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Abstract. Contrasting previous works in this peculiar field, where bearing rolling 
elements deformations are regarded as the result of known loads − most likely 
obtained from the shaft static equilibrium, neglecting the bearing deformations − a 
system approach conveying ineluctably different results is thereby proposed. The 
method is grounded on a straightforward theory: when the static equilibrium of the 
shaft is reached, the loads and moments transmitted from the shaft to the bearings 
must be balanced by the loads and moments arisen due to the elastic deformations of 
the rolling elements. In this approach, the formers are obtained using the slope-
deflection method, whereas the latter may result from a deformation model of rolling 
elements of the bearing. The succeeding part of the paper render the precise use of the 
method broached, mirrored in life calculations of the bearings of particular 
arrangements. The optimal design of a bearing arrangement (from the maximum 
bearing lives standpoint) is ultimately illustrated. 
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1. INTRODUCTION 

Regardless of the method applied (e.g. following ISO 281 [22] or ISO 16281 
[23]), the prediction accuracy of bearing rating life depends on the values of the 
loads and moments acting on the bearing, used as input data in the calculation. 
Considering the shaft on which the bearings are mounted a statically loaded beam, 
with the external loads and bending moments originating from the machine 
elements mounted on the shaft, is a current practice. The supports of this beam are 
the bearings mounted on the shaft, case in which the values of loads and tilting 
moments acting on the bearings are equal to the values of the support reactions and 
reaction moments. It was proved that the bearing load calculation, considering the 
shaft resting on totally rigid supports could lead to severe mistakes in bearing life 
calculations. Undoubtedly, for a correct calculation of the bearing loads, the supports 
must be considered deformable, as they are indeed, which eventually leads to a 
systemic approach. 
                                                           

1 Technical University of Cluj-Napoca, Romania 
2 RKB Bearing Industries, Balerna, Switzerland 
 

Ro. J. Techn. Sci. − Appl. Mechanics, Vol. 62, N° 3, P. 218−241, Bucharest, 2017 



2 Optimal design of taper roller bearing arrangements. Part I: objective function 219 

The problem is complicated, hence solving it cannot possibly be imagined 
today without massive FE analysis; without any doubt, the extremely high 
difficulty of the problem requires an extraordinarily efficacious tool to solve it. An 
eloquent example would be the SYBER program [21], a sophisticated tool, capable 
of analyzing a full system, with several shafts, bearings, gears, and housings. But it 
should certainly be used for very special and important projects, and in the last 
stages of the design, when the actual design solution is closed to the definitive one. 
In the early stages of a machine design, the need of a fast and reliable tool to estimate 
bearing lives is strongly felt, even if this instrument is encumbered by some inherent 
simplifications or approximations. This tool has to be based on an as accurately as 
possible calculation of the bearing loads by considering the shaft supports as 
deformable. The aim of the first part of this paper is to advance a new bearing load 
calculation method. The subsequent constituent sections specify its concrete usage 
in life calculations of the bearings of certain arrangements; lastly, the optimal design of 
an arrangement (from the perspective of the maximum bearing lives) is highlighted. 

The concept lying behind the suggested method is elementary: when the 
static equilibrium of the shaft is reached, the loads and moments transmitted from 
the shaft to the bearings must be balanced by the loads and moments arisen due to 
the elastic deformations of the rolling elements. In the proposed approach, the 
formers are obtained using the slope-deflection method, and the latter result from a 
certain load-deformation model of rolling elements of the bearing. Thus, the 
primary unknowns are the displacements of the shaft support reference points 
which are determined first by solving the equations of equilibrium. Once these 
displacements are found, the unknown forces are obtained through compatibility 
considerations and force–displacement relations. 

2. SLOPE-DEFLECTION METHOD AND BEARING DEFORMATION 
MODELS 

The slope-deflection method was originally developed in the late nineteenth 
century when, for simple trusses, engineers attempted first to solve the pin-jointed 
behavior and only then, in a second stage, to add the effect of joint rotations (called 
at a time secondary stresses). Such a complex calculation proposing an iterative 
solution to the equations set (with joint rotations as unknowns) was first published 
by Manderla in 1880 [32]. A real milestone in the development of the theory of 
secondary stresses was the work of Mohr, from 1892–1893 [36], where he 
introduced and upgraded the version of Manderla’s method. Twelve years later, the 
Danish engineer, Bendixsen, extended Mohr’s procedure to braced and sway 
frames [4]. One year later, in 1915, probably unaware of Bendixsen's work, Wilson 
and Maney [42] developed a refined version of this technique (which was not 
dissimilar to Bendixsen’s method) and applied it to the analysis of indeterminate 
beams and framed structures. It is very likely that the name of the method 
(accepted even nowadays) had been given by the analysis [43] of Wilson et al. 
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published in 1918, rather than that from 1915. Referring to a statically indeterminate 
structure, all the analyses in this bulletin are based upon the following assumptions: 
(1) the connections are perfectly rigid; (2) the length of a member is not changed 
by axial stress; (3) the shearing deformation is zero. It is uncomplicated to notice 
that each of these assumptions perfectly matches the loaded shafts used in 
mechanical applications. One of the first comprehensive descriptions of the slope 
deflection method can be found in [34]. 

