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ON THE SOFT ROBOTICS CONSTITUTIVE LAWS 

SIMONA IOANA DUMITRU1, CORNEL BRISAN2,  
DAN DUMITRIU1 , VETURIA CHIROIU1 

Abstract. Soft robotics is a class of hard and soft robots that contain a rigid internal 
structure and nonrigid body parts. The elastic components consist of nanostructured 
materials which exhibit new features such as the echoes reflected from skin and 
surrounding components, the autonomy of power, audio and video sensing, visionary 
capabilities of self-repair and the capacity to carry large loads for a desired mission. In 
this paper, we try to find a class of constitutive laws of soft-bodied robots by using the 
pseudospherical reduction approach which associates to the governing equations a 
pseudospherical surface with negative Gaussian curvature. The pseudospherical surface 
permits to manipulate the Gaussian curvature and therefore to obtain a maximum tensile 
strength for nanostructures made from carbon nanotubes. The aim of the article is to 
develop constitutive laws for a class of nanoropes based on carbon nanotubes with 
adjustable mechanical properties in order to match the compliance of natural tissues 
without advanced feedback control. 

Key words: soft robotics, nanostructured materials, pseudospherical reduction method, 
  carbon nanotubes, Tzitzeica surface, negative Gaussian curvature. 

1. INTRODUCTION

The term “Soft Robotics” is used to designate a new class of robots able to 
deform and adapt the shape to external loadings, constraints and obstacles [1–4]. 
Unlike rigid robots, soft robots are made of soft nanostructured materials similarly 
to biological material, able to interact with biological systems for different 
purposes. The compliance matching of soft robots with living tissues reduce 
interfacial stresses and increase the comfort and safety of the human user [5,  6]. 

Researchers look for inspirations in nature, to exploit the elastic mechanisms 
with which the animals settle a variety of tasks starting with stepping dampers, 
jumping catapults, energy storage for motion, jumping off water’s surface and 
ending with learning the collective behaviour from ant colonies.  

It is interesting to see that soft robotics represents a part of the educational 
research for students, for example in the Harvard Biodesign Lab. Ingenious 
initiatives for real-world applications have been advanced by students. The soft 
wheel robot (Cornell University, NY, USA) utilizes a cylindrical shell with 
inflatable channels on the exterior to induce a rolling speed of about 6 m/min. The 
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smart braids (University of Michigan, MI, USA) with conductive reinforcing fibers 
provides a way of sensing the deformation and force output of fiber-reinforced 
actuators without any external transducers. Myglove (Olympia High School, WA, 
USA) is a wearable glove that detects and controls tremors using pneumatic 
actuators and so on. 

Nanostructured materials such carbon nanotubes have unique mechanical and 
electronic properties for soft, bendable and stretchable materials that can replace 
conventional stiff and brittle materials, for sensing and actuation equipment [7–11].  

The tensile strength of the carbon nanotube is maximum 30 GPa, the density 
for normalized strength is 56 times that of steel wire, the tensile strength is about 
200 GPa for comparison to the graphite fibres 4.7 GPa and stainless steel 1.5 GPa 
[8–10]. 

Conventional continuum theories are unable to capture the principal features 
of soft-bodied robots experimentally observed, due to the lack of intrinsic length 
scales that represent the measures of internal structure in the constitutive relations. 

In order to overcome this deficiency, different theory have been used. The 
Mooney-Rivlin, Ogden and Yeoh constitutive models and other theories are 
empirical models based on experiment data and able to simulate the nonlinear 
elasticity of soft materials [12]. The nonlinear stress-strain relationship to moderate 
and large strains represents the principal feature of soft materials. Currently, there 
no exist theoretical solutions for kinematic or dynamic modelling problems of soft 
materials [13–17]. A soft-bodied robot is approximating the continuum system as 
many modular elements connected in a special pattern, for example the band shaped 
robots, or serial arrangement of Voigt models, or series of parallel mechanisms 
[18]. A constitutive law must describe the global nonlinear mechanical properties 
of the soft-bodies robots, which cannot be treated empirically. 

In this paper, we try to find a class of nonlocal constitutive laws for nanorods 
made from single-wall carbon nanotubes, by applying the pseudospherical reduction 
method for which the motion equations are associated to a pseudospherical surface, 
with negative Gaussian curvature [19,  20]. 

If the ratio 4/K d , where d is the distance from the origin to the tangent 
plane at an arbitrary point is constant, we obtain a Tzitzeica surface [21,  22]. The 
Tzitzeica surfaces are invariants under the group of centro-affine transformations, 
being analogues of spheres in affine differential geometry. 

