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ON THE POST-EARTHQUAKE DAMAGE 
DETECTION OF STRUCTURES 

MIHAI CIUNCANU1, VETURIA CHIROIU2 

Abstract. The paper introduces an alternative method for evaluation the post-earthquake 
damage in the multidegree of freedom structures with viscous and hysteretic behavior. 
Assuming damage as a scalar variable is very simplistic. However, this simplification 
helps us to understand the damage as the failing which impairs functional and working 
conditions of engineering structures. The damage is computed from simulated data 
and the characteristics of the structures. The role of the strength and stiffness degradations 
in the damage evaluation is investigated, via extended Bouc-Wen model. The transition to 
damage as a vector variable is in progress. 
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1. INTRODUCTION

In seismically active regions, such as Vrancea, the detection and 
quantification of the post-earthquake damage in structures is a challenge for 
structural engineers. The structural monitoring techniques are based on the 
vibration analysis data recorded on structures under dynamic excitations. 
The vibration data gathered by monitoring systems give useful information 
in the structural response and identification of the damage. In this context, 
the damage is an additional excitation which can modify the output signals. 
The Structural Health Monitoring (SHM) is usually tracking the damage by 
interpretation the changes that appear in measuring data so that the structural 
reability can be quantified [1–3]. The detection of damage is an inverse 
problem where measurable outputs are used to detect the damage. Kachanov 
proposed in 1958 a model of damage based on a dimensionless scalar variable 
ψ denoted continuity [4]. An undamaged material is described by ψ = 1, 
whereas ψ = 0 characterizes a completely destroyed material with no load 
carrying capacity. The complementary quantity D = 1–ψ is therefore a measure 
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of the state of deterioration of the material or damage. For 0D =  the 
material is undamaged, whereas 1D =  corresponds to the complete loss of 
the integrity of the material. The deterioration of the material is caused by 
microcracks and voids which decrease in load carrying area. For example, in the 
elongation of the beam the nominal stress is 0 0/P Aσ =  where 0A  denotes initial 
cross sectional area before the load is applied. The real stress is /P Aσ =  where A 
denotes cross sectional area as defined by exterior cross sectional size. The 
effective stress is /(1 )s D= σ −  where D is the damage parameter, according to 
Rabotnov) [5–7]. The effective stress can be rewritten as /[ (1 )]s P A D= − . 

Consequently, the quantity (1 )A D−  can be interpreted as a fictitious load 
carrying area, decreasing from A to 0. The value 0 means rupture or failure of the 
material. The damage law can be postulated as D Csα=  [8,  9], where C and s are 
experimentally obtained. We have for majority of metals 0.2 0.8D< < , according 
to Chaboche [10]. A single scalar damage parameter is often insufficient to describe 
the characteristics of damaged structures. For example, Murakami [11] described 
the microscopic mechanisms and features for each type of damage. 

In this context, the generation and growth of microscopic cracks caused by 
elastic deformations and change of effective stiffness due to the strength reduction 
and elastic modulus drop characterize the elastic-brittle damage (metals, rocks, 
concrete, composites). The generation, growth and coalescence of microscopic voids 
caused by large elastic-plastic deformations characterize the elastic-plastic damage 
(metals, polymers, composites). The generation, growth of microscopic cracks in the 
vicinity of the surface, high cycle failure larger than 105 or very low cycle failure 
below 10, characterize the fatique damage. The generation and growth of microscopic 
voids and cracks in metal grains (ductile creep damage) or in intergranular boundaries 
(brittle damage) due to grain boundaries sliding and diffusion characterize creep damage. 

The effect of earthquakes on the structures may be described by measured 
vibration response of the structure. The vibration response can be used as a diagnosis 
tool to assess the damage in structure. Various strategies have been proposed in this 
context [12–17]. 

The objective of this paper is to present an alternative method for evaluation 
the post-earthquake damage in the structures. The method is based on the dissipated 
energy. The energy can be dissipated during the earthquake as the frictional heat 
generation, or in defects. The amount of energy dissipated on damage is proportional to 
the amount of mechanical energy delivered to the structure. The role of the strength 
and stiffness degradations in the damage evaluation is investigated, via extended 
Bouc-Wen model. 

A useful analytical description of the hysteretic behaviour was introduced by 
Bouc [18] and extended by Wen [19] via the following inverse problem: given a set 
of experimental input-output data, how to adjust the Bouc-Wen model parameters 
so that the output of the model matches the experimental data. Once the Bouc-Wen 
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model parameters are identified, the resulting model is considered as a resonable 
approximation of the real hysteresis when the error between the experimental data 
and the output of the model is small enough from practical point of view [20–23]. 
The genetic algorithms were widely used for curve fitting the Bouc-Wen model to 
experimentally obtained hysteresis loops [24–26]. 

