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THE OPTIMIZATION OF FULL BAND-GAPS 
IN MULTILAYER FILMS 
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PIER PAOLO DELSANTO2 

Abstract. The multilayer films are consisted of alternating layers of material with 
different mechanical properties, following a triadic Cantor sequence. The extremely 
low thresholds for subharmonic generation of ultrasonic waves has a significant 
importance in the generation of the full band-gaps due to the nonlinear coupling between 
the extended-mode (phonon) and the localized-mode (fracton) vibration regimes. In 
this paper, the optimization is performed with respect to most important features of sonic 
composites, such as the localized modes around interfaces and the size of the full 
band-gaps. The case of a relevant uncertainty of the design parameters which may change 
over frequency is taken into consideration. Uncertain parameters are related to the 
local band-gaps and boundary conditions where the displacement and the traction vectors 
can be discontinuous. Maximizing the full band-gaps is taken as the objective function, 
while the constant volume of the structure is taken as the constraint. The results show 
an unexpected influence of discontinuities upon the generation of the full band-gaps. 
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1. INTRODUCTION

The focus of this paper is the development and the application of a dynamic 
optimization problem for designing of sonic composites that exhibit the full band-
gaps where the sound is not allowed to propagate due to complete reflections. The 
multi-objective optimization problem is selected as core of the framework [1–3]. 
The object of the optimization is the size of the full band-gaps that are obtained by 
overlapping on certain interval of frequencies of the local band-gaps. The full band-
gaps are the well-known Bragg reflections which occur at different frequencies inverse 
proportional to the central distance between two scaterers [4–6]. 

A sonic composite is a finite size periodic or non-periodic array of scatterers 
embedded in a homogeneous material, which has the property of prohibiting the 
propagation of certain waves [7]. The propagation of waves inside sonic composites 
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consists in gaps in the energy band structure where waves are forbidden to 
propagate in certain directions. These gaps represented by the absence of real wave 
vector for some ranges of frequencies, can extend to the generation of full band-
gaps where the waves are prohibited to travel in any polarization, any direction and 
from any source [8]. The evanescent field is distributed across the boundary of the 
waveguide into the surrounding composite by several times the lattice constant [9–13].  

The sound attenuating frequency bands are not determined by the distribution 
of layers of scatterers, but by their intrinsic structure [7, 14–19].  
In this paper, a multilayer sonic film consisting of alternating layers of material with 
different mechanical properties following a triadic Cantor sequence, is analyzed 
with respect to some design parameters which exhibit a relatively high degree of 
uncertainties. Uncertain parameters are related to the local band-gaps and boundary 
conditions where the displacement and the traction vectors can be discontinuous. 
The optimization target is mmaximizing of the full band-gaps, while structural integrity 
is taken as the constraint. The property of Cantor structures to generate the subharmonic 
waves is proving to be importance in the generation of the full band-gaps. 

2. FORMULATION OF THE PROBLEM 

The governing equations are given in [18]. 
The motion equations: 

,ρ p
i ij ju t= ,   ,

e
i ij ju tρ = ,   , 0i iD = ,   , 0i iE + ϕ = , (1) 

where indexes p,e describe the piezoelectric and epoxy resin, respectively, ρ is the 
density, ui is the displacement vector, tij is the stress tensor, Di is the electric 
induction vector, Ei is the electric field and ϕ is the electric potential. 

The constitutive equations:  
22 3

,
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where , ,
1 ( )
2ij i j j iu uε = +  is the strain tensor, ,p pλ μ  are the Lame constants, 

, ,p p pA B C  are the Landau constants, 3 2 1,  ( )p p p p p
iε ε ε = ε = ε  are the linear and 
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nonlinear dielectric constants, 3 2 1( )p p p p
ie e e e= = , 3 2 1( )p p p p

ie e e e= =  and 

3 2 1( )p p p p
ie e e e= =  are the linear and nonlinear coefficients of piezoelectricity and 
2 2 2 2

1 2 3E E E E= + + . 
We suppose that all quantities are independent with respect to 2x , and 

2 0u = , 2 0E = , 

1 1 1 3( , , )u u x x t= , 3 3 1 3( , , )u u x x t= , 1 ,1E = −ϕ , 3 ,3E = −ϕ , 1 3( , , )x x tϕ = ϕ . (5) 

The boundary conditions:  

p
ij j ij j it n T n T= =  , 21 1( )

4 2ij i j ijT E E E= − δ
π

, i iD n d= , ϕ = ϕ , 0e
ij jt n = , (6) 

where , ,iT d ϕ  are quantities prescribed on the boundary and ijT  is the Maxwell 

stress tensor. The electric field 0 exp(i )i iE E t= ω  is applied to the both surfaces of 
the plate to excite the Lamb waves, over a wide frequency range 
(10kHz / 2 5MHz< ω π < ). At the interfaces between constituents, the displacement 
and the traction vectors can be discontinuous 

1 3[ ] [ ] 0u u= ≠ ,   11 13[ ] [ ] 0t t= ≠ , (7) 

where the bracket indicates a jump across the interface and 1,3k = . These 
discontinuities are portrayed by interval mathematical theory. 

