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Abstract. The paper deals with finite deformation elasto-plastic models with anisotropic
damage. The models are mathematically coherent and consistent with free energy im-
balance principle. One model is based on the existence of deformation-like damage
tensor, Fd , which characterizes the passage from the undamaged, stress free configura-
tion to the damaged and stress free configuration. The other one involves a symmetric
defect density tensor, which is a measure of non-metricity of the so-called plastic con-
nection, there is a gradient-like model. The constitutive and evolution equations are
derived to be compatible with the free energy imbalance principle, which has been re-
formulated to be applicable to the elasto-plastic materials with damaged structure. We
assumed that the plastic flow and the development of damage, i.e. the micro voids and
micro cracks, are distinct irreversible mechanisms during the deformation process.

Key words: tensorial damage variables, elastic, plastic, free energy imbalance, evolution

equations.

1. INTRODUCTION

The paper deals with the mathematical description of macroscopic behaviour of
materials deteriorated by the defects existing at the microscopic level. Two types
of problems arise when the state of damaged material is discussed. The first prob-
lem is related to the physical nature and the mathematical description of the damage
variables, while the second type concerns the elaboration of the constitutive frame-
work. The scalar damage variables were extensively used in continuum isotropic
damage, while various tensorial variables allowed to elaborate elasto-plastic models
for anisotropic damage in materials with structural defects, see for instance Cleja-
Ţigoiu [8].
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We emphasize some specification of anisotropic damage measures which are closely
related to our approaches to damage. Murakami [21] described the anisotropic dam-
age by a second order symmetric tensor, D,

D =
i=3

∑
i=1

Dini⊗ni, (1)

Di were interpreted as the void area density in the plane perpendicular to direction of
the damage ni.

Menzel at al. [20] developed a framework of continuum damage based on the fic-
titious configuration and the equivalence principle of the free energy in the fictitious
and intermediate configurations, respectively. The intermediate configuration (which
is called the local relaxed configuration in the description given by Cleja-Ţigoiu and
Soós [4]) is associated with the multiplicative decomposition of the deformation gra-
dient, F, into its plastic, Fp, and elastic, Fe, parts, namely

F(X, t) = Fe(X, t)Fp(X, t), F(X, t) = ∇ χ(X, t), (2)

where χ(·, t) is the motion function at time t and X is a material point of the body.
Brünig [1] and Brünig and Ricci [2] provided a finite strain framework, using

the multiple undamaged (fictitious) configurations and specific metric coefficients to
describe measures of damage. In the damage-coupled elasto-plastic models, the plas-
tic flow and damage processes, which are dissipative, are treated by the constitutive
models, as different in their nature and effects on the mechanical properties of the
materials and structures. The free energies involved in plastic flow and damage pro-
cesses are postulated to be independent and have been introduced separately with
respect to the fictitious undamaged configurations.

Menzel at al. [20] introduced a second order tensor Fd , called the integrity ten-
sor, which characterizes the passage from an undamaged (fictitious) configuration to
the intermediate configuration. This tensor field has not been involved in the mul-
tiplicative decomposition of the deformation gradient. The damage model proposed
by Ekh et al. [14] appeals to the crystal plasticity model and the evolution rule for
the damage is formulated with respect to the crystalline slip systems.

Voyiadjis and Kattan [22] introduced a fourth-order anisotropic damage effect
tensor as a key point in describing the anisotropic damage.

In this paper we propose two damage models for elasto-plastic materials involv-
ing second-order tensorial damage variables. The physical motivations for these
models as well as the mathematical description of the elasto-plastic models are com-
pletely different. In the first model an invertible second order tensor Fd describes
the anisotropic damage state of elasto-plastic materials and has been introduced in
the paper by Cleja-Ţigoiu [7]. The anisotropic damage variable Fd is involved in the
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multiplicative decomposition of deformation gradient into its components, and is a
different concept from the tensorial field Fd which is viewed like a pure internal state
variable by Menzel et al. [20], Ekh et al. [14, 15].

We adopted the point of view concerning the different nature of the plastic and
damage mechanisms, motivated by the arguments that can be found in the models
proposed by Brünig [1], Brünig and Ricci [2].

Another geometrical motivation to introduce tensorial defect measure is given by
Kröner [19] and de Wit [13], for instance. The lattice defects, like point defects,
micro voids and micro cracks in the damaged zone are modeled in terms of the tensor
fields which characterize the non-metric property of the plastic connection. We recall
here that the defects of lattice structure, like dislocations and disclinations, can be
involved through the Cartan torsion of the so-called plastic connection, under the
hypothesis that the connection has metric property, see Cleja-Ţigoiu [5, 6].

