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A NATURAL SONIC COMPOSITE – THE ATMOSPHERE 

CORNEL BRISAN1, RODICA IOAN2,3, LIGIA MUNTEANU3, 
DAN DUMITRIU3, CRISTIAN RUGINA3 

Abstract. The atmosphere represents a natural sonic composite exhibiting the full 
band-gaps and localized modes around inhomogeneities given by the wind-velocity 
jumps. The paper analyses a barometric model including inhomogeneities which are 
modelled as Somigliana dislocations. The motion of atmospheric air is characterised 
by anharmonic coupling of nonlinear baroclinic fields of waves, and it is possible to 
tend to chaos when subjected to severe acoustic pulses. The riddling bifurcation is 
depicted that explains the generation of the hyperchaotic attractors. 

Keywords: atmospheric models, Eshelby theory, full band-gap, hyperchaotic attractor, 
Riddling bifurcation. 

1. INTRODUCTION

The sonic structures exhibit localized modes around interfaces or inhomogeneities 
due to the lack of purely real wave vector for certain frequencies, sustaining the 
evanescent modes [1]. The generation of evanescent modes are related to the 
existence of band-gaps or Bragg reflections at different frequencies inverse 
proportional to a specific internal distance [2–9]. If the band-gaps are not wide 
enough, their frequency ranges do not overlap. Consequently, any wave is reflected 
completely from layered structure in the frequency range where all the band-gaps 
for the different periodical directions overlap. 

In this article we will discuss the existence in nature of structures that exhibit 
characteristics of sonic structures. It is the case of the atmosphere. 

Simple models of the atmosphere are known starting to 1947’s [10–13]. The 
frictionless laminar adiabatic motion of a rotating baroclinic fluid was discussed by 
Eady [10] in connection to cyclone waves and long waves of middle and high 
latitudes. During the 1950’s, Lorenz examined the extend of which the linear statistical 
models are appropriate to be used in meteorology and the weather forecasting. 
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Description of the butterfly effect was presented in 1969 [14]. In the years that 
followed, a large number of papers analyze and emphasize the dynamic instability 
of the atmosphere [15]. 

The stability of a simple two-layer model of the baroclinic atmosphere was 
demonstrated by Brojewski [16]. 

The solitary waves with constant travelling speeds and the lack of dispersion 
are the key for stability. Some basic factors which can influence the atmospheric 
stability like the vertical variability of the wind are investigated by Brojewski [17,  
18] and Tsuchida [19] with emphases to oscillation character after Hopf bifurcations of 
the second kind. The large-scale weather phenomena are sometimes associated to 
vortices originated from dynamical disturbances in the atmosphere. 

The aim of this paper is to show that the atmosphere exhibits the full band-
gaps and localized modes around inhomogeneities. Inhomogeneities due to 
stratified wind-velocity are modelled as Somigliana dislocations according to the 
Eshelby theory [20–22] and Wang et al. [23]. If the applied stress is windσ  and the 
displacement field of stratified wind-velocity is windv , the force is given by 

( )dwind wind wind ind windF v v s
Σ

= ∇σ − σ ∇∫ ∫ , (1) 

where Σ is the closed surface which encloses the wind-velocity jumps [24] when 
point sources of explosive character act upon the atmosphere, riddling bifurcation 
can occur. In this bifurcation, one of the unstable periodic orbit embedded in a 
higher-dimensional chaotic attractor becomes unstable transversely to the attractor 
[25–29]. The hyperchaoticity can be related to Sommerfeld effect which is a 
universal phenomenon which is a result of the law of energy conservation [6,  24, 
30, 33–35]. 

2. THE MODEL OF ATMOSPHERE 

Two-layer model of baroclinic atmosphere referred to as a β -plane (Fig.1) is 
considered [16]. The isobaric levels are pi, i = 1, 2, 3, 4.  