3. THE BAND STRUCTURE OPTIMIZATION 

The Bloch’s theorem states that the response of a sonic composite with 
periodical scatterers is characterized by the response of the unit cell generator (a 
unit scatterer) which is used to build the composite in the repetitive way in order to 
obtain periodicity. The wave propagation in the composite can be described by the 
wave propagation in the unit scatterer [20]. For a periodic 2D sonic structure 
consisted of an array of rectangular acoustic scatterers embedded in an epoxy 
matrix. This structure is built as a repetition of a unit rectangular scatterer of length 
a and b in the directions d1 and d2. Each point P in the structure has a 
corresponding point Q in the unit scatterer. The structure is generated by 
translating a number of n1 scatterers along d1 and a number of scatterers n2 along d2 

1 1 2 2P Qr r n d n d= + + . (8) 
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Block Theorem. The response ( , )Pu r ω  of a 2D periodic structure is expressed 
in terms of the response of the unit scatterer and an exponential term which defines 
the amplitude and the phase change of the wave propagating from one scatterer 
to the next 

0 1 1 2 2( , ) ( , )exp ( )P Qu r u r k n d n dω = ω + . (9) 

where 0 ( , )Qu r ω  is the reference response of the unit scatterer, ω is the angular 
frequency and k is the wave vector. 

The propagation vector 1 2( , )μ μ μ  

kdμ = , (10) 

defines the complex phase shifts in the directions d1 and d2. 
With (10), Eq. (9) becomes 

0( , ) ( , )expP Qu r u rω = ω μν , (11) 

where ν is a vector which indicated the number of scatterers translated in both 
directions. 

The aim is to maximise the full band-gap interval of frequencies in which 
waves cannot propagate in the film. The length of the plate is l, the width of the 
plate is d, and the thickness of the plate is 2h. The width of the smallest layer is 

1/ 3na l += , where n  is the order of the Cantor sequence.  
The uncertain parameters are related to the discontinuous displacements and 

traction vectors at the interfaces between constituents, and may vary over frequency. 
These discontinuities are portrayed by interval mathematical theory. Then the 
optimum design is carried out under interval uncertainty for (7) 

1 3[ ] [ ] ( )u u r= = ω ,   11 13[ ] [ ] ( )t t s= = ω , (12) 

with u  and t  dimensionless displacement and stress, respectively, and ( ), ( )r sω ω  
real functions depending on frequency 1 2[ , ]ω∈ ω ω . 

The object of optimization is a function of eigenfrequencies and the constraint is 
that the volume is constant. The eigenfrequencies are found by solving the 
eigenfrequency problem 

2( ) 0S M D− ω = , (13) 

where S is the total stiffness matrix, 2ω  the squared eigenfrequency, M the total 
mass matrix and D the eigenvector.  

The key of the band-gap generation is the lack of purely real wave vector for 
certain modes of waves at certain frequencies. The wave amplitude may decay 
exponentially sustaining an evanescent mode. Therefore, by aassuming free wave 
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propagation for which propagation vector is strictly imaginary, Eq. (13) is solved 
with respect to the angular frequency ω. 

We know that the Bragg reflections occur at different frequencies inverse 
proportional to the constant a. If the local band-gaps are not wide enough, their 
frequency ranges do not overlap. The overlapping is due to reflections on the 
interfaces. Then, any wave is reflected completely from this structure in the frequency 
range where all the local band-gaps for the different periodical directions overlap. 
This is the mechanism of generation the full band-gap. The complete reflection on 
the boundaries is due to the full band-gap property itself, independent of the 
incident angle. This makes sharp bends of the wave-guide in the film. The evanescent 
waves distribute across the interfaces of the waveguide into the surrounding 
composite by several times the quantity a. 