In this paper we propose a second model of anisotropic damage based on the
symmetric tensor, called defect density tensor, which is associated with the measure
of non-metricity of the plastic connection, see Cleja-Ţigoiu and Ţigoiu [10].

In Section 2.1 the deformation-like damage tensor Fd and in Section 2.2 the de-
fect density tensor hd were introduced from the kinematic point of view. These tensor
fields are related to the appropriate configurations. Fd realizes the passage from the
so-called undamaged and stress free configuration to the damaged and stress free
configuration. hd is a tensorial field which restores the metricity of the plastic con-
nection. Here the pair of the plastic distortion and the so-called plastic connection,

(Fp,
(p)
ΓΓΓ ), defines the geometrical structure of the plastically deformed configuration,

called sometimes configuration with torsion and denoted by K , see Cleja-Ţigoiu
[5, 6].

In Section 3 the free energy imbalance principle, formulated within the second
order finite elasto-plasticity by Cleja-Ţigoiu [5, 6], is adapted to materials with dam-
aged structure. The free energy imbalance is a key point in developing constitutive
theory as can be seen in the paper by Gurtin [17], for instance. We discuss the devel-
opment of theory based on the imbalance principle, within the constitutive framework
of elasto-plastic materials with damaged structure. The elastic type constitutive equa-
tions are derived as direct consequence of the free energy imbalance. In Section 4 the
evolution equations of the viscoplastic type, are provided for the damage variables,
Fd and H, respectively, coupled with corresponding plastic distortion tensors. Here
the symmetric tensor field H is associated with hd by pushed away procedure. hd

is related to reference configuration, while H is defined with respect to plastically
deformed configurations.
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1.1. List of notations

Further the following notations will be used:
V − the three dimensional vector space; Lin− the set of the linear mappings from V
to V , i.e the set of second order tensor, Sym⊂ Lin is the set of all symmetric tensors;

u ·v,u×v,u⊗v denote scalar, cross and tensorial products of vectors;
a⊗b and a⊗b⊗ c are defined to be a second order tensor and a third order tensor by
(a⊗b)u = a(b ·u), (a⊗b⊗ c)u = (a⊗b)(c ·u), for all vectors u.
{A}S and AT denote the symmetric part and the transpose of the tensorA
I is the identity tensor in Lin.

∂Aφ(x) denotes the partial differential of the function φ with respect to the field A.

Let χ : B×R→ V defines the motion of the body B. The deformation gradient and
its gradient are expressed in coordinate systems by

F(X, t) = ∇χ(X, t) =
∂xi

∂X j gi⊗G j, ∇F(X, t) =
∂ 2xi

∂X j∂Xk gi⊗G j⊗Gk.

Here {gi}i=1,2,3 and {Gi}i=1,2,3 are local bases in the reference and actual configura-
tions, respectively, and G j are vectors of reciprocal basis.

In what follows the anholonomic basis vectors, in the so-called plastically de-
formed configuration or the configuration with torsion, generically denoted by K ,
are related with the crystal and defined by e j = FpG j. The plastic connection is rep-
resented by the its coefficients in a component representation given by

(p)
ΓΓΓ= Γα

β γ
Gα ⊗Gβ ⊗Gγ .

The differential of smooth field A, with respect to the anholonomic configuration K ,
obeys the rule

∇K A = (∇A)(Fp)−1.

Curl of a second order tensor field A is defined by the second order tensor field,
curlA,

(curlA)(u×v) := (∇A(u))v− (∇A(v))u ∀u,v ∈ V and (curlA)pi = εi jk
∂Apk

∂x j

are the component of curlA given in a Cartesian basis.
The scalar product of second order tensors A and B is defined in terms of their

Cartesian components by A ·B = Ai jBi j, ∀ A,B ∈ Lin.
The third order tensor, denoted by A [F1,F2], is associated to the set of third order
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tensor A , and F1,F2 ∈ Lin, and is defined by

((A [F1,F2])u)v = (A (F1u))F2v, ∀ u,v ∈ V .

2. TENSORIAL DAMAGE VARIABLES

The physical motivations for these models as well as the mathematical descrip-
tion of the elasto-plastic models are completely different. The first model involves a
damage tensorial variable Fd which is an invertible second order tensorial variable,
and realizes the passage from an undamaged stress free configuration to a damaged
stress free configuration. The second model introduces a non-metricity measure, in
terms of the symmetric tensor fields, either hd or H, associated with the the so-called
plastic connection.