2. SDOF WITH VISCOUS AND HYSTERETIC DAMPING 

Let us begin with a SDOF structure subjected to base excitation 
( , , ) 0my cx R x z t+ + = , (1) 

where x is the relative displacement, x  is the relative velocity, gy x a= +  is the 
absolute acceleration of the mass, ga  is the ground acceleration used to excite the 
model, m is the mass, cx  is damping restoring force with c the damping 
coefficient, and ( , , )R x z t  is the restoring force 

( , , ) (1 )R x z t k x k z= α + − α , (2) 

which is a sum of the linear restoring force kxα  and the hysteretic restoring force 
(1 )kz− α , where 0 1< α <  is the rigidity ratio representing the relative 
participations of the linear and nonlinear terms [14]. The function ( , )z x x  is the 
hysteretic auxiliary variable representing the hysteretic displacement function of 
the time history of x. It is related to ( )x t  through the constitutive law the force-
displacement [17,  27,  28] 

( )1d ( ) ( sgn( ) | | | | )
d

n nz h z A x z z z
x

−η = − ν β + γ , (3) 

where ( )h z  is the pinching function (for 1h =  the function is not pinch), A a 
parameter that controls the tangent stiffness and ultimate hysteretic strength, β,γ,n 
are the hysteretic shape parameters and ν,η are the strength and stiffness 
degradation functions (for 1ν = η =  the model is not degrading). These functions 
depend on the dissipated hysteretic energy. The law (3) extends the Bouc-Wen 
model by including the pinching function. This equation originally driven in 
Baber’s studies in 1981 to 1986 [29–32]. 

By setting d / dz x  to zero in (3) and solving it for z, we obtain the ultimate 
hysteretic strength uz  

1/

( )

n

u
Az

⎛ ⎞
= ⎜ ⎟ν β + γ⎝ ⎠

. (4) 

The pinching function ( )h z is taken under the form [16] 
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2 2
1 2( ) 1 exp{ ( sgn( ) ) / }uh z z x z= − ζ − − ζ , (5) 

where 1 1ζ <  is a variable which controls the magnitude of initial drop in the slope 
d / dz x , and 2ζ  a variable which controls the rate of change of the slope d / dz x . 
The motion equations for SDOF are 

(1 ) 0my cx kx kz+ + α + − α = , (6) 

( )1d ( ) ( sgn( ) | | | | )
d

n nz h z A x z z z
x

−η = − ν β + γ . (7) 

In order to obtain an energy balance relationship, we multiply both equations 

(6) and (7) by d d
d
x t
t

 and integrate between the time 1t  from which the system 

starts to move from rest, and the time 2t  for which the system comes to rest after 
motion 

2 2 2 2

1 1 1 1

2d d d (1 ) d 0
t t t t

t t t t
m x y t c x t k xx t k xz t+ + α + − α =∫ ∫ ∫ ∫ , (8) 

( )2 2

1 1

1d d ( ) ( sgn( ) | | | | ) d
d

t t n n

t t

zx t x h z A x z z z t
x

−η = − ν β + γ∫ ∫ . (9) 

By noting the elastic strain energy stored between 1t  and 2t  with U 

2 2

1 1

( )

( )
d d

t x t

t x t
U k xx t k x x= α = α∫ ∫ , (10) 

the energy dissipated by hysteretic loops with hysE  

2 2

1 1

( )

( )
(1 ) d (1 ) d

t x t

hys t x t
E k xz t k z x= − α = − α∫ ∫ , (11) 

and the energy dissipated by viscous damping between 1t  and 2t  with dampE  

2

1

2d
t

damp t
E c x t= ∫ . (12) 

Eqs. (8) and (9) become 

2

1

d 0
t

damp hyst
m x y t E E U+ + + =∫ , (13) 

( )2

1

( ) 1
2 1( )

( ) ( sgn( ) | | | | ) d ( ( ) ( ))
x t n n
x t

h z A x z z z x z t z t−− ν β + γ = η −∫ . (14) 
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When the system has coming to rest after moving, the strain energy U tends 
to zero, so from (12) we have 

2

1

d
t

d damp hys t
E E E m x y t= + = − ∫ , (15) 

where dE  is the total dissipated energy. 
In the spirit of [11] let us define the damage parameter 0 1D≤ <  for SDOF as 

2

1

2

1

2d
1 1

d

t

thys damp
t

d d
t

c x tE E
D

E E m yx t
= = − = +

∫
∫

, (16) 

where c is the damping constant and m is the mass. The damage parameter D 
always lies in the interval [0, 1]. When 0hysE =  we have d dampE E=  and then  
D = 0 that means it is no damage, while 0dampD =  leads to 1D =  which is a 
nonrealistic situation because the energy cannot be dissipated only through 
hysteretic loop. Some amount of energy always is dissipated through damping. 