Let us to introduce a weighting index which can vary during the optimization 
procedure with respect to frequency 

( )2 2

2exp ( ) i j i
j

i

L L
W K

L
+ ∩

= − ω  ,   , 1,2,...,i j M=  (14) 

where Li is the size of the i-th local band-gap, M is a number large enough to 
include all possible candidates band-gaps ready to be overlapped, K a given 
constant depending on the frequency. The weighting index characterises the size of 
the local band-gaps and the mechanism of the overlapping. 

The resonant Lamb modes are excited by applying an external electric field 
0

1 3 0exp(i )E E E t= = ω  on both sides of the plate. The surface Lamb waves are 
superposition of longitudinal (symmetric waves) and shear modes (anti-symmetric 
waves or SV waves), which dominate the radial in-plane and vertical motion of 
particles in the film. The structure and size of the band-gap depend on 0E . If 0E  is 
increased above a threshold value 0

thE , the / 2ω  subharmonic generation is observed. 
The result of superposition of normal and subharmonic modes is the generation of 
two kind of vibration regimes: a localised-mode (fracton) regime and an extended-
vibration (phonon) regime [18,  19]. The fracton vibrations are mostly localised on 
a few elements, while the phonon vibrations essentially extend to the whole film. 
For the homogeneous plate the mismatch / 2nω − ω  is due to the symmetry of 
fundamental modes with respect to x. Only symmetric odd n can induce a subharmonic, 
but never / 2ω  coincides with a plate vibration mode. 

4. MAIN RESULTS 

The calculus is carried out for l = 68 mm and 0 5.27 VthE = . The material 
constants for piezoelectric ceramics and epoxy resin are shown in Table 1. Table 2 
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shows the computed frequencies and the errors obtained before optimization, in the 
absence of the discontinuities, for n = 3 [21,22]. The functions ( )r ω  and ( )s ω  are 
described in Fig.1. 

Table 1 

The material constants for piezoelectric ceramics and epoxy resin 

 piezoelectric 
ceramics 

epoxy resin 

λ  [GPa] 71.6  42.31 
μ  [GPa] 35.8    3.76 
A  [GPa] −2000    2.8 
B  [GPa] −1134    9.7 

C  [GPa] −900 −5.7 
ε  [nF/m] 4.065 - 

1ε  [nF/m] 2.079 - 

1e  [nm/V] −0.218 - 

1 1e e=  [nm/V] −0.435 - 

ρ  [kg/m
3

] 7650 1170 

Table 2 

Estimation results: computed eigenfrequencies / 2nω π  for 3n =  

100.2 

± 0.05 

167 

± 0.01 

217.1 

± 0.03 

250.5 

± 0.1 

334 

± 0.01 

367.4 

± 0.01 

417.5 

± 0.1 

501 

± 0.02 

584.5 

± 0.03 

617.9 

± 0.01 

668 

± 0.03 

835 

± 0.06 

935.2 

± 0.06 

1085.5 

± 0.1 

1169 

± 0.07 

1269.2 

± 0.02 

1503 

± 0.05 

1670 

± 0.4 

1770.2 

± 0.2 

1987.3 

± 0.12 

2120.9 

± 0.02 

2250 

± 0.1 

2471.6 

± 0.3 

2655.3 

± 0.01 

2672 

± 0.01 

2972.6 

± 0.2 

3340 

± 0.4 

The optimisation algorithm is solved by a genetic algorithm. The first 
computed eigenfrequencies for n = 3 ( 1 100ω = Hz, 2ω = 600 Hz) and 4n =  
( 1 130ω = Hz, 2ω = 600 Hz) for maximum values of discontinuities, and minimum 
values of the discontinuities, respectively, are shown in Table 3. A significant 
reduction of frequencies, especially for maximum values of discontinuities is 
observed. 
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Fig.1 −  Functions r(ω) and s(ω).  

Table 3 

Computed eigenfrequencies for 3n =  and 4n = , 
in the presence of discontinuities 