Today, being applicable to a large category of 2D and 3D structures with 
straight or curved, deformable or infinitely rigid members, the slope-deflection 
method is a highly competent instrument in structural analysis. Virtually, there is 
no reliable book in this field that does not approach the subject. Without any 
preference in mind, for further information, the reader is advised to address one of 
the following modern books [5,  19, 26,  29, 33,  35]; and the enumeration could 
have been continued. 

After Sjoväll’s pioneering work [40], probably the first general equations for 
the elastic equilibrium of a ball bearing in three of the five possible degrees of 
freedom were given by Jones in 1946 [24]. Several years later he has brilliantly 
completed his work [25] and a general model was issued, whereby the elastic 
compliances of a system of any number of ball and radial roller bearings under any 
system of loads can be determined. The system approach signifies that the entire 
assemblage of bearings, shaft, and supporting structure was looked at as a single, 
elastic system. The solution defines the elastic compliance of a point on the shaft 
with respect to the supporting structure in five degrees of freedom. Considering 
also the centrifugal forces and gyroscopic moments acting on the rolling elements, 
the internal load distribution is determined for all the bearings in the system. 
Finally, bearing lives are evaluated by summation of the fatigue effects of the 
passages of the rolling elements over precisely determined paths in each bearing 
raceway. It is worth noting here that the shaft and supporting structure deflections 
and slopes are related to the shaft reference line through influence coefficients and 
all as functions of external loading of the shaft. It must have been the complexity 
and high degree of difficulty of the approach that triggered, decades after the 
publication of these studies, the focus of most researchers on developing models in 
which the bearing inner loads distribution is obtained from the known external 
loads, taking into account the variation in the contact angle with the loading 
conditions. Several such examples will hereinafter be provided, in chronological order. 

In a theoretical analysis, regarding the dynamics of ball bearings [14] and in 
its associated paper encompassing the numerical results of the dynamic simulations 
[15] Gupta presents a general interaction model – formulated for arbitrary but 
known external loads – on a ball bearing. Analytical framework for the 
computation of the applied force and moment vectors due to ball-race and ball-cage 
interactions, are described in adequate detail. According to this approach, the 
formulation of ball-race interaction can be divided into three parts: (1) definition of 
the different position vectors and formulation of relevant geometrical interactions; 
(2) computation of the normal contact force between balls and raceways, using the 
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conventional Hertzian elastic contact theory; (3) formulation of the slip velocity 
vectors and traction force vectors for a given traction model. Detailing, since the 
main target is this one, the normal contact forces are primarily determined by first 
locating the ball relative to the race and computing the deflection at the point of 
interaction and then using the Hertzian point contact solutions to obtain the load-
deflection relationship. A similar approach was applied to cylindrical roller 
bearings ([12] and [13], respectively). 

In a two-part work, De Mul et al. constructed a general mathematical model 
for the calculation of the equilibrium and associated load distribution in both ball 
[7] and roller bearings [8]. The bearings may be loaded – with known loads and 
moments – and displaced in five degrees of freedom. The analysis is made with 
and without considering the centrifugal forces, acting on the rolling elements, 
whilst the internal friction is neglected. The material is assumed linearly elastic and 
the bearing rings are modelled as rigid, except for the local contact deformation. In 
order to formulate the rolling element compressive loads either classical Hertzian 
contact analysis or non-Hertzian line contacts (extended technique, utilized today, 
involving the roller slicing in a large number of laminae) is used. 

In order to derive a bearing stiffness model for vibration transmission 
analysis Lim and Singh [30] had to establish the relationships between the known 
bearing loads and moments transmitted through the rolling element bearing, and 
the bearing displacements in 5 DOF. As in the modern models, for ball bearings, 
they used the variation of the unloaded and loaded relative distances between the 
inner and outer raceway groove curvature centers, in ball deformation calculation. 
Unfortunately, though, this model is not concerned with the centrifugal forces that 
act on the balls of the high-speed ball bearings. Eventually, a bearing stiffness 
matrix suitable for the analysis of the vibration transmission through either ball or 
roller bearings is determined. The reader could find more details in the authors’ 
previous work [39]. In 2012, Gunduz [10] continued this work and developed the 
formulation of the stiffness matrix for a double-row angular ball bearing. 

Houpert [20] proposed a so-called “uniform analytical approach” for ball and 
roller bearings which provides simple analytical equations to calculate the bearing 
loading (three loads and two tilting moments) based on the bearing raceway 
relative displacements (5 DOF). He called this approach “uniform” by virtue of the 
fact that the equations obtained for the rolling element deformation are exactly the 
same, both for radial ball and roller bearings, when the variation of the contact 
angle under load is neglected. In a subsequent analysis, this approximation is 
removed. The interesting component of this approach is the manner of introducing 
the so-called “equivalent displacements” and expressing the rolling element-race 
load as a function of them. Moreover, the three components of the load and the two 
components of the moment on the inner raceway are calculated by integration, not 
by discrete summation. In 2014, Houpert strongly enhanced his model [21], 
especially for roller bearings. 

