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A PREISACH MODEL FOR HYSTERETIC DESCRIPTION 
OF NATURAL MAIZE COMPOSITES 

RUXANDRA ILIE1, IULIAN GIRIP2, MIHAI CIUNCANU3, MAX TURLEY4 

Abstract. The work is focused on the hysteretic behavior of a composite made out of 
stalk based maize fiber and unsaturated polyester resin polymer as matrix with methyl 
ethyl ketone peroxide as a catalyst and Cobalt Octoate as a promoter. A Preisach 
model is used to describe the behavior of such composites subjected to stretching-
compression cycles. A procedure for fitting the Bouc-Wen model to imitate experimental 
data, are presented and discussed together with the Preisach model. 

Keywords: composites, natural fiber, hysteretic behaviour, Preisach model, Bouc-Wen 
model. 

1. INTRODUCTION

Several aspects of the hysteretic behavior of composites have already been 
described by using Bouc-Wen or Duhem models for friction, or Preisach model [1]. 
The polymers have different mechanical behavior in relation to different kinds of 
natural fibers. The natural fibers can enhance the properties of polymers as 
interfacial adhesion, orientation, strength and physical properties. The mechanical 
properties of polymer composites based on natural fibers depend essentially on the 
interface adhesion between the fibers and the polymer matrix. This is because 
natural fibers are rich in cellulose, hemicellulose, pectin and lignin (part of the 
hydroxyl group) and tend to be strong and hydrophilic (attracts water) while presenting 
significant hydrophobic polymers (water repelling for reinforced materials with 
randomly distributed natural fibres of maize (stalk) [2–4]. 

In this paper, a composite material consisting of maize fibre unidirectionally 
aligned as shown in Fig.1 and Fig.  2, is considered. 
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Fig. 1 − A composite rod. Fig. 2 − Unidirectional maize fibers. 

For such composites, the hysteretic behaviour is affected by critical 
conditions of the non-equilibrium dynamics which occur for separation between 
the fibre and the matrix [5–9]. Fig. 3 displays a reversal constitutive curve (solid 
line) with the same value of the strain ε = 0.0175, observed for the copper wires at 
the unloading-load cycle [10]. Such singularities create non-analyticity in the 
behaviour at a particular reversal point related to the history of the system. The 
reversal curves are minor loops, obtained by reversal from ascending or descending 
branch of the major loops (dotted line). 

As results of the discontinuous boundary conditions between fibres and the 
matrix (including separation between the fibre and the matrix), the hysteretic loops 
may exhibit the displacement drift, force relaxation and non-closure. Such 
phenomena can be investigated with the Bouc-Wen model [11]. The unrealistic 
behavior of the Bouc-Wen model with respect to short input signals was eliminated by 
inserting a stiffening factor into the hysteretic differential equation. In order to 
understand the microscopic origin of the reversal effect, the Preisach model can be 
used [12–17].  

In this paper, a Preisach model is used to describe the hysteretic behavior of a 
composite material consisting of maize fiber unidirectionally aligned. Because we 
do not have enough experimental data on this composite subjected to stretching-
compression cycles [1], we can imitate compatible experimental data starting from 
an existing set of measurement. For this we consider a system obeying to the law 

( ) ( , , ) ( ) 0x t r x x g t+ θ + = , (1) 

where x is the displacement corresponding to the average ultimate strain of 
composite with unit mass, which depend on the volume fraction, x  and x  are the 
corresponding velocity and acceleration, respectively, θ is the set of parameters 
that models the structural behavior, r is a nonlinear restoring force and ( )g t  is the 
short unloading-reloading acceleration. 
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Fig. 3 – Reversal constitutive curve (solid line) 

and major hysteretic loop (dotted line). 