ω/2π  [Hz]  3n =  
maximum of 

discontinuities 

ω/2π [Hz]   3n =  
minimum of 

discontinuities 

ω/2π  [Hz]  4n =  
maximum of 

discontinuities 

ω/2π [Hz]  4n =  
minimum of 

discontinuities 
  81.7 ± 0.03   89.2 ± 0.06 102.4 ± 0.01 112.1 ± 0.01 

  98    ± 0.01 107    ± 0.01 155.5 ± 0.01 161.1 ± 0.02 

131.9 ± 0.05 155.4 ± 0.06 201.7 ±0.02 211.5 ± 0.03 

212.0 ± 0.1 232.9 ± 0.1 239.7 ± 0.2 244.1 ± 0.1 

253    ± 0.1 274    ± 0.1 311.7 ±0.1 300.4 ± 0.1 

287.0 ± 0.02 307.4 ± 0.03 389    ± 0.02 377    ± 0.03 

400.1 ± 0.1 440.8 ±0.1 400.4 ± 0.01 423.8 ± 0.02 

439.5 ± 0.03 486.1 ± 0.02 487.7 ± 0.03 504.0 ± 0.02 

504.3 ± 0.02 554.5 ± 0.01 525.0 ± 0.1 580.5 ± 0.1 

Figure 2 presents the variation of the index W with respect to the maximum 
size of the full band-gap for n = 3 and 4, respectively. The maximum size of the 
full band-gap is calculated as the difference max( 0/ 2a cω π ) – min( 0/ 2a cω π ), for 
a given ka/2π, with c0 is the speed of sound in air, and a = l/3n+1. We draw from this 
figure the conclusion that the size of the band-gap is favoured for n = 4, for which 
2 0.25h = mm and d = 25mm, M = 120. The value K = 4.56 was calculated by 
choosing for W the value corresponding to maximum full band-gap size 
(W = 10.68). 
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Figure 3 shows the full band-gap for n = 3 ( ω = 81.7 Hz, W = 8.52 and 
K = 4.33) and 4n =  ( ω = 102.4 Hz,  W =  10.68  and  K =  4.56), respectively. 

Analysing the effect of the constant K on the results, the influence becomes 
important due to the contribution of the subharmonic waves in the generation of the 
full band-gaps. The spatial matching of coupled modes and the superposition of 
normal and subharmonic modes depend on K. 

 
Fig. 2 −  The index W with respect to the maximum size of the full band-gap for n = 3 and 4. 

 
Fig. 3 −  The full band-gaps for n = 3 and n = 4. 
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Fig. 4 −  The fracton regime for 4n =  for K = 4.56 and / 2ω π = 102.4 Hz. 

 
Fig. 5 −  The phonon regime  

for 4n =  for K = 4.56 and / 2ω π = 155.5 Hz. 

To understand this phenomenon, we display in Fig. 4 the fraction-vibration 
behaviour for / 2 171.3ω π =  Hz, and in Fig. 5 the extended-vibration behaviour, 
for / 2ω π = 231.9 Hz and 4.56K = . For 4K = , we see that the things are 
changing. Even if the fracton mode gives no differences, there are some changes in 
the phonon mode, in particular for the edge of the film. The phonon regime for 

4n =  for K = 4 and / 2ω π = 200.4 Hz. 
The variation of the maximum size of the full band-gap as function of 

minimum and maximum values of discontinuities, respectively, is presented in 
Fig.6, for 4n =  and / 2 [100Hz, 500Hz]ω π∈ . We observe that presence of 
discontinuities improves the size of the full band-gaps. The optimal size for full 
band-gaps is obtained for maximum values of discontinuities rather than for small 
values of the discontinuities. 
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Fig. 6 −  Variation of the size of the full band-gaps 

with respect to minimum and maximum values of the discontinuities, respectively. 

5. CONCLUSIONS 

The paper presents the optimization of multilayer sonic films consisted of 
alternating layers of material with different mechanical properties following a 
triadic Cantor sequence. This structure has the ability to generate the subharmonic 
waves which have a significant importance in the generation of the full band-gaps 
where waves are not allowed to propagate. The rationale for the band-gap 
generation is the lack of purely real wave vector for certain modes of waves at 
certain frequencies and in consequence, the evanescent waves distributed across 
the boundary of the waveguide. 

The objective of optimization is the maximization of the full band-gaps for 
uncertainty of the boundary conditions for which the displacements and the traction 
vectors can be discontinuous. The uncertain parameters are related to the discontinuous 
displacements and traction vectors at the interfaces between constituents, and may 
vary over frequency. Maximizing the full band-gaps is taken as the objective 
function, while the constant volume of the structure is taken as the constraint. The 
results show an unexpected influence of discontinuities upon the generation of the 
full band-gaps. An optimal size for full band-gaps is obtained for maximum values 
of discontinuities rather than for small values of the discontinuities. 
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The optimisation algorithm is solved by a genetic algorithm. The nonlinear 
coupling between the phonon and the fracton vibration regimes, accelerates the 
process of overlapping of the local full band-gaps, and the presence of 
discontinuities improve the size of the full band-gaps. 
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