If the distance d is interpreted as a characteristic length of the body (atomic 
distance), then the long-range interactions among the atoms in carbon nanotubes 
can be described by a nonlocal theory. In the case of carbon nanotubes, d is the 
diameter of the carbon nanotube. 

In the nonlocal theory, the stress at an atom location is determined by the 
interatomic interactions in the neighbours around that location [23,24]. The domain 
of applicability of a continuum theory depends on the ratio ( )0/ , /d l τ τ  or 

( )0/ , /d l ω ω , where l is the external characteristic length associated with the 
external forces (waves, distances over which load distribution change sharply, 
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geometrical and surface discontinuities), τ the time scale (or frequency ω) which is 
the minimum transmission time of a signal (or a frequency), and 0τ  is the external 
characteristic time or frequency) associated with the external forces. All classical 
theories assume / 1d l <<  and 0/ 1τ τ << , i.e. the external forces act simultaneously 
on a large number of regions, so that these regions interact and the result is a 
statistical average of the individual responses. For / 1d l =  and 0/ 1τ τ = , the 
individual fields of intermolecular and atomic forces are important [26–28]. 

2. THE PSEUDOSPHERICAL REDUCTION METHOD 

For understanding the method, let us consider the simplest example of the 
uniaxial deformation of a nanorope made from single-wall carbon nanotubes. 

The nanorope is made from 6 subropes, each subrope being composed from 7 
groups of single wall carbon nanotubes. Each group contains 25 carbon nanotubes 
with two different radii (zigzag and armchair 6.26Å, h = 0.617Å and 16.33Å, 
h = 0.998Å), and the core group consists of 49 chiral carbon nanotube with the 
same radius (3.22Å and h = 0.6Å), into a polymeric matrix [29]. Figure1 shows 
the nanorope. 

 
Fig. 1 − Nanorope [29]. 

The motion Lagrangean equations of the nanorope written in ( , )X t  
coordinate system, are written as 

t Xvε = ,   0 t Xvρ = σ . (1) 

where σ is the uniaxial stress and ρ is the density of the material which depend on 

| |X X ′− , where X ′  is any other point in the nanorope, 0 1ρ
ε = −

ρ
 is the stretch, 

0ρ  is the density of the material in the non-deformed state, and ( )| |,v X X t′−  is 
the material velocity. In a general form, (1) is rewritten as 

 ( ), | |X X ′σ = σ ε − . (2) 
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In terms of the Eulerian coordinates ( , )x x X t= , we write 

d ( 1) d| | dx X X v t′= ε + − = , (3) 

and 

0 d| | d dX X x v t′ρ − = ρ −ρ , (4) 

where ρ depends on | |X X ′− , and X, X ′  correspond to the particle function ψ or 
′ψ  of the Martin formulation. The independent variables are σ and ψ. In the case 

of 0 1ρ = , the Monge–Ampère equation is obtained 

2 2
′ ′ ′σσ ψψ σσ ψ ψ σψ σψ σξ ξ − ξ ξ − ξ − ξ = ε ,     t σ= ξ ,   v ψ= ξ , (5) 

d ( ) dx ′ ′ ′ψ σσ ψ σσ ψ σψ ψ σψ⎡ ⎤= ξ ξ + ξ ξ + ξ ξ + ξ ξ + ε ψ⎣ ⎦ ,   0 | |σσ< ξ ε < ∞ . (6) 

If ( , , )′ξ σ ψ ψ  is a solution of (6), then the particle trajectories are written as 

( ) dx ′ ′ ′ψ σσ ψ σσ ψ σψ ψ σψ⎡ ⎤= ξ ξ + ξ ξ + ξ ξ + ξ ξ + ε ψ⎣ ⎦∫ ,   pt = ξ . (7) 

By solving (7), solution ( , , )t′σ ψ ψ  is obtained, and then the solution of (1) and (2) 
in terms of the Lagrangean variables, are 

( , , )x x t′= ψ ψ ,   ( , , )v v t′= ψ ψ ,   ( , , )t′σ = σ ψ ψ . (8) 

If Σ is a surface in 3  described in the Monge parametrisation 

1 2 3( , )r xe ye z x y e= + + , (9) 

for ( , , )r r x y z=  the position vector of a point P∈Σ  on the surface, the first and 
second fundamental forms are defined as 

        2 2 2 2 2 2d 2 d d d (1 )d 2 d d (1 )d ,x x y yI E x F x y G y z x z z x y z y= + + = + + + +  

2 2 2 2
2 2

1d 2 d d d ( d 2 d d d ).
1

xx xy yy
x y

II e x f x y g y z x z x y z y
z z

= + + = + +
+ +

   (10) 