Hernot et al. [18] presented two stiffness matrices of angular contact ball 
bearings. Using the two leading Sjoväll’s load-distribution integrals Ja and Jr , the 
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summation of ball-raceway loads was replaced by an integration and, in this way, 
the matrix connected to the conventional model in 2 DOF is first introduced. Using 
the constructed model, a study of a two bearing-shaft assembly where shaft 
deformations are ignored, was carried out. But, by taking preload into account it 
was clearly demonstrated how the influence of the preload on the assembly rigidity 
and bearing fatigue life may be analyzed. Conclusively, the matrix formulation of 
the 5 DOF model, connected with the Houpert’s early model [20], is presented. 

In two successive papers, Liao and Lin established [27] and then developed 
[28] a tree-dimensional expression for the elastic deformation of bearing balls in 
terms of the geometry of the contact surface and the inner and outer raceways 
positions. The main contribution they claimed was that the contact angle was not 
considered constant, but variable with the position of each ball. But, in fact, the 
variability of the contact angle was looked at, invoking Jones’s mentioned works. 
The geometrical analysis is engaging and valuable, but the bearing was treated as 
loaded with radial and axial loads (no tilting moments) and only the radial and 
axial displacement of raceways were taken into account (no rotations). 

Bai and Xu [2] reported a dynamic model of ball bearings used to study the 
dynamic properties of a rotor system supported by ball bearings under the effect of 
both internal clearance and raceway waviness. The proposed model includes 
centrifugal forces and gyroscopic moments. For the relationship between the ball 
displacement vector and the displacement vector of the bearing center they used the 
same transformation matrix as De Mul [7], but to the ball displacement vector, a 
vector containing the relative waviness of the inner and outer raceway is added. 
Once more, the equilibrium is reached for a given set of external loads and 
moments. In a successive paper, Bai et al. [3] used the same model for the same 
purpose, with no reference to the waviness effect this time. 

Relative to our preeminent topic, in the fundamental two-volume monograph, 
Harris and Kotzalas presented either the Sjoväll’s model of load distribution within 
ball and roller bearings under given external radial and axial load [16], or, partially 
[17], the Jones’s already mentioned work. 

In order to determine the effect of the bearing internal clearance or 
interference on the load distribution among the rolling elements and on the life of 
(only) radially loaded deep-groove ball bearings and cylindrical roller bearings, 
Oswald et al. [38] engaged three models: (1) computer analysis method: for a given 
set of two perpendicular radial loads, two radial inner-race displacements are calculated 
iteratively using the summation of each rolling element load; (2) load integral 
method: calculation of the maximum rolling-element load by using the load-distribution 
integral Jr augmented with additional data from Houpert [20]; (3) alternative 
method: calculation of the maximum rolling-element load using an iterative procedure 
to find the Striebeck Number (ratio between the maximum and the average ball or 
roller loads). 

Recent works are focused on obtaining the bearing stiffness matrix by 
extending the Jones’s approach as Noel et al. [37] or by using FEM as Guo and 
Parker [11]. In both approaches, the external bearing loading has to be known. 
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Relevant results were issued in the latter quoted paper, regarding the bearing radial 
and axial stiffness, respectively, the obtained radial/axial stiffness-load relationship 
for both radial cylindrical roller and ball bearings being significantly different from 
those predicted by Gargiulo’s well-known equations (perhaps because these old 
equations did not take into account the elasticity of bearing rings). It is also 
interesting that they suggested, as previously Houpert did [20], that the load-
deflection exponent for the line contact of a roller bearing is slightly different from 
the accepted value of 10/9. 

As for the dynamic models of bearings, (even if it is focused on the spindle-
bearing systems of machine tools) the reader can find a captivating review in [31]. 

3. REAL LOADS AND MOMENTS ACTING ON ROLLING BEARINGS 

In order to determine the real values of the loads and moments acting on a 
bearing, one has envisage that a bearing could be assimilated with a set of Z spatial 
arranged springs (the Z rolling elements of the bearing) each having a non-linear 
characteristic. In our approach, the housing and the bearing rings are considered 
completely rigid (stiff), the only deformable parts being the rolling elements. The 
fundamental concept underlying the proposed procedure to determine the real loads 
acting on a bearing is: the loads and moments acting on the bearing should be equal 
to the loads and moments produced by elastic deformations of the rolling elements. 
Maintaining the general principle, the case of a shaft supported by two taper roller 
bearings (Fig.  1) will be hereinafter examined. 

 
Fig. 1 – Cartesian global and local systems of coordinates referring to the shaft and bearings. 

3.1. LOADS AND MOMENTS TRANSMITTED FROM THE SHAFT TO THE 
BEARINGS 

In a previous work [41], it was proved that the vector of all loads and 
moments transmitted from the shaft to the bearings. 
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( )1 1 1 1 2 2 2 2

T
                x yk zk yk zk yk zk yk zk=FM F F F M M F F M M  (1) 

will be given by the equation: 

= ⋅Δ + +FM A θ B FA  (2) 

where the components of the vector FM are the axial load Fx  and the loads and 
moments acting in the nodes k1 and k2 , respectively, (the reference points of the 
two bearings), A and B matrices derived from on the stiffness matrix of the shaft, 

( )T 0   0   0   0   0   0   0   0aF=FA  (3) 

(where Fa is the resulting external axial load acting on the shaft) and the unknown 
vector. 