The restoring force r characterizes the hysteretic behavior of the system and 
we consider that it can be described by the Bouc-Wen model 

1| | | | (1 2 ( ) ( , )) | || |n nr cx kx x r r H xr R x r x r−= − + β + − γ , (2) 

where c is the viscous damping coefficient, k is the equivalent stiffness coefficient, 
β and γ are the shape parameters, and n governs the smoothness of the force-
displacement curve, ( , ) [0,1]R x r ∈  is a stiffening factor and ( )H ⋅  is the Heaviside 
function defined as 

1, 0,
( )

0, 0.
x

H x
x

>⎧
= ⎨ ≤⎩

 

The term 2 ( ) ( , )H xr R x r  we can write within the idea that the Heaviside 
function can help the unloading branches to remain identical to those of the 
classical model [18,  19]. 

1| | | | | || |n nr cx kx x r r x r−= − + β + γ . (3) 

Also, the stiffening factor R controls the transition between loading (reduced) 
stiffness and unloading (increased) stiffness, when loading or reloading. For 0R = , 
(2) reduces to (3). For 1R = , the loading stiffness becomes equal to that of 
unloading at the same point. 
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Fig. 4 – The definition of R. 

We use the Charalampakis and Koumousis definition of R [11], and Fig. 4 

2 1
1 1

2
( ) ( ) x xR H r r H x x

x x

κ
⎛ ⎞−

= − − ⎜ ⎟−⎝ ⎠
. (4) 

As shown in Fig.4, P is a reversal point. During reloading, the current state is 
represented by the point for 10 r r≤ < . The point b corresponds to the unloading 
path. As a  approaches b  from the left, 1R → . When a and b coincide, then 1R =  
and loading follows the unloading path exactly. The unloading path P c−  cannot 
be crossed. When 1r r>  or 1x x> , the stiffening effect disappears due to the Heaviside 
function. Parameter controls the intensity of stiffening to the left of the unloading 
path. The stiffening is closed to the unloading path for increased values of κ, and 
diminished every where else. It was observed in [11] that 1 2≤ κ ≤  is the best for 
identifying the realistic hysteretic loops. Therefore, the set of parameters θ of the 
Bouc-Wen model described by (1), (2) and (4), is 

( ) [ , , , , ]t c kθ = β γ κ , (5) 

for a given n [20]. 

2. THE PREISACH MODEL 

The Preisach model, which describes a hysteretic operator with nonlocal 
(global) memory, implies mapping of input ( )u t  on output ( )f t  in the form [12–14, 
21–24]. 
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( ) ( , ) ( )d df t P G u tαβ
α≥β

= α β α β∫∫ , (6) 

where Gαβ  is an elementary hysteretic operator − a rectangular loop shown in 
Fig.5. 

 
Fig. 5 – Elementary hysteretic operator. 

Numbers α and β correspond up and down switching values of input, 
respectively 1+  and 1−  are two possible output values. Therefore, in the Preisach 
model a dynamic system is described as a collection of independent two state 1±  
switching units. As the input ( )u t  is monotonically increased, the ascending 
branch abcde  is followed. When decreased, the descending branch edfba  is 
traced. The function ( , )P α β  is named the Preisach function. It is assumed α ≥ β , 
which is quite natural in the physical point of view. Thus, the integration in (6) is 
performed over the right triangle in ( , )α β  plane, with the line α = β  being the 
hypotenuse and point 0 0 0( , )α β = −α  being the triangular vertex. The value of 

0 0α >  is defined by the largest extremum value of the input function ( )u t . 
There is a one-to-one correspondence between Gαβ  operators and points(α, 

β) of the triangle. The triangle (Fig. 6) is called a limiting triangle support for the 
Preisach function, since the Preisach function ( , )P α β  is assumed to vanish outside 
the triangle. The interface between two parts of the triangle is a staircase line ( )L t  
whose vertices have (α, β) coordinates that are local input maxima and minima at 
previous instants of time. 
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If the input is increasing, the line of ( )L t  is horizontal; if it is decreasing, it is 
vertical. At any instant of time the triangle is subdivided into two sets: a positive 

( )A t+  consisting of points ( , )α β  for which ( ) 1G u tαβ = , and a negative set ( )A t−  
consisting of points ( , )α β  for which ( ) 1G u tαβ = − , separated by ( )L t . Thus, 
equation (6) can be rewritten as 

( ) ( )

( ) ( , )d d  ( , )d d
A t A t

f t P P
+ −

= α β α β − α β α β∫∫ ∫∫ . (7) 

 
Fig. 6 – Limiting triangle with a staircase interface line L(t). 