2.1. Deformation-like damage tensor

In Cleja-Ţigoiu (2011) Fd has been introduced as a measure of anisotropic dam-
age, which enters the multiplicative decomposition of the deformation gradient.

Let us consider k the reference configuration and the actual (deformed) configu-
ration χ(·, t) of the body B, where χ represents a motion of the body.

We assume that at any time t, for any X ∈B there exist:
• ˜K a stress free, damaged configuration and
•K a stress free, undamaged configuration.
Starting from these assumptions, we define three local deformations: the elastic

component, Fe, which characterizes the passage from ˜K to χ(·, t), the plastic com-
ponent, Fp, which characterizes the passage from the reference configuration to K
and the damage deformation tensor, Fd , which characterizes the passage from the
stress free, undamaged (fictitious) configuration K to the damaged one, ˜K . In the
Fig.1 these configurations were sketched.

Assumption M.1. For any motion χ, ∀X,∀t, the deformation gradient F :=∇χ(·, t)
is multiplicatively decomposed into its plastic, Fp, damage, Fd , and elastic, Fe, parts,
namely

F = FeFdFp, F̂ = FeFd . (3)

All the tensor fields are invertible.
Mass densities ρd ,ρ p,ρ and ρ0 are written in stress free damaged and undam-

aged configurations, respectively, and in actual and reference configurations, respec-
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Figure 1: Elastic, plastic and damage tensors as parts of the deformation gradient F, F = FeFd ,Fp,
with Fd the transformation from the undamaged and stress free configuration, K , to the damaged and

stress free configuration, ˜K , following [10].

tively

ρ detFe = ρd , ρd detFd = ρ p, ρ detF = ρ0. (4)

The elastic strain tensor associated with the elastic deformation component Fe is
defined by

∆∆∆
e(X, t) =

1
2
(Ce− I), Ce = (Fe)T Fe. (5)

The other strain tensors generated by the local deformations which enter the mul-
tiplicative decomposition (3) can be introduced by

F̂ = FeFd , Ĉ := F̂T F̂, Cd = (Fd)T Fd . (6)

Let us remark that

F = F̂Fp, Ĉ := (Fp)−T C(Fp)−1, where C = FT F, (7)

as a consequence of (6).
Let us calculate the elastic strain measure which has been introduced in (5), via

the relationship (6)

∆∆∆
e =

1
2
(Fd)−T (Ĉ− (Fd)T Fd)(Fd)−1

or Ĉ−Cd = 2(Fd)T (∆∆∆e)Fd .

(8)

Consequently, the elastic strain with respect to the stress free, damaged configura-
tion, ∆∆∆

e, can be viewed in the stress free, undamaged configuration as Ĉ−Cd by
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pulled back procedure. Fd describes the passage from the stress free, undamaged
configuration K to the the stress free, damaged configuration ˜K .

The elastic type constitutive equation which characterizes the Cauchy stress, with
respect to the stress free and undamaged configuration, is stipulated to be given by

T = ρF̂ĥK (Ĉ−Cd ,ααα)(F̂)T . (9)

Remark. In describing the elastic type behaviour of the elasto-plastic body with
damaged structure the following stress tensors with respect to the appropriate config-
urations can be defined

T(x, t)− the Cauchy stress in the actual configuration χ(·, t), where x = χ(X, t);
T̄(x, t)− the Piola-Kirchhoff stress in the stress free and undamaged configura-

tion, denoted by K , the so-called effective stress.
These stress measures are related by the following relationship

T̄ = (det F̂)(F̂)−1T(F̂)−T , (10)

which suggested the constitutive assumption (9). Moreover, (9) holds if and only if
the elastic type constitutive equation in terms of the effective stress T̄ can be written
by

T̄ = ρ̃ ĥK (Ĉ−Cd ,ααα). (11)

We remark that Fd is involved in the elastic constitutive relation (11) like an
internal variable and ααα denotes the set of internal state variables.

In [4] the stress relaxation (or stress free) restriction has been formulated in order
to formalize the fact that the stress with respect to certain configuration is vanishing
if and only if the body is undeformed, i.e. pure elastic deformation is the identity
tensor. Following the development given by Cleja-Ţigoiu and Soós [4] the stress free
restriction will be given by

ĥK (∆∆∆,ααα) = 0 for ∆∆∆ ∈ Sym, if and only if ∆∆∆ = 0. (12)

Here in the considered case, the relaxation restriction takes place if and only if

Ĉ := (Fd)T Fd ≡ Cd , or if and only if Ce := (Fe)T Fe = I.