The equations of the model are 
(2)
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where (1) (3),ς ς  are vorticity at the levels 1 and 3, 2 sinf = Ω ϕ  is the Coriolis 

parameter, Ω the angular velocity of the Earth, and ϕ the latitude, d const.
d

f
z

β = = , 

(2) d
d
p
t

ω =  is the vertical velocity at the level 2 in the pressure system, 

( ) ( 1, 3)iu i =  the main air flow velocity at the levels 1 and 3, σ is the stability 
coefficient of the atmosphere,  g the acceleration of gravity. 

 
Fig. 1 −  Structure of the atmosphere in the baroclinic model. 

Let us consider the case when a turbulent region is surrounding the wind-
velocity jumps. The applied stress windσ  and the displacement field of stratified 
wind-velocity windv  are related by the force expressed in (1), where Σ is the 
boundary of a volume tV V⊂  where the wind-velocity jumps are present.  V is a 
finite domain where the motion is studied. 

Suppose that a constant vorticity field is prescribed into tV V⊂  

( )*
( ) , ( , ) ,   1, 3( , ) .

 0,   ( , ) /

j
j ty z V jy z

y z V V

⎧ς ∈ =⎪ς = ⎨
∈⎪⎩

 (5) 

Attention is paid to the boundary conditions attached to (2)–(5). The 
boundary conditions are imposed in terms of the displacement discontinuities, in 
accordance with the Somigliana dislocation. In addition, the normal component of 
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the velocity vanishes at the surface of the earth, the momentum vanishes at the 
limit of the atmosphere. The discontinuities are tangential and differ only by the 
wind velocity which is locally planar. The wind plan D is denoted by obs obs( , )y z . 

The coordinates ,y z  represent the east and north directions, respectively. 
The reference frame ( , )y z  is obtained by a Galilean transformation and moves 

with a constant velocity ( )obs obs
wind

1
2

v v v+ −= + , where obsv+  and obsv−  are 

velocities on the left and right sides of D. The relative velocity is defined as 
obs obs

rv v v− += − . Some symmetries are depicted / 2rv v v− += − = . Fig.2a 
presents the bulk velocity on the left (+) and right (−) on the transition in the frame 
( obs obs,y z ) and the same configuration after a Galilean transformation to the ( ,y z ) 
frame moving with velocity V  is displayed in Fig.2b. 

 
Fig. 2 −  The bulk velocity on the left (+) and right (−) on the transition in the frame (yobs, zobs) 

(a) and the same configuration after a Galilean transformation to the (y, z)  
frame moving with velocity νwind (b). 

The weather forecast the equivalent barotropic atmosphere can be of interest 
of this paper [13]. The large scale perturbations in the atmosphere have the 
character of external waves in which the streamlines or isobars is approximately 
the same at all levels. Also, the increase of wind with height is similar along all 
verticals. So, the vorticity equation is given by  

1
, , ,( ) [( ) ( ) ] 0t x yf f U V−+ ς + ρ ρ + ρ = , (6) 

where ς  is the vertical vorticity component relative to the earth, are the 
components of velocity in the y (east), z (north) directions, ρ is the density. By 
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averaging (6) in the vertical direction with respect to pressure, and using the 
subscript “0” to denote the surface values, we have 

1 1
, 0 0, 0( ) t tf f p p f H w− −+ ς = − , (7) 

where 1
0H RT g−=  is the height of the homogeneous atmosphere, w is the vertical 

velocity component, p is the pressure, T the temperature and R the specific gas 
constant. 

The velocity field is function on , , ,y z p t . Let us supposed to have 

( , , ) ( )U u y z t A p= ,   ( , , ) ( )V v y z t A p= , (8) 

that means ( ) 1A p =  at a certain level p . In this case ,u U v V= =  and ς = ς . 
The equivalent barotropic level equation is obtained from (7) at the level 

p p=  

2 1 1
, 0 0, 0( )t tU V f A f p p f H w

x y
− −⎛ ⎞∂ ∂

ς + + + ς = −⎜ ⎟∂ ∂⎝ ⎠
. (9) 