( )1 1 1 1 2 2 2 2

T
                x yk zk yk zk yk zk yk zk= δ δ δ θ θ δ δ θ θΔΘ . (4) 

Has as components the displacements (δx – the same for both nodes, δy and δz 
– specific for each reference node) and rotations (θy and θz – specific also for each 
reference node). 

Some comments would be required here. Matrices A and B are easily 
computable and their dimensions depend only on the number of bearings: A 
depends only on the shaft (geometry and material), and B depends on the shaft and 
its loading. All these transform this computation into a facile one, no matter how 
complicated the shape of the shaft and its loading is. It is worth remarking that the 
calculation of the reactions (loads and moments) on the shaft, as well as the 
deflections and rotations in nodes, becomes manageable and fast, regardless of the 
number and types of supports and no howbeit complicated the shaft shape would be. 

3.2. LOADS AND MOMENTS TRANSMITTED TO THE SHAFT DUE TO THE 
ELASTIC DEFORMATIONS OF THE BEARING ROLLERS 

For the rolling bearing analysis, one can consider the relative movement 
between the bearing rings. Referring to one bearing, all externally applied loads 
and moments and the displacements of the inner ring as well are in relation to a 
point on the inner ring axis of symmetry (bearing reference point-see also Fig.1). 
According to Newton’s Third Law, the bearing loading and the loading from the 
rolling elements on the inner ring raceway, both considered in the bearing 
reference point, should be cancelled. The objective of this section is to establish the 
relationship between the reaction loading and the displacements of the inner ring. 

In order to limit the model complexity and following the most frequently 
used shafts, housings, and bearing arrangements, the ensuing assumptions are 
emphasized: 
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– Deformations of the shaft, housing and bearing rings are neglected and only 
the elastic deformations of the rolling elements are included. 

– Centrifugal forces acting on the rolling elements, loads generated by 
interaction from the cage, frictional forces inside the bearings, and gyroscopic 
moments are neglected. 

– Spring constants of the rollers are equal and constant with temperature. 
Two coordinate systems were introduced, to facilitate the analysis in the 

bearing reference point: a right-handed Cartesian one (Oxyz, in both Fig.1 and Fig.  
2) and a cylindrical system Orϕx, where ϕ is the angle between the r-axis and 
positive y-direction, being positive if measured as depicted in Fig.  2. 

 
Fig. 2 – Bearing Cartesian and cylindrical coordinate systems. 

Inner ring loading and displacements. 

Let the inner ring loading and displacement vectors be symbolized by FM 
and δθ, respectively, and let the denotation of the loading from the rolling elements 
on the inner ring be fm .  All loads and displacements refer to the bearing reference 
point 

( )T        x y z y z= F F F M MFM  (5) 

( )T        x y z y z= δ δ δ θ θδθ  (6) 

( )T           x y z y z= f f f m mfm . (7) 
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Now, considering an inner ring axial section, positioned to such angle ϕ 
chosen so that the rx-plane passes through the reference point of the roller, being 
selected. As can be noticed, the analysis can be conducted by choosing the 
intersection point of the perpendiculars to the middle of the useful portion of 
opposite profiles of the roller (Fig.2) as reference point of the selected inner ring 
axial section [6,  8,  20,  21]. This point will be stored as the following vector 
(relative to a Cartesian system of coordinates originated on the bearing axis of 
symmetry at its mid-width): 

( )T   
i ii O Or x=O . (8) 

The above mentioned inner ring axial section is loaded (due to the roller 
deformation) in its reference point Oi by the load vector QT : 

( )T      r x ϕ= Q Q TQT  (9) 

with the displacement vector uγ  

( )T    r xu u ϕ= γuγ . (10) 

Obviously, it is more convenient to consider another local system of 
coordinates ξηζ  (Fig.3), more related to the roller and, in this case, instead of the 
vectors QT and uγ , the followings will be used: 

( )T      F F Tξ μ ζ=FT  (11) 

( )T     u uξ η= θuθ  (12) 

where uξ and uη are the displacements along the respective axis and θ  is the 
rotation angle of the around the local axis ζ .  Because the displacements are usually 
small, the displacement vectors uθ  and δθ can be related: 

2 (O , )xyz iξηζ= ϕ ⋅uθ T δθ  (13) 

where the transformation matrix 2 (O , )xyz iξηζ ϕT  is given by the equation: 

2 (O , )

1 0 0 sin coscos( ) sin( ) 0
sin( ) cos( ) 0 0 cos sin sin cos

0 0 1 0 0 0 sin cos

i i

i i

xyz i

O O

O O

r r

x x

ξηζ ϕ =

ϕ − ϕ⎛ ⎞α−β − α−β⎛ ⎞
⎜ ⎟⎜ ⎟= α−β α−β ϕ ϕ − ϕ ϕ⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟− ϕ ϕ⎝ ⎠⎝ ⎠

T

 
(14) 



10 Optimal design of taper roller bearing arrangements. Part I: objective function 227 

The rolling element force vector FT is transformed to an equivalent force 
vector fm at the inner ring reference point: 

2 (O , )xyz iξηζ= ϕ ⋅fm T FT  (15) 

T
2 2(O , ) (O , )xyz i xyz iξηζ ξηζ⎡ ⎤ϕ = ϕ⎣ ⎦T T . (16) 

In this point of the present approach a sub-problem can be stated as follows: 
If a certain vector of the inner ring displacement is given, the question is: which are 
the resistant loads and moments (issued by the deformation of the rollers) that acts 
on the inner ring? For this purpose, all the elastic forces by which all the deformed 
rollers, being in equilibrium, load the inner ring have to be summated. In this 
context, the study of the equilibrium of a certain roller is mandatory. 