Remark. As a generalization of the two-term decomposition of the deformation
gradient a three-term multiplicative decomposition

F = FL Fp, FL = FeFi. (13)

has been considered by Clayton et al. [3], where
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• FL is named the total lattice deformation and

• Fi characterizes the residual deformation due to micro-heterogeneity in the
presence of lattice defects.

We can say that Fi and Fd are somehow equivalent. Our point of view, expressed
by Cleja-Ţigoiu and Soós [4], emphasizes that the introduction of various types of
decomposition of the deformation gradient is justified or become possible if and only
if they were introduced simultaneously with the material laws. For instance Clay-
ton et al. [3] state that Fi “includes effects arising from defects contained within the
volume element at time t, residual thermoelastic strains, and internal boundaries and
stacking faults left by moving effects such as partial dislocations and partial disclina-
tion dipoles.” The distinction between Fi and Fp has been made in [3] by saying that
Fp characterizes “lattice preserving contributions from the mobile defects which tra-
versed the volume.” The physical attributed specification to different fields, as being
declared by the authors, has to be reflected in the constitutive relationships, otherwise
they remain simple words.

2.2. The defect density tensor hd

In general the damage deformation tensor, denoted here by Fd , characterizes
the passage from an undamaged (fictitious) configuration to a certain plastically de-
formed configuration, as a measure of anisotropic damage. Concerning the defect
density tensor hd we adopted here the geometrical motivation to introduce tensorial
defect measure given by Kröner [19] and de Wit [13], for instance. The behaviour of
elasto-plastic materials with damaged microstructure is described in terms of specific
differential geometry elements which characterize the internal mechanical state, fol-
lowing [19] and [13]. In what follows we shortly present basic hypotheses related to
the elasto-plastic model proposed by Cleja-Ţigoiu and Ţigoiu [10], but we develop
the description of the model within the plastically deformed configuration.

We pay attention to the defects of lattice structure, such as point defects, micro
voids and micro cracks. These defects can be associated with dislocations and discli-
nations, being different in their physical and mathematical nature. The lattice defects
are involved in the Cartan torsion of the so-called plastic connection, see Cleja-Ţigoiu
[6], [8]. The point defects, micro voids and micro cracks in the damaged zone are
modeled specifically in terms of the tensor field which characterizes the non-metric
property of the plastic connection, see [10], while the dislocations and disclinations
can be modeled by the geometrical concepts, torsion and curvature of the plastic
connection with metric property.

We introduce the hypothesis: The plastic behaviour is characterized in terms of

the pair (Fp,
(p)
ΓΓΓ ). The second order tensor field Fp, which is called plastic distortion,
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or the plastic part of the deformation gradient given by (3), and
(p)
ΓΓΓ is characterized by

a third order field in a curvilinear coordinate system and represents the Christoffel-
Riemann coefficient of a connection, called here plastic connection.

We assume that the plastic distortion can not be expressed in terms of a vector
valued potential, which means that the plastic distortion Fp is incompatible. The

plastic connection
(p)
ΓΓΓ is not compatible with the plastic distortion Fp, which means

that it can not be represented as
(p)
ΓΓΓ= (Fp)−1∇Fp.

AXIOM 1. The plastic connection
(p)
ΓΓΓ has non-metric property with respect to the

metric tensor Cp = (Fp)T Fp. Consequently there exists a third order tensor Q, such
that Qu ∈ Sym and the following equality

−(∇Cp)u+(Cp
(p)
ΓΓΓ u)T +Cp(

(p)
ΓΓΓ u) = Qu, (14)

holds for all vectors u.
The following representation for the plastic connection can be derived, see [6]

and [10],

(p)
ΓΓΓ=

(p)
A +(Cp)−1

(
ΛΛΛ× I+

1
2

Q
)
,

(p)
A = (Fp)−1

∇Fp, (15)

Here the third order tensor field ΛΛΛ× I is defined in such a way to have the equality
((ΛΛΛ× I)u)v = (ΛΛΛu)×v, written for all vectors u,v.

The fields which enter the formula (15) have the following meaning:

1.
(p)
A defines the so-called Bilby type plastic connection, which is compatible with
the plastic distortion, namely it is defined in terms of the gradient of the plastic
distortion;

2. the second-order tensor ΛΛΛ is called the disclination tensor;

3. the third-order tensor Q is called the non-metric or extra-matter tensor Q.