The equation (9) describes the motion of the barotropic atmosphere at the 
equivalent barotropic level p p= . After eliminating the horizontal divergence by 
means of the continuity equation, we can introduce the geostrophic vorticity gς  at 
the equivalent barotropic level into (9) 

( )2 1 1
, , , 0 0, 0g t g g x g g y g tA u v v f p p f H w− −ς + ς + ς + β = − , (10) 

where ,g gu v  are the components of the geostrophic wind, , yfβ = . 
In the following the pressure can be replaced by the height Z of the isobaric 

surface 
1

,g zu g f Z−= − ,   1
g yv g f Z−= . (11) 

Also, we have 
1

, ,( )g zz yyg f Z z−ς = + ,   , ,t tp g Z= ρ . (12) 

The frictional damping becomes important after a certain amount of time to 
explain the stationary perturbations. The component of velocity gu  verifies the 
motion equation with friction 

,g t g gu f v Fu= = − , (13) 
where 
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sin 2
2

Kf
F

H
α

= , (14) 

with α the angle between the isobars and the surface wind and K the eddy 
diffusivity. 

By introducing (11–14) into (10) we obtain an equation in ( , )Z y t . By a 

variable change y zk y k z tη = + − ω , for the solutions (1)ς  and (3)ς  of (2)–(5), and 

the solution ς  of the equation in Z, can be taken under the form by applying the 
cnoidal method [37] 
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+ γ η

∑
∑

∑
, 1, 2, 3l = , (15) 

where 0 1jlm≤ ≤ , 1, 2, 3l = , 1, 2,...,j n= . By introducing (15) into (2)-(4) and 

equation in Z, the unknowns jlα , jlβ  and jlγ  are determined by using a genetic 

algorithm. 
The recurrent equations for higher order terms of the dispersion function 

( )lμ μ  are given by  

( )2
, , , , ( , , , ) 0s s s sm jl jl jl jl m s jl jl jl jlK K F m mηη ⎡ ⎤μ + + + α β γ μ − Ω α β γ =⎣ ⎦ , 

1, 2, 3l = ,  1, 2,...,j n= ,  1, 2, 3,...s =  (16) 

where the constants sK , 1, 2,...s =  and the functions ( ), , ,s jl jl jl jlF mα β γ , m = 1, 

2,…, are known numerically. 

3. ANALYSIS 

The simulation is carried out for isobaric levels of 1 000, 750, 500, 250 and 
0 hPa, 00.8 / gRσ = σ , 0 50K /1000 hPaσ = − , β = 1.5 × 10–11m–1s–1, α2 = 1.5 × 10–

12m–2 and Δp = 500hPa. First functions Fs(αjl, βjl,γ jl,m jl), m = 1, 2, 3, 4, are 
represented in Fig. 3. The calculus shows that functions 0.4sF ≤  for all m. 
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First functions ( ), , ,s jl jl jl jlmΩ α β γ , 1, 2, 3, 4m = , are represented in Fig.4. 

Similarly, these functions verify the condition 1.2sΩ ≤  for all m. First four 
constants sK , 1, 2, 3, 4s = , are 8.2540; − 4.2388; 0.4111 and 2.3433. The 
variation of the real and imaginary parts of the dimensionless solution with respect 
to dimensionless solutions (1)

10/ς ς  and (3)
30/ς ς  are presented in Fig.5. The 

particular solutions 0 10 30, ,z ς ς  correspond to linear case when the Jacobeans 
become zero. The red and orange colors correspond to linear case when the 
solutions are known as modon and Rossby’s waves. 

 
Fig. 3 −  First four functions ( ), , ,s jl jl jl jlF mα β γ , 1, 2, 3, 4s = . 

 
Fig. 4 −  First four functions ( ), , ,s jl jl jl jlmΩ α β γ , 1, 2, 3, 4.s =  
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Fig. 5 −  Variation of the real part (up) and the imaginary part (down) 
of the dimensionless solution z  with respect to dimensionless solutions (1)ς  and (3)ς . 
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Fig. 6 −  Dispersive curve for modon (up) and Rossby waves (down). 