 
Fig. 3 – Bearing roller Cartesian coordinate systems. 

In the following, some geometrical parameters of the tapper roller are 
presented succinctly (most of them can be observed in Fig. 4 and in the following 
figures): 

max

1
asin

2 f

D
R

⎛ ⎞
λ = ⎜ ⎟⎜ ⎟

⎝ ⎠
 (17) 

max minatan
2

D D
L
−⎛ ⎞β = ⎜ ⎟

⎝ ⎠
 (18) 
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max min
2we

D DD +
=  (19) 

1 1cos tan
2 2
we

f f
D LRξ = λ + β−  (20) 

2cos
we

ap
DR =

β
 (21) 

2
cos

c
we

L r
L

−
=

β
 (22) 

where: Dmin , Dmax , and Dwe are the minimum, maximum, and mean dimeters of the 
roller, L is its length (neglecting the height of the spherical end), β is the 
(semi)angle of the taper roller, rc is the axial dimension of the chamfers, Lwe is the 
useful length of the roller profile, Rf 1 and ξf 1 are the radius and the abscissa of the 
centre of the spherical end of roller, and λ is its angle (see Fig.  4). 

 
Fig. 4 – Roller laminae. 

The roller is sliced (perpendicular to roller axis) in nl (odd number) laminae 
and therefore one can define: 

we
l

l

Lw
n

=  (23) 



12 Optimal design of taper roller bearing arrangements. Part I: objective function 229 

( )1 ;    1,... ,2k l lx k w k n= − =  (24) 

2
we

M
Lx =  (25) 

1
;    1,... ,2

l
k k M l l

n
x x x k w k n

+⎛ ⎞Δ = − = − =⎜ ⎟
⎝ ⎠

 (26) 

( );    1,... ,k k lh P x k n= =  (27) 

k ap kh R hΔ = −  (28) 

where: wl is the width of a lamina, xk and xM represent the coordinates of the 
lamina k and of the central lamina, respectively, hk is the drop of the roller profile 
corresponding to the lamina k. Note that roller profile as a function of the lamina 
coordinate is denoted here by P. Even this topic is beyond the subject of this paper, 
it is worth noting here that RKB Bearing Industries, the main sponsor of this 
research, uses for P a special logarithmic profile, different than that recommended 
by the ISO 16281: 2008 [23]. 

In Fig.  5 the plane defined by the system of coordinates ξη (Fig.  3) is once 
again considered. Another two systems of coordinates will be introduced: ξrηr, 
connected to the roller, and ξwηw, jointly with a certain raceway (belonging to the 
inner ring or outer ring as well). Initially, all these three systems of coordinates 
coincide, and afterwards both roller and raceway move in different positions and 
consequently the systems move accordingly. The final position of the roller system 
ξrηr is given by the vector r rγt τ  and rotation angle αr . Similarly, the final 

position of the raceway system ξwηw is given by the vector w wγt τ  and rotation 

angle αw. 

 
Fig. 5 – Roller generatrix and raceway before and after the movements. 
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The following conventions were made: 
1. The letters in bold (and non-italic) are versors. 
2. The other letters represent scalars. 
3. In the fixed system ξη the versors are always denoted by τ, in the roller 

system by ε, and in the raceway system by σ. 
4. In a certain system, the index of a versor represents the angle between the 

direction of the versor and the positive direction of axis of abscises (ξ, ξ r , or 
ξw , respectively). For example, in the fixed system ξη, the versor rγτ  

means T(cos   sin )r rγ γ . 
The roller generatrix is represented by thick dash-line (versor rωτ ) and the 

considered raceway by thick plain line (versor wωτ , almost always equals to rωτ ). 

M is the reference point of the roller generatrix. In this point the drop of the profile 
is zero. The initial distance between the point M from the roller generatrix and the 
considered raceway is Λ. At the beginning, the position of point M is given by the 
position vector a a aΦ Φ Φ= =τ ε σ . After the movement of the roller (looking for 
the equilibrium position during its deformation), the position of point M is given by 
the vector aT rC a Φ+ατ  (in the system ξη), or by aTC a Φε  (in the roller system 
ξrηr). Here CaT is a factor that takes into account the modification of the distance 
a  due to the variation of the roller temperature in relation to the raceway 
temperature. 

Initially, M points toward N from the raceway ( MN = Λ ) and after the 
movements of the roller and raceway, the new position of M points toward N′ . 
Therefore, the distance between the point M and the raceway, after the movements 
of the roller and raceway, is given by the equation: 

[ ]
( )sin( ) ( )cos( )

       sin( ) sin( ) .

r w r w w w r w w

w aT w w r

t t t t

a C
ξ ξ η ηδ = − ω +α − − ω +α +

+ ω −Φ − ω −Φ +α −α + Λ
 (29) 

It worth to be mentioned here that the model described so far is general and 
does not take in consideration the shape of the roller. That means the model can be 
used for all types of rollers (taper, cylindrical, etc.). In all cases, the final distance 
between the reference point of the roller generatrix and raceway is used in the 
calculation of the distance between a certain point of the roller profile and raceway 
(i.e. the distance between a roller lamina and raceway). If this distance is negative 
(i.e. interference) an elastic force is generated.  