The damage parameter D is not appropriate for applications because the static 
damage component is not existing and therefore D cannot reflect very slow dependent 
of time load. 

Actually, the definition (16) does not make explicit or implicit references to 
the stiffness of the structure, therefore it does not rely on extension of concepts 
such as natural frequency [12]. So, by dividing (1) by m, we obtain 

2 2
0 0 0 02 (1 ) 0y x x z+ ζ ω + αω + − α ω = , (17) 

where 0 /k mω =  and 0 / 2c kmζ =  is the damping ratio, and the damage 
parameter D can be rewritten as 

2 2

1 1

2 2

1 1

2 2
0 0 04 d 2 d

1 1
d d

t t

t t
t t

t t

x t x t
D

T yx t yx t

πζ ζ ω
= + = +

∫ ∫
∫ ∫

, (18) 

where T is the fundamental period. Definition (18) is usually used for cases that do 
not exhibit a well-defined linear range before yielding. 

The damage evaluation needs the signification of each unknown parameter 
1 2{ , , , , , , }A nα β γ ζ ζ  and two unknown functions { , }ν η  which describe the hysteretic 

phenomenon. In the following we will see that , ,α β γ  and n can be directly evaluated 
from the experiment, i.e. the restoring force against displacement. The system 
properties are evaluated from the model. The first natural frequency is calculated as 

/k m , where m is the estimated mass of the system and k the initial stiffness. 
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The value of the linear damping ratio 0ξ  may be chosen within the range 
0.01 and 0.05. 

It was proved in [33] that A is redundant and, as a consequence, it is assumed 
to be 1. The parameter α is computed as 

f

i

k
k

α = , (19) 

0

d
di

z x

Rk kx = =
= = ,     d

d
x

f
z z

Rk kx =
= = α . (20) 

The equations for loading paths are obtained from (3) for 1ν = η =  and 1h =  

d 1 ( )
d

nz z
x

= − β + γ ,     0zx > , (21) 

and for unloading case 

d 1 ( )
d

nz z
x

= − γ − β ,     0zx < . (22) 

The parameters β and γ are determined from (3) for 1h =  and 1ν = η =  written 
under the form [17] 

d 1 ( )
d

nz z
x

= − β + γ ,    0z ≥ ,  0x ≥ , (23) 

d 1 ( )
d

nz z
x

= − γ − β ,    0z ≥ ,  0x < , (24) 

1d 1 ( 1) ( )
d

n nz z
x

+= + − β + γ ,   0z < ,  0x < , (25) 

1d 1 ( 1) ( )
d

n nz z
x

+= + − γ − β ,   0z ≤ ,  0x ≥ . (26) 

For non-degrading case 1ν = , we obtain from (4) and (23) 

d 1
d

n

x

z z
x z

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
, (27) 

from which n can be determined. The shape parameters are chosen so that 
0β + γ >  and 0γ −β ≤ , with 0β >  in order to have a positive energy dissipation. 
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The stiffness and strength degradation functions ν and η are related to the 
dissipated hysteretic energy hysE  [16] 

( ) 1hys hysE Eνν = + δ ,    ( ) 1hys hysE Eηη = + δ , (28) 

where hysE  is given by (11) 

2

1

2
0 1 d

t
f

hys
i t

k
E zx t

k
⎛ ⎞

= ω −⎜ ⎟
⎝ ⎠

∫ ,    0 1f

i

k
k

< < . (29) 

The energy hysE  is the cumulative dissipated hysteretic energy, in other 

words the sum of the loops areas. The functions ( )hysEν and ( )hysEη  control the 

strength and stiffness degradations. 0νδ >  and 0ηδ >  are unknown parameters. 

The stiffness degradation occurs when the elastic stiffness degrades with increasing 
ductility, as shown in Fig.1 left. This behavior occurs in damage patterns of the 
ductile behavior of structures to earthquakes. The strength degradation is described 
by reducing the capacity in the backbone curve, as shown in Fig.1 right. 

 
Fig. 1 – Left: stiffness degradation behavior; right: strength degradation behavior [17]. 

Figure 2 shows the pinching behavior in the diagram d / dz x  against / uz z , 
where xz  is the ultimate hysteretic strength, given by (4). The pinching is the 
typical behavior of structures that buckle when subjected to compressive loads. 
This behavior usually is the result of cracks or slips. 