The linear case is obtained for vanishing of the Jacobians in (2)–(5), i.e. 
2 2∇ ψ = μ ψ  and 2 2∇ ψ = −λ ψ . Figure 6 displays the dispersion curves for 

modon (up) and Rossby’s waves (down) for c uγ = − , c
k
ω

= , 10 m/su = . 

Similar results are reported by Brojewski [16]. 
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Fig. 7 −  Band structure for the atmosphere. 

The atmosphere with stratified wind-velocity has the properties of a sonic 
structure. The guided waves are accompanied by evanescent waves. Using the 
Joannopoulus representation [8] for the bad-gap structure, Fig. 7 presents the 
band structure of the atmosphere model. The central grey region is the full 
band-gap ranged between 25 kHz and 28.5 kHz, given by the real part of the 
wave vector. The left region represents the imaginary part of the wave vector 
for y (east) direction, while the right region is the imaginary part of the wave 
vector for z (north) direction. The red lines represent the imaginary part of the 
wave vector of the evanescent modes inside the bad-gap. 

If need to have a full band-gap, the band-gaps for both east and north 
directions must be in the same frequency region. The stratified wind-velocities 
cause narrow partial gaps at different frequencies which do not overlap. As 
mechanical contrast increases, the partial gaps widen and begin to overlap in the 
same frequency region leading to a full band-gap independent of the polarization. 



11 A natural sonic composite − the atmosphere 135 

 

 
Fig. 8 −  Band structure for the atmosphere for (a) Gaussian source incidence, 

and (b) point source incidence. 

The atmosphere subjected to acoustic pulses of explosive character (surface 
explosion or volcano) coming from point source or Gaussian beam, has 
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surprisingly more pronounced properties of a sonic structure. Figure 8 presents the 
band structure of the atmosphere in this case, for (a) Gaussian source incidence, 
and (b) point source incidence. It can be seen a significant increase of the full band-
gap in both loading cases. 

In what concerns the incident sources, we calculate the pressure field for 
point source and Gaussian source incidence, at frequency of 27 kHz inside the full 
band-gap. 

 

 
Fig. 9 −  Imaging pressure field for (a) Gaussian source incidence, 

and (b) point source incidence. 



13 A natural sonic composite − the atmosphere 137 

From Fig. 9 we see that the pressure field is independent to the incident 
source for both the Gaussian and point incident sources. This fact is interesting 
because by tuning the length of the waveguide, the distance between source and 
image can be easily controlled. 

4. CHAOS AND HYPERCHAOS 

If the model (2)–(5) is subjected to acoustic pulses of sufficient amplitude 

00.5 / 1a a≤ ≤ , where 0a  is a reference value, the motion becomes chaotically. A 

complex pattern is given by the motion of disordered waves (1)ς  and (3)ς  
aggregated into large amplitudes. Fig.10 shows the flow of the disordered waves 
for (a) Gaussian source incidence, and (b) point source incidence, for 0/ 0.75a a = . 

 

Fig. 10 −  The projections of the attractor into planes 1 3( , )ς ς  

and 1, 3,( , )τ τς ς for 0/ 0.75a a = . 

Five region of stability are depicted in the range of variation 00.5 / 1a a≤ ≤ . 

The first zone is found to be stable over the range 00.5 / 0.57a a≤ < . The regions 

II ( 00.57 / 0.69a a≤ < ) and IV ( 00.84 / 1a a≤ ≤ ) respectively, present instabilities 

in the motion, while the third region ( 00.69 / 0.84a a≤ < ) reports a chaotic 

behavior. Fig.11 represents the variation of 0/a a  with respect to time 0/t tτ = , 

where 0t  is a reference value. 
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Fig. 11 −  Variation of the parameter 0/a a  with respect to time. 