In the present approach, the above model is used to find the distances 
between the reference points of a taper roller and the raceways of the rings and 
large rib of the inner ring, respectively, after their movements. The initial position 
of the roller, raceways, and rib is presented in Fig.6, and the input data and 
denotations are given in Table 1 and Table 2. The model is used both in the 
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preloading phase of the bearing arrangement at mounting and in the functioning 
phase as well. At the preloading, according to the arrangement type, 0χ = θ =  and 
either 0s sξ η= = , or 0u uξ η= =  (the other movements being nonzero). During the 

working phase, it is more likely that 0s sξ η= = χ = , and , ,u uξ η θ  are nonzero 
being the results of the inner ring movement under the external loading. In all cases 

,  and ξ ην ν ψ  are the unknowns. 
Since all the rotation angles are obviously very small, in all equations that 

follow, the usual approximations were made: sinus and cosines of an angle were 
approximate by the value of the angle and 1, respectively. 

 
Fig. 6 – Roller, inner and outer ring raceways, and large rib of the inner ring in the initial position. 

Table 1 

Roller reference points-raceways distances. Input data: angles and distances 

Contact between wω  a Φ Λ*) 

Roller generatrix and outer ring 
raceway 

π−β  apR  
2
π −β  eΔ  

Roller generatrix and inner ring 
raceway β apR  

2
π− +β  iΔ  

Roller spherical end and large 
rib of the inner ring  1f iγ +β − π  1fξ  0 1 1f f iR + Δ  

*) – initial position given by ∆e, ∆i, and ∆f1i, should reflect the preloading of the bearing and the 
expansion of rings at mounting. 
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Table 2 

Roller reference points-raceways distances. Input data: movements (denotations) 

Movement of wt ξ  wt η  wα  rt ξ  rt η  rα  

Outer ring sξ  sη  χ - - - 

Inner ring uξ  uη  θ - - - 

Roller - - - ξν  ην  ψ 

With all these, the equations of the distances between the reference points of 
the roller and the mating surfaces, after their movements, are given bellow. 

Distance between the reference point of the roller generatrix and outer ring 
raceway: 

( )(sin cos ) ( )(cos sin ) (1 )e ap Tr es s R Cξ ξ η ηδ = −ν β−χ β + −ν β+ χ β + − + Δ . (30) 

Distance between the reference point of the roller generatrix and inner ring 
raceway: 

( )(sin cos ) ( )(cos sin ) (1 )i ap Tr iu u R Cξ ξ η ηδ = −ν β+ θ β − −ν β−θ β + − + Δ . (31) 

Distance between the reference point of the roller spherical end and inner 
ring large rib: 

1 1 1

1 1

1 1 1 1

( ) sin( ) cos( )

         ( ) cos( ) sin( )

         (1 )sin( ) ( )cos( ) .

f i f i f i

f i f i

f Tr f i Tr f i f i

u

u

C C

ξ ξ

η η

⎡ ⎤δ = − − ν γ +β + θ γ +β +⎣ ⎦
⎡ ⎤+ − ν γ +β − θ γ +β −⎣ ⎦

⎡ ⎤− ξ − γ +β − θ−ψ γ +β + Δ⎣ ⎦

 

(32) 

Here CTr is a generic factor that takes into account the modification of the 
distances due to the variation of the roller temperature in relation to the raceway 
temperature variation. Note also that in the following equations, in order to take 
into account the thermal effect, xk , xM , hk are multiplied by CTr. 

In Fig.7 the relative position, after movement, of the outer ring raceway 
against the roller is presented. The initial position of the raceway is drawn with 
thick dash-line. The distance from any point P of the roller profile (defined by the 
coordinate xk , corresponding to the lamina k) to the outer ring raceway can be 
calculated with the equation: 

( )k e k ke h xδ = δ + −Δ ψ −χ  (33) 

Obviously, if the value of the distance 0keδ <  then an interference occurs 
and an elastic force is developed. Generally, the value of the elastic force is given 
by the following non-linear equation: 
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[ ]10 9max(0, )k we kqe c e= −δ , (34) 

where cwe is the spring constant of a lamina of the rolling element with line contact 
and it is calculated according to ISO/TS 16281: 2008(E). The total load, 
considering all laminae, that acts on the roller due to its contact with the outer ring 
raceway is: 

1

ln

k
k

Qe qe
=

=∑ . (35) 

 
Fig. 7 – Loading of the roller by the outer ring. 

The lamina load qek generates on the roller a moment: 

[ ]( )k k k ktqe qe h x= Δ ψ −χ −Δ  (36) 

and the total moment (as a sum of all lamina moments) is: 

1

ln

k
k

TQe tqe
=

=∑ . (37) 



 Lucian Tudose, Simion Haragâş, Cristina Tudose, Nicoleta Predeleanu, Costel Ursache 17 234 

In the roller system of coordinates, the vectors of the total load and the total 
moment (acting on the roller) coming from the outer ring raceway have the 
following equations: 

sin ( )cos
cos ( )sin

0
Qe

− β− ψ −χ β⎛ ⎞
⎜ ⎟= − β+ ψ −χ β⎜ ⎟
⎜ ⎟
⎝ ⎠

Qe  (38) 

0
0
1

TQe
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

TQe  (39) 

In Fig.  8 the positions, after movement, of the inner ring raceway and the 
roller are represented. 