The model has the following property: each local input maximum wipes out 
the vertices of ( )L t  whose α coordinate are below this maximum, and each local 
minimum wipes out the vertices whose β coordinates are above this minimum. In 
other words, the Preisach model stores the alternating series of dominant input 
extrema, while the other extrema are wiped out (Fig.7). The wiping out of vertices 
is equivalent to the erasing of the history associated with these vertices. The major 
hysteretic curve must be defined, at a point h, by the integral (7). Secondary curves 
are defined by both the primary curve from which it departs, and the point at which 
it departs from its parent curve, i.e. by two values 1h  and 2h . 

All hysteretic loops corresponding to the same extremum values of input are 
congruent. Such minor loops, obtained by reversal from ascending or descending 
branch of the major loops, can only be shifted relatively to each other along the 
output axes. The Preisach function ( , )P α β  can be determined as follows. Starting 
from the state of negative saturation, let the input be increased to some value α. 
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The output follows the ascending branch of the major loop, and at input u = α  has 
the value fα . If the input is subsequently decreased to some value β, the output 
follows the corresponding reversal (transition) curve. 

 

Fig. 7 − The interface model. 

Denoting the output value at u = β  by fαβ , then from the limiting triangle it 

follows 

( , ) 2 ( , )d dF f f P
α α

αβ α
β β

⎛ ⎞
⎜ ⎟′ ′ ′ ′α β = − = − α β α β
⎜ ⎟
⎝ ⎠

∫ ∫ , (8) 

where by differentiation with respect to β and α, respectively, we have 

( , ) ( , )P P−α −β = α β ,    
21 ( , )( , )

2
FP ∂ α β

α β = −
∂α∂β

. (9) 

3. MAIN RESULTS 

The composite made out of stalk based maize fiber and unsaturated polyester 
resin polymer as matrix, has an isotropic structure being free of voids, with 
reinforcement done by unidirectional fibres, not porous and perfect aligned. Perfect 
bonding between the fibres and the matrix is assumed [1,  26]. 
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We present a model for the fiber-matrix interface based on the Goland and 
Reissner's theory [25]. Two bodies called adherents are connected by an adhesive 
bond that we call the interface. The plane median surface layer is denoted by w and 
its thickness with h. We assume that the adhesive material is more flexible than the 
adherents. The small thickness of the interface and its flexibility lead to neglect the 
normal stress in the plane interface. Tensions perpendicular to the layer and the 
shear stresses are constant with respect to thickness. 

Let 1Ω  and 2Ω  be regions occupied by the adherents, and JΩ  the interface 
(Fig.7). The principle of virtual work gives 

1 2 1 2

( )d d
J

ij ij i iu V t u S
Ω ∪Ω ∪Ω ∂Ω ∪∂Ω

σ ε =∫∫∫ ∫∫ , (10) 

where ijσ  are components of the Cauchy stress tensor, ijε  components of the strain 

tensor, , ,( ) 1/ 2( )ij i j j iu u uε = + , u is the displacement vector, and the surface 

stresses it  prescribed on 1 2∂Ω ∪ ∂Ω . The Hooke law is  

ijσ =
1

E
+ ν

(
1 2ij kk ij

ν
ε + ε δ

− ν
), (11) 

where E is the Young’s modulus, ν the Poisson ratio, and ijδ  the Kronecker 
symbol. The material properties in the adhesives are denoted by ,E ν , and in the 
adherent 1 2Ω ∪ Ω  by 0 0,E ν . 