Following Kröner [19] we assume the existence of a second order tensor, hd ,
which is a potential for the third-order tensor field Q, namely

Q = ∇hd , and hd is called the defect density tensor.

Consequently, the plastic metric tensor Cp is corrected by hd , to restore the metric
property of the plastic connection, i.e.

−∇(Cp +hd)u+(Cp
(p)
ΓΓΓ u)T +Cp(

(p)
ΓΓΓ u) = 0, ∀ u ∈ V , (16)
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as can be seen from (14).
The physical meaning of the tensor field hd is put into evidence by relation (16),

which reveals that hd is a strain-like variable. Moreover hd appears to be a special
type of deformation necessary to be added in order to establish the geometry of dam-
aged structure.

Let us introduce the second order torsion tensor, N p, related with the third order
Cartan torsion Sp, via the following relationships

(Spũ)ṽ = N p(ũ× ṽ), ∀ ũ, ṽ;

N p = (Fp)−1curl Fp +(Cp)−1
(
curl hd +(tr ΛΛΛ)I− (ΛΛΛ)T

)
.

(17)

Remark. Note that the tensorial damage variable hd has a contribution to the Car-
tan torsion, if and only if is incompatible, which means that curl hd is not vanishing.

The following defect fields have been introduced

ααα := (Fp)−1curl (Fp) dislocation density

αααd = (Cp)−1curl hd damage defect density

αααΛ := tr ΛΛΛI− (ΛΛΛ)T disclination density,

(18)

which characterize the incompatibilities existing in the materials see for instance [18],
[19] and [13].

Consequently the lattice defects, previously introduced by (18), are involved in
the Cartan torsion of the so-called plastic connection as can be see from the formula
(17)2, rewritten as N p = ααα +αααd +αααΛ.

Remark. The damage defect density αααd = (Cp)−1curl hd is a not symmetric
tensor, which is defined in terms of the plastic metric tensor, Cp, and damage tensor
hd . Thus αααd is a measure of damage explicitly dependent on the plastic distorsion.

In the model proposed here the damage tensor hd and the associated damage ten-
sor H by pushed away procedure have been considered as measures of the anisotropic
damage.

3. ENERGETIC RESTRICTIONS

As basis of the constitutive relations we adopt here the free energy imbalance
principle, which generalizes the second principle of thermodynamics and it is adapted
to isothermal elasto-plastic processes. The principle is formulated with respect to an
appropriate configuration and is strongly dependent on the postulated expression for
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the free energy density, as well as of the postulated form for the virtual internal power.
We adopt here the following formulation:

AXIOM 2. The elasto-plastic behaviour of the material with damaged structure
is restricted to satisfy in the so called damaged configuration, say K , the dissipation
condition

−ϕ̇K +(Pint)K ≥ 0 for any virtual (isothermal) processes. (19)

Here we denoted the free energy function with respect to the damaged configuration
by ϕK and the internal expended power by (Pint)K .

It is our purpose here to discuss the development of theory based on the imbalance
principle, within the constitutive framework of elasto-plastic materials with damage.
As two models have been introduced, the first one involving the the deformation-like
damage tensor, Fp, and the other one considering the defect density tensor hd , the
specifications of the ingredients has to be done.

3.1. Free energy principle for the model with deformation-like damage tensor,
Fp

In the case analyzed here the free energy imbalance principle has been formulated
by Cleja-Ţigoiu [7] with respect to the stress free and undamaged configuration, de-
noted by K .

Motivated by the principle of the elastic free energy equivalence, see [20], the
free energy with respect to K is postulated here under the form

ϕK = ϕ̂e(Ĉ−Cd)+ϕ(iv)(Fd ,(Fp)−1,ααα), (20)

were the relative strain measure Ĉ−Cd was introduced by (8) and ααα denotes the
internal variables.

The internal power is expressed as in the classical elasto-plastic models in terms
of the Cauchy stress tensor and velocity gradient, both of them being related to the
deformed configuration, namely

Pint =
1
ρ

T · {L}S, with L = ∇v≡ Ḟ(F)−1, and

{L}S =
1
2
(L+LT ).

(21)

We provide here the expression of the internal power based on the kinematical rela-
tionship (3).
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PROPOSITION 1. The internal power is expressed in terms of the elastic, plastic
and damage internal powers, represented here by the scalar product of the appropri-
ate rates with the power conjugate stress measures, respectively,

1
ρ

T ·L =
1

ρd Σ̃ΣΣ · Ḟd(Fd)−1 +
1

ρ p Σ̄ΣΣ · Ḟp(Fp)−1 +
T
ρ
· Ḟe(Fe)−1,

1
ρd Σ̃ΣΣ =

1
ρdetFe (F

e)T FeT̃,
1

ρ p Σ̄ΣΣ =
1

ρdetF̂
(F̂)T F̂T.