 
Fig. 8 – Loading of the roller by the inner ring. 

The distance from any point P of the roller profile (defined by the coordinate xk 
corresponding to the lamina k) to the inner ring raceway can be obtained with the 
equation: 

( )k i k ki h xδ = δ + −Δ θ−ψ . (40) 

As in precedent case the compressive load acting on the lamina k of the roller 
is given by the equation 

[ ]10 9max(0, )k wi kqi c i= −δ  (41) 

and the total load with which the inner ring raceway compress the roller becomes: 
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1

ln

k
k

Qi qi
=

=∑ . (42) 

In this case, the lamina load generates a lamina moment, also: 

[ ]( )k k k ktqi qi h x= −Δ θ−ψ + Δ  (43) 

and the total moment (as a sum of all lamina moments) is: 

1
.

ln

i k
k

TQ tqi
=

=∑  (44) 

In the roller system of coordinates, the vectors of the total load and the total 
moment (acting on the roller) coming from the inner ring raceway are given by the 
following equations: 

sin ( )cos
cos ( )sin

0
Qi

− β− θ −ψ β⎛ ⎞
⎜ ⎟= β − θ −ψ β⎜ ⎟
⎜ ⎟
⎝ ⎠

Qi  (45) 

0
0
1

TQi
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

TQi  (46) 

In Fig.  9 the positions, after movement, of the inner ring large rib and the 
roller are presented. 

 
Fig. 9 – Loading of the roller by the large rib of the inner ring. 
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The interference (or clearance) between the spherical end of the roller and the 
large rib of the inner ring can be now easily computed (32): 

1 1 1

1 1

1 1 1 1

( ) sin( ) cos( )

         ( ) cos( ) sin( )

         (1 )sin( ) ( )cos( )

f i f i f i

f i f i

f Tr f i Tr f i f i

u

u

C C

ξ ξ

η η

⎡ ⎤δ = − − ν γ + β + θ γ + β +⎣ ⎦
⎡ ⎤+ − ν γ + β − θ γ + β −⎣ ⎦

⎡ ⎤− ξ − γ + β − θ −ψ γ + β + Δ⎣ ⎦

 

(47) 

In the case of interference, the elastic load that compress the roller is: 

[ ]3 2
11 max(0, 1 )P f i iQ f i c f= −δ  (48) 

where cPf 1i is the spring constant of the rolling element with point contact and is 
calculated according to ISO/TS 16281: 2008(E). This load will produce, obviously, 
a moment: 

1 1 11 1 cos( ) ( )sin( )f f i f iTQ f i Q f i ⎡ ⎤= − ξ γ +β − θ −ψ γ +β⎣ ⎦ . (49) 

In the roller system of coordinates, the vectors of the total load and the total 
moment (acting on the roller) coming from the large rib of the inner ring are: 

1 1

1 1

sin( ) ( )cos( )

1 cos( ) ( )sin( )

0

f i f i

f i f iQ f i

γ +β + θ−ψ γ +β⎛ ⎞
⎜ ⎟

= − γ +β + θ−ψ γ +β⎜ ⎟
⎜ ⎟
⎝ ⎠

Qf1i  (50) 

0
1 0

1
TQ f i

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

TQf1i . (51) 

Now it is possible to write the equations that describe the static equilibrium 
of the roller: 

[ ] [ ]

[ ] [ ]
1 1

1 1

sin ( )cos sin ( )cos

                    1 sin( ) ( )cos( ) 0

cos ( )sin cos ( )sin

                    1 cos( ) ( )sin( ) 0

e i

f i f i

e i

f i f i

Q Q

Q f i

Q Q

Q f i

TQE TQi TQ

− β − ψ − χ β + − β − θ −ψ β +

⎡ ⎤+ γ + β + θ −ψ γ +β =⎣ ⎦
− β + ψ − χ β + β − θ −ψ β +

⎡ ⎤+ − γ + β + θ −ψ γ +β =⎣ ⎦
+ + 1 0f i

⎧
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪

=⎪⎩

 (52) 

The unknowns of the system of equations (52) are , ,ξ ην ν ψ  and they 
describe the final position of the roller when it reaches the static equilibrium 
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position. The non-linear system of equations (52) must be solved for each roller of 
the bearing and with the solutions of each roller apart, the loads and moments that 
act on the inner ring can be calculated with the equation: 

[ ]
[ ]

1 1

1 1

sin ( )cos 1 sin( ) ( )cos( )

cos ( )sin 1 cos( ) ( )sin( )

1

i f i f i

j i f i f i

j

Q Q f i

Q Q f i

TQi TQ f i

⎛ ⎞⎡ ⎤β+ θ−ψ β + − γ +β − θ−ψ γ +β⎣ ⎦⎜ ⎟
⎜ ⎟⎡ ⎤= − β+ θ−ψ β + γ +β − θ−ψ γ +β⎣ ⎦⎜ ⎟
⎜ ⎟− −⎜ ⎟
⎝ ⎠

FT    (53) 

where j = 1, 2, …, Z and Z is the number of the rollers. The rolling element force 
vector FTj is transformed to an equivalent force vector fmj at the inner ring 
reference point by using equation (15). 