The boundary conditions are 

( )ij +σ = ( )ij −σ   on S1∪ S 2 . (12) 

As the interface is thin, the assumption of motion variying linearly with 
thickness, is assumed 

0 3i i iu u x w= +   in JΩ , (13) 

1 2
0

1 ( )
2i i iu u u= + ,     1 21 ( )i i iw u u

h
= − , (14) 

1
1 2 1, 2( , ) ( , / 2)i iu x x u x x h= ,   2

1 2 1, 2( , ) ( , / 2)i iu x x u x x h= − , (15) 

The virtual work of the interface W J  

W J = ( )d
J

ij ij u V
Ω

σ ε∫∫∫ , (16) 
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can be written as 

2 2 2

3 3 3 3 3

2 2 2

ˆ[ d d d ( )

h h h

J

h h h
W x a x x k x w wαβ αβ αβ αβ β β β

− − −ω

= σ + σ + σ +∫∫ ∫ ∫ ∫ + 

2 2

3 3 3 33 3 3 1 2

2 2

d ]d d

h h

h h
x x s dx w x xβ β

− −

+ σ + σ∫ ∫ , (17) 

with aαβ , kαβ , wβ + ŵβ , 3w , sβ  parameters which describe the deformation of the 
interface (Fig.8) 

0 , 0 ,
1 ( )
2

a u uαβ α β β α= + ,  , ,
1 ( )
2

k w wαβ α β β α= + ,  ŵβ = 03,u β ,  sβ = 3,w β . (18) 

The interpretation of these deformations is presented in Fig.  8. 

 
Fig. 8 − Types of the interface deformations. 
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The interface deformation can be expressed as 

αβε = aαβ + 3k xαβ ,     3βε =( wβ + ŵβ + sβ 3x ) / 2,     33ε = 3w . (19) 

The interface is thin (small h), then the stress has the same order of 
magnitude both in the interface and in constituients, respectively. As the fibers and 
the matrix are more rezistent than the interface 0E E>> , that is natural to assume 

αβε << 3 jε . Therefore, aαβ  and kαβ  can be neglected in (19)1. By comparing wβ  

and ŵβ  in (19) 2 , and noticing that wβ  prevails in size when h is small, the fourth 

term of (17) can be neglected. Also, sβ  disappears, and a simplified description of 

the interface deformation results as follows 

W J =
/2

3 3 1 2
/2

d d d
h

i i
h

x w x x
ω −

⎛ ⎞
⎜ ⎟σ
⎜ ⎟
⎝ ⎠

∫∫ ∫ ,    αβε ~0,   3βε ~ wβ /2,   33ε ~ 3w . (20) 

Considering the generalised stress 
/2

3 3
/2

d
h

i i
h

p x
−

= σ∫ , we get 

i ij jp C w= ,   ,( )ij i jC =
1/2 0 0
0 1/2 0

1
0 0 1/2

Eh
⎡ ⎤
⎢ ⎥
⎢ ⎥+ ν
⎢ ⎥⎣ ⎦

,   3(1 )
p

hαβ αβ
ν

σ = δ
− ν

,   3
1

i ip
h

σ = .     

(21) 

The potential imperfect bonding between fibre and matrix referring to fibre-
matrix separation, are undesirable because they lead to weakening the integrity of 
the composite. materials with poor fibre content considered. The fibre is an 
isotropic material with Young’s modulus fE = 8.58 GPa. The matrix is a 

polymeric resin with Young’s modulus mE = 1.3 GPa, and Poisson ratio mν = 0.3. 
The volume fibre content is varying from 20 to 25%. The level of stress in the fiber 
is lower and in the matrix is higher than in the composite with low fibre content. 
The average value of the composite are computed using the Halpin-Tsai, Nielson 
and Cox models. The Halpin-Tsai equation is often used for short-fiber reinforced 
composite [25,  26] 
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1
1

f

m f

VP
P V

+ ζη
=

− η
, (22) 

where P represents any one of the composite moduli such as the longitudinal 
moduli ( , mfE E ) for which 2( / )l dζ = , with l /d  the fiber aspect ratio, the 

transverse moduli for which 2ζ = , and longitudinal shear moduli ( ,f mG G ) for 

which 1ζ = , fP  and mP  are the corresponding moduli of the fiber and matrix, 
respectively, ζ  is a parameter that depends on the particular property being 

considered, and 
( / ) 1
( / ) 1

f m

f m

P P
P P

−
η =

+
. 