 Mihai Ciuncanu, Veturia Chiroiu 8 196 

 
Fig. 2 – Pinching behavior for ( ) 1h z ≠  [17]. 

To identify the remaining parameters 1, ,ν ηδ δ ζ  and 2ζ , that cannot be 
directly evaluated from the experiment, a genetic algorithm can be applied in the 
same manners as in [24–27], by using experimental data. By using (16), the 
damage can be defined as 

1/ 2 1/ 2

, ,
(1 ) damp hys

damp mon hys mon

E E
D

E E

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= − α + α
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, (30) 

where α must be chosen based on experiment and depends on the material. The 
dampE  is the energy dissipated by viscous damping defined by (12), ,damp monE  is 

the monotonic energy due to the monotonic viscous dissipation capacity, and hysE  
is the hysteretic energy dissipation capacity, and ,hys monE  is the monotonic hysteretic 
energy dissipation capacity. The monotony refers to the monotonic loading. We see 
from (30) that D is zero if the response is linear, and is unity when the displacement 
capacity under monotonic loading is reached. This does not mean that D exceeds 
one under dynamic loading. Both definitions for the damage parameter D, (18) and 
(30) coincide at zero when the response is linear and will have to be mapped for 
nonlinear response for other values. 

3. DAMAGE EVALUATION 

In this example, the artificial ground acceleration ga  which excites the SDOF 
structure is displayed in Fig. 3. The characteristic period of ground motion is 

gT = 0.6 s for a long epicentre distance. The structure period varies from 0.1 to 
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1.2 s with an increment of 0.1 s. The time 1t  from which the system starts to move 
from rest is t1 = 0, and the time 2t  for which the system comes to rest after motion 
is considered t2 = 60 s (50 periods). As we said before, the duration of seismically 
excitation is important. The longer the earthquake excitation, the more energy 
enters into the structure, thus more energy dissipates on damage. The damping ratio 
is c = 0.05. The hysteretic parameters are summarized in Table 1. The total input 
energy inW 2[(cm/s) ]  is shown in Fig. 4.  Each turning point in Fig. 4 approximately 
corresponds to Tg. 

Table 1 
The parameter values used in the numerical simulation 

α β γ n 
1ζ  2ζ  νδ  ηδ  

0.47 0.87 0.90 2.15 0.94 0.72 0.21 0.22 

 
Fig. 3 – Ground acceleration used to excite the model. 

 
Fig. 4 – Total input energy. 
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The damage parameter is computed from (30) after solving the motion equations. 
The solution x  and x  are presented in Figs. 5 and 6 by dotted lines, whereas the 
contribution of viscosity is shown by solid lines and the contribution of the hysteretic 
behavior by red lines, respectively. 

Although the damage parameter does not depend on time, it is understandable 
that the damage is additive and cumulative over time. Cumulative damage can be 
computed on different interval of time during the seismically excitation. Cumulative 
damage after 60 s is presented in Fig.7. 

According to Fig.  7, the damage parameter is additive and does not decrease. 
The damage level increases from D = 0.16 to D = 0.38 in 60 s. It is intuitively 
estimated and numerically confirmed that the average damage per unit of time is 
given by / 3ν ηδ + δ . It corresponds to the value D = 0.03. 

 
Fig. 5 – Displacement x: solution (dotted line), contribution of viscous (solid line) 

and hysteretic behavior (red), respectively. 

 
Fig. 6 – Flow acceleration: solution (dotted line) and contribution of viscous (solid line) 

and hysteretic behavior (red), respectively. 
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Fig. 7 – Cumulative damage for 5 moments of time. 

The energy Edamp is represented in Fig. 8, for c = 0.05. The effect of viscous 
damping on the input energy is demonstrated. A larger damping ratio can 
remarkable reduce the input energy. 

The energy Ehys is represented in Fig.  9. We observe that Ehys has a graphic 
with approximately parallel lines with the input energy lines shown in Fig.  4, and 
has similar shapes. The percentage of hysteretic energy in total input energy is 
approx. 37.5 % and is independent of structural period and ground motion. 

 
Fig. 8 – The energy dissipated by viscous damping for c = 0.05. 
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We know that cumulative damage leads to failure of the structure through 
material failure or through the structural instability. The material failure is independent 
of structural geometry and size. The structural instability depends on structural 
geometry and size and it is governed by the stiffness of the material. 

Localization of high amplitudes solutions in certain interval of times as shown in 
Figs. 5 and 6 is related to the brittle damage of structures for which shear bands, 
plastic hinges and localized instabilities appear into the material. This damage 
localization problem is the foundation for local breakdown or failure. 