2 (O , )j xyz i j jξηζ= ϕ ⋅fm T FT . (54) 

Finally, the loading from all the rolling elements on the inner ring, in the 
bearing reference point is: 

1

z

j
j=

=∑fmfm  (55) 

and, consequently, the corresponding loadings in the considered nodes k1 and k2 are 

1kfm  and 
2kfm , respectively. These two vectors can be easily aggregate in a single 

vector representing, in fact, the reactions of the bearings to the external forces and 
moments that load the shaft: 

( )1 1 1 1 2 2 2 2

T
                      

k k k k k k k kx y z y z y z y z=fm f f f m m f f m m  (56) 

where 

1 2k kx x x= +f f f . (57) 

4. BEARING ARRANGEMENT LIFE 

Due to static equilibrium, the sum of the loads/moments transmitted from the 
shaft to the bearings and the loads/moments transmitted to the shaft due to the 
bearing elastic deformations must be zero. This leads to the equation: 

0+ =FM fm  (58) 

which is in fact a system of nine nonlinear equations with nine unknowns (the 
components of the vector ΔΘ) and the unknowns must be generally solved by 
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iteration. Once the vector ΔΘ is known, it can be decomposed into the two vectors 

1kδθ  and 
2kδθ , corresponding to the two bearing reference points:  

( )1 1 1 1 1

T
            

k k k kk x y z y z= δ δ δ θ θδθ  (59) 

( )2 2 2 2 2

T
            

k k k kk x y z y z= δ δ δ θ θδθ . (60) 

In the following, to ease the presentation, the sub-scripts k1 and k2 will be 
omitted, meaning that, for both nodes, the same calculation will be done starting 
with a certain vector δθ . For every roller, the following steps have to be done: 
1. The displacement vectors juθ  are calculated using equation (13): 

2 (O , )j xyz i jξηζ= ϕ ⋅uθ T δθ ; (61) 

2. The distance between the reference point of the roller generatrix and the outer 
ring raceway is calculated using equation (30). Note that, during the 
functioning, one can consider 0,  0s sξ η= = χ = : 

sin cos (1 )
j je ap Tr ej

R Cξ ηδ = −ν β− ν β+ − + Δ ; (62) 

3. The distances between each point of profile lamina and the outer ring raceway 
are computed using equation (33): 

,j k e k j kj
e h xδ = δ + −ψ Δ ; (63) 

4. The values of the compressive elastic forces, acting on each lamina, are 
obtained using the non-linear equation (34): 

10 9
, ,max(0, )j k we j kqe c e⎡ ⎤= −δ⎣ ⎦ ; (64) 

5. The distance between the reference point of the roller generatrix and the inner 
ring raceway is calculated by means of the equation (31):  

( ) (sin cos ) ( ) (cos sin ) (1 )i j j j j ap Tr ij
u u R Cξ ξ η η⎡ ⎤δ = − ν β + θ β − −ν β−θ β + − + Δ⎣ ⎦ (65) 

6. The distances between each point of profile lamina and the inner ring raceway 
are computed using equation (40): 

, ( )j k i k k j jj
i h xδ = δ + − Δ θ −ψ ; (66) 

7. The values of the compressive elastic forces, acting on each lamina, are 
obtained using the non-linear equation (41): 
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10 9
, ,max(0, )j k wi j kqi c i⎡ ⎤= −δ⎣ ⎦ . (67) 

Now, the values of the loads that compress each lamina of each roller – given 
by the equations (64) and (67) – must be used in bearing life calculation according 
to the newest ISO/TS 16281. The obtained lives of the two bearings should now 
aggregated in the bearing arrangement life (according to the product low [16], as 
the life of a multi-row bearing is calculated). 

( ) 8 99 8 9 8
1      2      arrL L L

−− −= +  (68) 

where L1 and L2 are the bearing rating lives (basic or modified) and Larr is the 
corresponding rating life of the bearing arrangement. 

Note that this rating life will be the objective function of the further proposed 
optimization. 

5. CONCLUSIONS 

The first part of this paper provides a new bearing load calculation method. 
The static equilibrium of the shaft is attained when the loads and moments 
transmitted from the shaft to the bearings are reacted by the loads and moments 
arisen due to the elastic deformations of the rolling elements. Using the slope-
deflection method and taking into account the shaft material, geometry and 
loading, the loads and moments transmitted to the bearings are expressed as a 
function of shaft deflections and rotation at reference supporting points. 

The simplicity of the method converts this approach into a versatile and 
reliable one. The reactions and moment reactions were expressed as function of the 
same unknowns using a dynamic model. The unknowns are determined first by 
solving the equations of equilibrium. Once the displacements are known, the 
unknown compressive forces among the bearing rolling elements are obtained from 
the accepted bearing dynamic model. 

The subsequent parts of the paper highlight the application of the proposed 
method to the life calculations of the bearings from particular real-world bearing 
arrangements whereas in the last part, the optimal design of such bearing 
arrangement (from the perspective of the maximum bearing arrangement life) is 
rendered. 
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