The Poincaré cross-section is determined by normal vector n = (−1.33, 

0.69, −2.21, 0.89) chosen along the flow solutions (1)ς  and (3)ς  at a base point 
with coordinates (0.89, 0.22, 1.76, −0.57). Fig.12a shows the 2D projection of the 

Poincare map into the plane ( (1) (3),ς ς ) of the chaotic attractor with two-bundle, for 

0/ 0.8a a = , and one positive Lyapunov exponent 1λ = 0.37. 
The chaos-hyperchaos transition occurs when the second Lyapunov exponent 

becomes positive. By a smooth increasing of 0/ 0.82a a = , two Lyapunov 

exponents 1λ = 0.39 and 2λ = 0.46 are obtained, and the resulting attractor is a 
hyperchaotic one, as shown in Fig.12b. The transition between the chaos and 
hyperchaos is characterized by an infinite number of unstable periodic orbits which 
becomes unstable in the least two directions in the vecinity of a transition point. 
The appearance of the first unstable orbit with more than one unstable direction 
represents the beginning of the riddling of the basin of attraction and bubbling of 
the chaotic attractor. This phenomenon is a typical way by which higher-
dimensional attractors grow by bursting along the new unstable direction. The 

orbits (1) (3)( , )ς ς  undergo the instability with respect to both y and z directions, 
exhibiting the riddling bifurcation. 
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Fig. 12 −  2D projection of the Poincare map into the plane ( (1) (3),ς ς ) 

of the attractor:  a) chaotic; b) hyperchaotic. 

The existence of unstable orbits creates tongues anchored at these orbits, as 
shown in Fig.13. 

An infinite number of tongues can be created simultaneously, as the result of 
transverse instability. 

The hyperchaotic attractor (1) (3)( , , )ς ς ς  where ς  is the solution of the 
equation in Z, is displayed in Fig.14 for 0/ 0.82a a = . The initial basin of attraction 
(green color) is bubbled after the riddling bifurcations.  
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This means the orbits burst in directions y and z, and in consequence, the 
chaotic attractor grows. The appearance of the first unstable orbit with more than 
one unstable direction indicates the activation of growing of the attractor in the 
higher dimensionality maps. 

 
Fig. 13 −  Riddling bifurcations of the unstable periodic orbits with respect to y and z. 

 
Fig. 14 −  The hyperchaotic attractor after riddling bifurcations for 0/ 0.82a a = . 
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5. CONCLUSIONS 

The paper discusses a model of baroclinic atmospheric which exhibits the full 
band-gaps and localised modes around inhomogeneities given by the wind-velocity 
jumps. The inhomogeneities are modelled as Somigliana dislocations according to 
the Eshelby theory. The motion of atmosphere tends to chaos when it is subjected 
to acoustic pulses coming from point source and Gaussian beam of explosive 
character. 

A hyperchaotic attractor with at least two positive Lyapunov exponents is 
depicted and the presence of disturbantions leads to riddling bifurcation that 
explains the generation of the hyperchaotic attractor. The transition between the 
chaos and hyperchaos is characterized by an infinite number of unstable periodic 
orbits which becomes unstable in the least two directions in the vecinity of a 
transition point. 

By initiation of the unstable orbits with more than one unstable direction, the 
tongues anchored at these orbits undergo the instability with respect to all 
directions, exhibiting the riddling bifurcations. The main effect of the riddling 
bifurcation is the bubbling of the attractor, i.e. the orbits burst in all directions and 
the chaotic attractor grows becoming a hyperchaotic attractor. 

Acknowledgements. The authors gratefully acknowledge the financial 
support of the National Authority for Scientific Research ANCS/UEFISCDI 
through the project PN-II-ID-PCE-2012-4-0023, Contract no. 3/2013. The authors 
acknowledge the similar and equal contributions to this article. 

Received on  May 30, 2016 

REFERENCES 

1. HIRSEKORN, M., DELSANTO, P.P., BATRA, N.K., MATIC, P., Modelling and simulation of 
acoustic wave propagation in locally resonant sonic materials, Ultrasonics, 42, 1, pp. 231–
235, 2004. 

2. GEI, M., Elastic waves guided by a material interface, European Journal of Mechanics-A/Solids, 
27, 3, pp. 328–11345, 2008. 