 
Fig. 9 – The energy dissipated by hysteresis behavior. 

The stiffness and damage at each state represented in Fig. 7 for 5 moments of 
time, are shown in Table 2. We see that in severe damages, the reduction of stiffness is 
approximately 37–40%, while in the minor cases the reduction is approximately 22%. 

Table 2 

Stiffness and damage at each state 

Moments of time Stiffness [N/m] Percentage of remaining stiffness 

1 4.8 × 105 100 
2 3.9 × 105 84 
3 3.7 × 105 82 
4 3.4 × 105 74 
5 2.3 × 105 64 
6 1.8 × 105 62 
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In the case of corrupted experimental data introduced during measurement, 
the hysteretic system is identified with simulated noisy data as 

( ) (1 ) ( )i i iy t r y t= + ε , (31) 

where ir  is a sequence of random variables with a uniform distribution in the 
interval (−1, 1) and parameter ε is the noise to signal ratio. Identification results 
from noise-corrupted data are presented in Table 3 for , ,α β γ  and n. The parameters 

1, ,ν ηδ δ ζ  and 2ζ , are determined from a genetic algorithm by using corrupted 
experimental data. 

Table 3 

The parameter values from corrupted data 

α β γ n 1ζ  2ζ  νδ  ηδ  

0.472 0.872 0.906 2.155 0.943 0.726 0.209 0.218 

The true parameter values are given in Table 1. The results of Table 2 
demonstrate that the proposed scheme is insensitive to noise. 

A similar analysis can be carried out for the evaluation of the damage for 
multi-degree of freedom structures [33, 34]. The general energy balance expression 
can be written as 

( )2

1

T T T d 0
t

Rt
x M y x C x x F t+ + =∫ , (32) 

where ,x x  are the relative displacement and velocity vectors, y  the absolute mass 
velocity vector, M,C the mass and damping matrices, and RF  the restoring force vector. 

Similarly to (16), we can write 

2

1

2

1

T d
1 1

d

t

thys damp
t

d d
t

x C x tE E
D

E E M yx t
= = − = +

∫
∫

. (33) 

The x and C are not known and their estimation must be carefully performed 
in order to include the threshold of damage initiation and attainment of the critical 
strength. A disadvantage of this model is that it cannot be applied to complex structures 
where micro-damages and crack distribution in earthquake-damaged areas are essential 
for a real damage evaluation. For these cases, the continuum damage approach must be 
applied through the concept of fabric tensors in the frame of the viscoelasticity theory. 
Kachanov [4] introduced the theory of continuum damage for the isotropic case of 
uniaxial tension. Rabotnov [5] modified this theory for the case of creep. The damage 
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variable is interpreted in their works as the effective surface density of micro-damages 
per unit volume. A fictitious undamaged configuration of the body is considered 
and by comparing it with actual earthquake-damaged configuration, the damage 
constitutive equations are obtained. The concept of fabric tensor has been introduced 
by Kanatani [35] to describe directional data and microstructural anisotropy in 
damaged areas. Fabric tensors are further elaborated by Lubarda and Krajcinovic 
[36] to describe crack distributions in damaged structures. 

4. CONCLUSIONS 

An alternative method for evaluation the post-earthquake damage in the SDOF 
structures with viscous and hysteretic behavior is presented. The method is based 
on the dissipated energy. Assuming damage as a scalar variable is very simplistic. 
However, this simplification helps us to understand the damage as the failing which 
impairs functional and working conditions of engineering structures. Damage can also 
be regarded as a modification to material properties and/or structural physical parameters. 

The proposed damage parameter depends on the ratio of the dissipated energy 
by means of hysteresis and the total dissipated energy. The Bouc-Wen model is 
modified in order to include the experimentally observed characteristics such as the 
stiffness and strength degradation and pinching, respectively. The damage parameter is 
computed from simulated data and the characteristics of the structure. Although the 
damage formula does not depend on time, it is understandable that the damage is 
additive and cumulative over time. Cumulative damage can be computed on different 
interval of times during the seismically excitation. The total damage increases in time. 
Cumulative damage is done through material failure or through the structural insta-
bility. The damage localization is of interest to the mechanics of earthquakes because 
the localization leads to incapability of the structure to transmit further the energy. 

In general, the proposed method is not particularly sensitive to noise as 
demonstrated by corrupted data. 

The problem treated in this paper considers that the damage is a scalar. For real 
applications under realistic conditions and real instrumented structures, it is necessary 
to treat the damage as a vector or a second-rank, fourth-rank or eighth damage tensors. 
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