The Gaussian curvature of Σ  is 

( )
22

2 22 21

xx yy xy

x y

z z zeg f
EG F z z

−−
Κ = = −

− + +
. (11) 

If Σ  is a hyperbolic surface, the total curvature is negative and the 
asymptotic lines on Σ  may be taken as parametric curves 
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xzσ = ,   yzψ = , (12) 

and 
xσξ = ,   yψξ = , (13) 

where ξ is a dependent variable. Therefore, we have 

2
yy

xx yy xy

z

z z zσσξ =
−

,   2
xx

xx yy xy

z
z z zψψξ =

−
,   2

xy

xx yy xy

z

z z zσψξ =
−

. (14) 

The Gaussian curvature (10) yields 

( )22 2 2

1

1 ( )σσ ψψ σψ

Κ =
+ σ + ψ ξ ξ − ξ

. (15) 

The Gaussian curvature may be set into correspondence with the Martin’s 
Monge-Ampère equation (5) by 

( )22 2

1

1
σε =

Κ + σ +ψ
 (16) 

and 
2

2 2 2 ,
(1 )

A
X

Κ =
+ σ +

 (17) 

where 2

|X
A ∂σ

=
∂ε

 and A is the Lagrangean wave velocity which depends on 

, , t′ψ ψ . The surface Σ  is restricted to be pseudospherical, so that we have  

2 4c dΚ = − , (18) 

where d  is the distance from the origin to the tangent plane to Σ  and c  a constant. 
The surface with the Gaussian curvature given by (18) is the Tzitzeica 

surface [20–22]. The importance of the Tzitzeica surface is related to the soliton 
theory [19]. Developments in the geometry of such surfaces gave a gradual 
clarification of predictable properties in natural phenomena. 

A remarkable number of evolution equations (sine-Gordon, Korteweg de 
Vries, Boussinesq, Schrödinger and others) considered by the end of the 19th 

century, radically changed the thinking of scientists about the nature of nonlinearity. 
These equations admit solitonic behavior characterized by an infinite number of 
conservation laws and an infinite number of exact solutions. Tzitzeica surfaces are 
the analogues of spheres in affine differential geometry and are known as affine 
spheres. 
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A class of Tzitzeica surfaces of revolution associated with the cnoidal 
solutions of the Tzitzeica equation 2(ln )h h h−αβ = − , is derived in [29]. 

The expression (17) gives 
2

2 2
2 2

2 (1 ) | 0
| X
X

X
a

∂ σ ∂σ
= + σ + σ >

∂ε∂ε
,   0σ > . (19) 

From (19) we have 

( )
2 2

3/ 2 2 2 22

1arctan ( )
1 12 1

a X X
X XX

⎛ ⎞σ σ +⎜ ⎟ε = + + α
⎜ ⎟+ + σ ++ ⎝ ⎠

, (20) 

with ( )Xα  arbitrary. If 0| 0ε=σ = , it results ( )Xα =0. 
The relation (20) represents a class of constitutive laws for nanoropes, for 

which the equations (1) are associated to a pseudospherical surface Σ .  
The constitutive laws of new tunable materials seem to be a key point to 

improve the soft robotic applications. For example, a simple application of (19) and 
(20) is the variable stiffness of the soft robots. For the uniaxial motion, the tunning 
of Gaussian curvature of the Tzitzeica surface given by (17) presents an intrinsic 
material effect as the variation of stiffness, when a  is a multipler of the distance d  
from the origin to the tangent plane to Σ .  This means that the physical response of 
any point in the material depends on the Gaussian curvature of the Tzitzeica 
surface which is a characteristic of the state of whole volume. This dependency is 
the main characteristics of the nonlocality [27,  28]. 

In this case, the constant c is proportional to the micro or nano size of 
particles or other ingredient and fillers in the micro or nanopolymers used in 
artificial muscle [2,  34], and it is simply to show that the relationship between the 
Young’s modulus and the area moment of inertia is given by 0cEI c S= , with 
adjustable c  and 0c . This implies that two strategies can be used to variable 
stiffness approach: adjusting of material properties and alteration of structure 
geometries. 

In contrast to rigid structures, the soft, malleable structures and new materials 
and surfaces permit achieving of performance that only the nature has. That's why 
the researchers inspire from humans, vertebrates, caterpillars, snakes, plant roots 
and others. By understanding them, the man is capable to create a new generation 
of robots − “soft robots”, for using them in unsafe environments, to capture and 
manipulate unknown objects, to move in rough terrain, interacting with people in 
situations of top security and even to self-repair. 