3. MIYASHITA, T., Full band gaps of sonic crystals made of acrylic cylinders in air-numerical and 
experimental investigations, Jpn. J. Appl. Phys., 41, 5S, p. 3170, 2002. 

4. MIYASHITA, T., TANIGUCHI, R.; SAKAMOTO, H., Experimental full band-gap of a sonic-
crystal slab structure of a 2D lattice of aluminum rods in air, Proc. 5th World Congress on 
Ultrasonics TO-PM04.02, 2003. 

5. MUNTEANU, L., CHIROIU, V., On the dynamics of locally resonant sonic composites, European 
Journal of Mechanics-A/Solids, 29, 5, pp. 871–878, 2010. 

6. MUNTEANU, L., BRIŞAN, C., CHIROIU, V., DUMITRIU, D., IOAN, R., Chaos-hyperchaos 
transition in a class of models governed by Sommerfeld effect, Nonlinear Dynamics, 78, 3, pp. 
1877–1889, 2014. 



 C. Brisan, R. Ioan, L. Munteanu, D. Dumitriu, C. Rugina 18 142 

7. MUNTEANU, L., POPESCU, M., Effects of defects to the band-gaps generation, PAMM- 
Proceedings in Applied Mathematics and Mechanics, 14, 1, pp. 693–694, 2014. 

8. JOANNOPOULOS, J.D., JOHNSON, S.D., WINN, J.N., MEADE, R.D., Photonic Crystals, 
Princeton University Press, Second Edition, 2008. 

9. NAQUI, J., MARTIN, F., Some applications of metamaterial resonators based on symmetry 
properties, CMC: Computers, materials & Continua, 39, 3, pp. 267–288, 2014. 

10. EADY, E.T., Long waves and cyclone waves, Imperial College of Science, London, 1949, pp. 33–52. 
11. CHARNEY, J.G., The dynamics of long waves in a baroclinic westerly current, Journal of 

Meteorology, 4, 5, pp. 136–162, 1947. 
12. CHARNAY, B., MEADOWS, V., MISRA, A., LECONTE, L., ARNEY, G., Modeling of 

GJ1214b’s atmosphere: formation of inhomogeneous high clouds and observational 
implications, The Astrophysical Journal Letters, 813, 1, 2015. 

13. CHARNEY, J.G., ELIASSEN, A., A numerical method for predicting the perturbations of the 
middle latitude westerlies, Office of Naval Research of the U. S. Navy, pp. 38–54, 1949. 

14. PALMER, T.M., Edward Norton Lorenz, Physics Today, 61, 9, pp. 81–88, 2008. 
15. LORENZ, Edward N., Atmospheric predictability as revealed by naturally occurring analogues, 

Journal of the Atmospheric Sciences, 26, 4, pp. 636–646,1969. 
16. BROJEWSKI, R., Nonlinear solitary-type structures in the baroclinic model of the atmosphere, 

Journal of Technical Physics, 35, 3, pp. 261–271, 1994. 
17. BROJEWSKI, R., JAKUBIAK, B., JASIŃSKI, J., Dynamics of a 2L-baroclinic model of the 

troposphere. Part 2: Impact of the zonal drift on bifurcations in the model, Journal of 
Technical Physics, 46, 4, pp. 261–271, 2005. 

18. BROJEWSKI, R., JAKUBIAK, B., JASIŃSKI, J., Impact of the surface temperature and vertical 
shear of zonal wind on the dynamics of a simple two-layer model of the atmosphere, Acta 
Geophysica, 55, 2, pp. 231–252, 2007. 

19. TSUCHIDA, M., GUILHERME, K.L., BALTHAZAR, J.M., On chaotic vibrations of a non-ideal 
system with two degree of freedom: 1:2 resonance and Sommerfeld effect, Journal of Sound 
and Vibration, 282, 3, pp. 1201–1207, 2005. 