The Nielson model changes the Halpin-Tsai equation as [27] 

1 2
1

f
c m

f

s V
E E

V
+ η

=
− ψη

, (23) 

*

*

1 2
1

f
c m

f

s V
T T

V
+ η

=
− ψη

, (24) 

where 

max
2
max

11 fV − φ
ψ = +

φ
,   

2
f m

f m

E E
E sE

−
η =

+
,   *

2
f m

f m

R R
R sR

−
η =

+
. (25) 

Here, ,c fE E  and mE  are the moduli of the composite, fiber and matrix, 

respectively, ,c fT T  and mT  are the strength of the composite, fiber and matrix, 

respectively. The parameter maxΦ  is the maximum packing fraction of the 
reinforcement. The Cox model [28] is a micromechanical model for short fibers 
oriented: 

11 (1 )l f f f mE V E V E= η + − , (26) 

where 

tanh( / 2)1
/ 2l
l

l
β

η = −
β

,   2
ff

H
r E

β =
π

,   2
ln( / )

m

f

G
H

R r
π

= ,   R
f

f

KR r
V

= . (27) 
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where ,f mE E  are the moduli of the fiber and matrix, respectively, mG  is the shear  
modulus of the matrix, and lη  is a length dependent efficiency factor, RK  is a 
constant and is usually chosen to be one. 

To imitate the experimental data, the Bouc-Wen parameters [ , , , , ]c kθ = β γ κ  
are chosen to be 

c = 0.07 kNs/m,   k = 25 kN/m,   β = 2,   γ = 1,   1.5κ = . 

The parameter n  is kept constant ( 2n = ). 
The available experimental measurements refer to force-displacement data 

for of beams (Figs.  9,  10,  11) reinforced with natural fibres such as basalt, hemp 
and maize, for different values of fibre volumetric fraction [29]. 

 
Fig. 9 − Experimental force-displacement 
of a beam reinforced with basalt fibers. 

Figure 12a shows the experimentally measured displacement for the maize 
composite. The prediction errors are shown in Fig.  12b. Clearly, the Bouc-Wen 
model is accurate. 
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Fig. 10 − Experimental force-displacement 

of a beam reinforced with hemp fibers. 

 
Fig. 11 − Experimental force-displacement 

of a beam reinforced with maize fibers. 
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Fig. 12 − a) Measured and imitated values 

of displacement variation in time; b) prediction errors. 

The central result of the Preisach modeling is presented in Fig.13 for maize 
composites, after: a) 4; b) 9; c) 15; d) 20; e) 30, and f) 45 cycles.  

We observe, that the strain energy increases with the increase of 
deformation according to traditional composites, and the composite can 
sustain large enough deformations without failure. 
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Fig. 13 − Force-displacement loops for a beam reinforced with maize fibers: 
a) 4; b) 9; c) 15; d) 20; e) 30, and f) 45 cycles. 
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4. CONCLUSIONS 

The presented Preisach model captures hysteresis in a composite made out of 
stalk based maize fiber and unsaturated polyester resin polymer as matrix with 
methyl ethyl ketone peroxide as a catalyst and Cobalt Octoate as a promoter. 

The model is implemented using a numerical technique based on a Bouc-
Wen model to imitate missed experimental data. The main advantage of the model 
is associated with its simple working, allowing describing of the hysteretic 
behavior based on measurement results. The Preisach model remains a good model 
for hysteresis in composites where the load fluctuation is relatively small and the 
range of the excitation is limited. 
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