Starting from (20) we can obtain several constitutive laws for other soft 
materials which experience a variation of resistance, capacitance or inductance 
when subjected to mechanical loads (stress or deformation), temperature, electric 
signals. 

For example, introducing in (19) the stress representation 
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2
2

0
11 tan ( )XX c c

a

⎛ ⎞+⎜ ⎟σ = + −
⎜ ⎟
⎝ ⎠

, (21) 

we have 
2 2

0
02 2

1 2 1sin ( )
2(1 ) 1

c ca X c c
a aX X

⎛ ⎞⎡ ⎤− +⎜ ⎟ε = + −⎢ ⎥
⎜ ⎟+ ⎢ ⎥+⎣ ⎦ ⎝ ⎠

. (22) 

Thus, relations (21) and (22) represent the parametric representation of 
( , )Xσ = σ ε , for which the motion equations (1) are associated to a pseudospherical 

surface Σ .  These equations lead to 

XX ttσ = ε , (23) 

where XXσ  is obtained from (16) 

( )
2

22 21
XX t

t

a

X

⎡ ⎤
⎢ ⎥σ = σ
⎢ ⎥+ σ +⎣ ⎦

. (24) 

The equation (24) like others remarkable equations (Korteweg and de Vries, 
Burgers, sine-Gordon, Schrödinger, etc.) has interesting properties: an infinite 
number of local conserved quantities, an infinite number of exact solutions 
expressed in terms of the Jacobi elliptic functions or the hyperbolic functions, and 
the simple formulae for nonlinear superposition of explicit solutions. Such 
equations were considered integrable or more accurately, exactly solvable. 

The soft material which experiences a variation of resistance and long-range 
interactions among the atoms in carbon nanotubes. The aim is to develop nonlocal 
constitutive laws for materials with adjustable mechanical properties in order to 
match the compliance of natural tissues without advanced feedback control. This is 
possible due to relationship (17) between the Gaussian curvature and the 
Lagrangean wave velocity for long-range interactions among the atoms. 

3. CARBON NANOTUBES 

Due to their remarkable electronic and mechanical properties, carbon 
nanotubes offer good potential to create layered actuating structures exhibiting 
displacements in the cm range, forces in N range, and reaction rates in the s to ms 
range, for actuating devise (nano tweezers, gate systems) or filler within polymers 
and ionic liquid mixtures or tubular devices in surgical application [2]. 

We consider the nanorope shown in Fig.  1. The maximum curvature Κ  for 
the nanorope is 
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(1 )
ropea

d
ε

Κ =
+ ε

, (25) 

where ropea  is a constant depending on the type and number of nanotubes, 

0 1ρ
ε = −

ρ
 is the stretch, and d  the nanorope diameter. The type of carbon 

nanotube is given by a geometrical parameter r ,  ,r na mb= +  where a  and b  are 
the lattice unit vectors, and ( , )n m  is a pair of integers. For 0m =  we have a zigzag 
form, for n m=  we obtain an armchair form, while in the general case a chiral 
form is obtained. The chiral angle is given by 

3tan
2
m
n m

θ =
+

. (26) 

To determine the nonlocal density function ( )| |X X ′ρ − for the nanorope, 
we express it in term of a nonlocal kernel function α  which measures the effect of 
the strain at X ′  on the stress at X  

( ) ( ) 0| | | |X X X X′ ′ρ − = α − ρ , (27) 

where 0ρ  is the density of the nanorope in the non-deformed state. 
The expression ( )| |X Xα ′−  is obtained from minimizing the potential 

functional Π expressed in terms of the repulsive potential ( )| |RV X X ′− , the 

attractive potential ( )| |AV X X ′−  and the Lennard-Jones potential 

( )| |dvw XV X ′−  

[ ]0 d ( )R A vdw
V

V V V V X′ ′Π = Π + γ −β +∫ , (28) 

with γ  and β  the coupling factors, and 

( ) ( ) ( )( )1
| |

| | p
1

|ex |e c
R

X XD f
X

S
XV AX X= −

′
′ ′− −

−
−

, 

( ) ( ) ( )( )2exp
1

| |
| | | |e c

A
S D f

V A
S

X X
X X X X

′
−

−
−

=′ ′− − , 

( ) ( )

12 6
0 0

| | | |
4vdwV

X X X
r r

X

⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥= ε −⎜ ⎟ ⎜ ⎟
′ ′⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝⎣

− − ⎠ ⎦
, 
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( )1

2 1

| |
2 1 cosc

X X R
f

R R
′⎡ ⎤π − −

= + ⎢ ⎥−⎣ ⎦
, 

( )
1

0 1 2

2

1,      | | ,
| | ,   | | ,

0,      | | ,
c c

X X R
f X X f R X X R

X X R

′− <⎧
⎪′ ′− = < − <⎨
⎪ ′− >⎩

 

where De = 6.32eV, S = 1.29, ε  the energy at the minimum in vdwV , and 0r  the 
distance between two carbon nanotubes at which 0vdwV = , 0ε =0.0556 kcal/mol 
and 0r = 3.4 Å. The function ( )| |cf X X ′−  is an optional “cut-off” function and it 
may be used to smoothly limit the interactions in (28) within a predefined range of 
neighboring nanotubes, effectively defined by radii 1 1.70R = Ǻ and 2 2.00R = Ǻ 
[30,  31]. 