20. ESHELBY, J.D., The elastic field outside an ellipsoidal inclusion, Proc. R. Soc. Lond. A, 252, pp. 
561–569, 1959. 

21. ESHELBY, J.D., Elastic inclusions and inhomogeneities, in: Progress in solid mechanics, 
Vol. 2 (Eds. Sneddon I.N., Hill R.), Amsterdam, The Netherlands: North-Holland, 1961, 
pp. 89–140. 

22. ESHELBY, J.D., The determination of the elastic field of an ellipsoidal inclusion and related 
problems, Proc. R. Soc. Lond. A, 241, pp. 376–396, 1957. 

23. BRIŞAN, C., MUNTEANU, L., CHIROIU, V., ILIE, R., Scattering of acoustical waves by 
periodic arrays of scatterers, Acta Technica Napocensis, Series: Applied Mathematics and 
Mechanics, 56, 4, pp. 625–630, 2013. 

24. XU, G., YAN, S., MA, Q.W., Modified SFDI for fully nonlinear wave simulations, CMES: 
Computer Modeling in Engineering & Sciences, 106, 1, pp. 1–35, 2015. 

25. ROSSLER, O.E., An equation for continuous chaos, Physics Letters A, 57, 5, pp. 397–398, 1976. 
26. WARMINSKI, J., BALTHAZAR, J.M., BRASIL, R.M.L.R.F., Vibrations of a non-ideal 

parametrically and self-excited model, Journal of Sound and Vibration, 245, 2, pp. 363–374, 
2001. 

27. VALLEJO, J.C., SANJUAN, M.A.F., Predictability of orbits in coupled systems through finite-
time Lyapunov exponents, New Journal of Physics, 15, 11, p. 113064, 2013. 

28. KAPITANIAK, T., Chaos syncronization and hyperchaos, Journal of Physics: Conference Series, 
23, pp. 317–324 International Conference on Control and Synchronization of Dynamical 
Systems, 2005. 

29. KAPITANIAK, T., CHUA, L.O., ZHONG, Q.G., Experiment hyperchaos in coupled Chua’s 
circuits, IEEE Transactions on Circuits and Systems, 41, 7, pp. 499–503, 1994. 



19 A natural sonic composite − the atmosphere 143 

30. PEINKE, M.J., PARISI, J., ROSSLER, O.E., STOOP, R., Encounter with chaos, Springer: Berlin, 
1992. 

31. MUNTEANU, L., CHIROIU, V., SIRETEANU, T., On the response of small buildings to 
vibrations, Nonlinear Dynamics, 73, 3, pp. 1527–1543, 2013. 

32. MUNTEANU, L., CHIROIU, V., DONESCU, St., BRIŞAN, C., A new class of sonic composites, 
Journal of Applied Physics, 115, 10, p. 104904, 2014. 

33. FELIX, J.L.P., BALTHAZAR, J.M., Comments on a nonlinear and nonideal electromechanical 
damping vibration absorber, Sommerfeld effect and energy transfer, Nonlinear Dynamics, 55, 
1, pp. 1–11, 2009. 

34. GIRIP, I., IOAN, R., On the contact interfaces in the sonic composites, PAMM - Proceedings in 
Applied Mathematics and Mechanics, 14, 1, pp. 357–358, December 2014. 

35. ILIE, R., IOAN, R., BRIŞAN, C., On the sonic composites subjected to severe acoustic loads, 
PAMM- Proceedings in Applied Mathematics and Mechanics, 14, 1, pp. 687–688, 2014. 

36. CHIROIU, V., MUNTEANU, L., DUMITRIU, D., RUGINA, C., BRISAN, C., Anti-sound and 
acoustical cloaks, Scientific Bulletin of The “Petru Maior” University of Târgu-Mureș, 13, 2, 
pp. 5–11, 2016, 

37. MUNTEANU, L., DONESCU, St., Introduction to Soliton Theory: Applications to Mechanics, 
Book Series Fundamental Theories of Physics, Vol. 143, Kluwer Academic Publishers, 
Dordrecht, Boston (Springer, Netherlands), 2004. 




