2 3 1 2 4 5 5 4 6 3J A A A A A A= Σ + Σ + Σ Σ + Σ + Σ + Σ    and (44) 

 
0 3 2 2 3 2 2
3 1 1 2 1 2 1 1 2 4 2 5 1 3 6 2 3

2 2 2 2
7 1 4 8 2 4 9 1 5 10 2 5 11 3 4 5       

J B B B B B B

B B B B B

= Σ + Σ Σ + Σ Σ + Σ + Σ Σ + Σ Σ

+ Σ Σ + Σ Σ + Σ Σ + Σ Σ + Σ Σ Σ
, (45) 

where  

( )1 1 2 31 12 4A a a a= + +  

( )2 2 31 4A a a= +  

( )3 3 21 2 3A a a= −  

( )4 41 2A a=  

( )5 51 2A a=  

( )6 61 2A a=  

( )( )1 1 2 3 41 54 2 4 4B b b b b= + + −

( ) ( )( )2 1 2 3 43 3 54 2 2 2B b b b b= + + +

( )( )3 2 39 54 2B b b= −  

( ) ( )( )4 1 2 3 43 3 54 2 2 2B b b b b= − + + −

( )5 6 72 12 2B b b= − +  

( )6 76 12B b= −  

( )7 8 92 12 4B b b= − −  

( )8 86 12B b= −  

( )9 5 102 6B b b= − −  

( )10 106 6B b=  

( )11 111 2B b=  

(46) 

The scalar β has to be evaluated whenever the effective stress state at the 
beginning of the time increment is elastic. It is determined with the consistency 
condition, such that 

 ( ) ( ) ( )0 0 0, , , , 0I IY Y′ ′β = σ − Δ β − = σ Σ Δ β − =σ X ε εF , (47) 
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where subscript I  denotes the flow stress at the beginning of the time increment. β 
is the only unknown of this non-linear equation. Thus, the Newton method is used 
to iteratively determine β, given by the relation 

 1
i

i i
i

+β = β −
′

F

F
. (48) 

The scalar quantities iF  and i′F  are required, being the first one given by Eq. 47 
and the second one by 

 
( ) ( )0 0 , ,

: 2
i

i i
i i i

′∂σ − Δ β ∂σ ∂′ ′= = = μΔ
∂β ∂ ∂β

σ X ε Σ V ε
Σ

F . (49) 

Taking into account the equivalent stress definition given in Eq. 28 and the 
two generalized invariants defined in the five-dimensional deviatoric space, after 
some mathematical developments the tensor V can be written as 

 ( ) ( )
0020 0 32

2 32001 5
9 3 2

2I CB
I I I

JJV J c J
⎡ ⎤∂∂∂σ

= = −⎢ ⎥
∂Σ ∂Σ ∂Σσ ⎢ ⎥⎣ ⎦

, with 1,...,5I = . (50) 

The tensor Q is given by 

 ( ) ( )

( ) ( )

2

2001

0 0 2 020 02 2 2
2 25

0 0 2 0
0 03 3 3
3 3

5 9 6 . 3
2

2 2

I
IJ CB

I J J

I J
I J I J

I J I J

VQ

J J JV V J J

J J Jc J c J

∂∂ σ
= = =

∂Σ ∂Σ ∂Σ

⎡ ∂ ∂ ∂
= − + +⎢

σ ∂Σ ∂Σ ∂Σ ∂Σσ ⎢⎣
⎤∂ ∂ ∂

− ⋅ − ⎥
∂Σ ∂∂Σ ∂Σ ∂Σ ⎥⎦

, (51) 

with , 1,...,5I J = . The terms relative to the first order derivatives 
0
2

I

J∂
∂Σ

 and 
0
3

I

J∂
∂Σ

 

are defined as 
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1 1 3 2

2 2 3 10
2

6 3

5 4

4 5

2
2

2
2
2

I

A A
A A

J A
A
A

Σ + Σ⎧ ⎫
⎪ ⎪Σ + Σ⎪ ⎪∂ ⎪ ⎪= Σ⎨ ⎬∂Σ ⎪ ⎪Σ⎪ ⎪
⎪ ⎪Σ⎩ ⎭

, (52) 

and 

 

2 2 2 2 2
1 1 2 1 2 3 2 5 3 7 4 9 5

2 2 2 2 2
2 1 3 1 2 4 2 6 3 8 4 10 50

3
5 1 3 6 2 3 11 4 5

7 1 4 8 2 4 11 5

9 1 5 10 2 5 11 3 4

3 2

2
2 2
2 2 3
2 2

I

B B B B B B

B B B B B B
J B B B

B B B
B B B

⎧ ⎫Σ + Σ Σ + Σ + Σ + Σ + Σ
⎪ ⎪
⎪ ⎪Σ + Σ Σ + Σ + Σ + Σ + Σ

∂ ⎪ ⎪
= Σ Σ + Σ Σ + Σ Σ⎨ ⎬

∂Σ ⎪ ⎪Σ Σ + Σ Σ + Σ Σ⎪ ⎪
⎪ ⎪Σ Σ + Σ Σ + Σ Σ
⎩ ⎭

, (53) 

with 1,...,5I = . The terms relative to the second order derivatives, 
2 0

2

I J

J∂
∂Σ ∂Σ

 and 

2 0
3

I J

J∂
∂Σ ∂Σ

, are defined as 

 

1 3

3 22 0
2

6

5

4

2 0 0 0
2 0 0 0

0 0 2 0 0
0 0 0 2 0
0 0 0 0 2

I J

A A
A A

J A
A

A

⎧ ⎫
⎪ ⎪
⎪ ⎪∂ ⎪ ⎪= ⎨ ⎬

∂Σ ∂Σ ⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

, (54) 

and 

1 1 2 2 2 1 3 2 5 3 7 4 9 5

2 0 2 1 3 2 3 1 4 2 6 3 8 4 10 5
3

5 3 6 3 5 1 6 2 11 5 11 4

7 4 8 4 11 5 7 1 8 2 11 3

9 5 10 5 11 4 11 3 9 1 10 2

6 2 2 2 2 2 2

2 2 2 2 2 2
2 2 2 2
2 2 2 2
2 2 2 2

I J

B B B B B B B

B B B B B B BJ
B B B B B B
B B B B B B
B B B B B B

⎧ ⎫Σ + Σ Σ + Σ Σ Σ Σ
⎪ ⎪

Σ + Σ Σ + Σ Σ Σ Σ⎪ ⎪∂ ⎪ ⎪= ⎨ ⎬Σ Σ Σ + Σ Σ Σ∂ ∂ ⎪ ⎪
Σ Σ Σ Σ + Σ Σ⎪ ⎪

⎪ ⎪Σ Σ Σ Σ Σ + Σ⎩ ⎭

Σ Σ

 (55) 
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The initial effective stress state is then updated to the initial yield surface as 

 ( ) ( )*
0 0 0 0 2 ′− ← − + β μΔσ X σ X ε . (56) 
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