The minimal potential functional Π is given by 

min
2

( )min
1

c

c

f

f

γ −βα
Π =

+
, (29) 

where minα  is defined as 

( )min 1

| |1 ,   | | ,
| |

  0,                                     | | .

pm

p

X XB X X d
X X d

X X d
=

⎧ ′⎡ ⎤−⎛ ⎞⎪ ′− − <⎪ ⎜ ⎟⎢ ⎥′α − = ⎨ ⎝ ⎠⎣ ⎦
⎪

′− >⎪⎩

∑  (30) 

where d is the nanorope diameter, 1/B d=  and δ is the distance between two 
neighboring carbon nanotubes. In an equilibrium state, 1.42δ ≈ Ǻ. 

We recognize in (30), the Artan form of expressing the α [32]. The 
expression (28) can be interpreted as a stationary Tzitzeica surface ( )z z= α  in 

cylindrical coordinates with Gaussian curvature 
( )221

z z

z

′ ′′
Κ =

′α +
 and the distance 

d from the origin to the tangent plane of a surface of revolution ( , )r r z= α  given 

by 
21

z zd
z

′− α
=

′+
. This stationary Titzeica surface representing the potential 

functional Π is displayed in Fig.  2. The minimum of the potential functional Π is 
obtained by intersecting the surface with the plane shown in figure. 

The tensile strength of nanorope ropeδ  is proportionally to α, and can be 
described by the following equation [33] 
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cos (1 cosec )rope CNT dδ = δ α − α , (31) 

where CNTδ  is the tensile strength of the single-wall carbon nanotubes. 

 
Fig. 2 − Stationary Titzeica surface representing the potential functional Π. 

5. CONCLUSIONS 

The soft robotics is a multidisciplinary field which includes materials science, 
advanced manufacturing, bioinspired design, robotics and medical devices. Soft 
robots contain rigid internal structures and nonrigid body parts. The elastic 
components consist of nanostructured materials which exhibit properties to feature 
high levels of functional integration: electronics, sensors, and drive technology, in 
order to enable robots to react reliably to the environment. 

The goal of the paper is to determine a class of constitutive laws for a soft 
material which is a nanorope made from single-wall carbon nanotubes. Carbon 
nanotubes offer good potential foractuating structures exhibiting displacements in 
the cm range, forces in N range, and reaction rates in the s to ms range, for 
actuating devise (nano tweezers, gate systems) or filler within polymers and ionic 
liquid mixtures or tubular devices in surgical applications. 

The scope is to obtain the adjustable mechanical properties in order to match 
the compliance of natural tissues without advanced feedback control. The research 
in the soft robotics field is still open. Our paper is related to other researchers in the 
field of soft robotics, as far as it is concerned to modeling and simulation of 
constitutive laws of soft materials [35]. Our main result consists in advancing of a 
simple method, which unlike the methods offered by the literature (FEM, classical 
deformable media theories) is able to capture and to describe the properties we 
specially want for a soft material, in particular the carbon nanotubes. The potential 
functional has an important role in fabrication of dielectric elastomer actuators that 
combines the acrylic polymers and nanoropes-electrodes made from single-wall 
carbon nanotubes. These actuators are artificial muscles that activate the movement 
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of soft robots. The carbon nanotubes offer a good alternative to pneumatic 
actuators which are slow to respond and difficult to store. 

We use the pseudospherical reduction approach which associates to the 
governing equations a pseudospherical surface with negative Gaussian curvature. 
The surface with a negative Gaussian curvature is the Tzitzeica surface. The 
Tzitzeica surfaces are related to the solving of certain practical problems in the 
fields of solid mechanics, fluid mechanics and biomechanics. The uniaxial 
deformation problem for nanoropes is discussed via the pseudospherical reduction 
technique. The pseudospherical surface permits to manipulate the Gaussian 
curvature and therefore to obtain a maximum tensile strength for nanostructures 
made from carbon nanotubes. 

Received on March 14, 2017 
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