(22)

Here Σ̃ΣΣ and Σ̄ΣΣ are Mandel type stresses and are defined with respect to the configura-
tions K and ˜K .

Assumption M2. The elasto-plastic behaviour of the material with damage vari-
able Fd structure is restricted to satisfy in K the dissipation condition

−ϕ̇K +
1
ρ

T ·L≥ 0 (23)

for any virtual (isothermal) processes, with the free energy function given by (20).
PROPOSITION 2. Within the constitutive framework formulated in Section 2.1

the free energy imbalance (19) is derived under the form

{T
ρ
−2 F̂∂C̄ϕ

(e)(F̂)T} · {L}S +{2 Fd
∂C̄ϕ

(e)(Fd)T −∂Fd ϕ
(iv)(Fd)T} ·Ld+

+{2Ĉ∂C̄ϕ(e)+Fp−T
∂(Fp)−1ϕ(iv)} ·Lp + ∂αααϕ(iv) · α̇αα ≥ 0,

with the notation C̄≡ Ĉ−Cd ,which has been written for all the velocity gradient

(24)

L, plastic rate Lp, rate of the damage Ld , and involving the variation in time of the
internal variable, i.e. α̇αα.

The detailed proof of the above proposition can be found in [8]. We recall here
that the appropriate rates at a fixed time moment t, which are involved in the dissipa-
tion formula (24), are not independent, they being related by the kinematic relation-
ship derived from (3). The relationship between these rates is written as

L = Le +FeLd(Fe)−1 + F̂Lp(F̂)−1, (25)

where the current values of the deformation components are given.
We derive the thermodynamic restriction imposed by the free energy principle on

the constitutive equation. Two steps have to be analyzed.

• First we assume that the rates of plastic distortion Lp and of the damage Ld are



Elasto-plastic finite deformation models for anisotropic damage 265

vanishing, while L is arbitrarily given. The so-called elastic restrictions has
been found, as L = Le in this case.

• Second we return to the expression of the free energy principle (24) by re-
covering the elastic type constitutive restrictions and the residual dissipation
inequality follows at once.

THEOREM 1. The following thermodynamic restrictions are provided from the
free energy imbalance (24):

I. The free energy density is potential for the Cauchy stress tensor

T
ρ
= 2F̂∂C̄ϕ

(e)(F̂)T or
T̄
ρ p = 2 ∂C̄ϕ̂

e,with the notation C̄≡ Ĉ−Cd , (26)

if the free energy density is written under the form (20).
II. The residual dissipation inequality becomes

{Cd T̄
ρ p − (Fd)T

∂Fd ϕ
(iv)} · ld+

+{Ĉ T̄
ρ p +Fp−T

∂(Fp)−1ϕ
(iv)} ·Lp−∂αααϕ

(iv) · α̇αα ≥ 0.

(27)

Here ld = (Fd)−1Ḟd is the rate of damage tensor relative to the stress free and un-
damaged configuration.

3.2. Free energy principle for the model with the defect density tensor hd

We adapted the free energy principle developed by Cleja-Ţigoiu [5] and [6] to the
constitutive framework of elasto-plastic materials with the damage variable, hd , the
so-called defect density tensor, introduced in the Section 2.2. In the model proposed
here we do not study the influence of the defects such as disclinations on the damage,
which means that the plastic connection is not dependent on the ΛΛΛ, namely ΛΛΛ = 0, in
the formulae.

In the model the damage variable hd was defined in the reference configuration.
Let us introduce the defect density tensor, H, with respect to the plastically deformed
configuration K , which has been introduced in the Section 2.2 by the pair plastic

distortion and plastic connection, (Fp,
(p)
ΓΓΓ ). The tensorial damage variable H is the

pushed forward to the damaged configuration of the tensor hd , while the passage
from the reference configuration to the plastically deformed configuration is charac-
terized by plastic distortion. The relationships between the tensor fields H and hd,
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and between the appropriate gradients of H, respectively, are defined by

H = (Fp)−T hd(Fp)−1,

∇K H = (∇H)(Fp)−1.
(28)

We introduce now the free energy density function and the internal power in K
expanded during an elasto-plastic process.

AXIOM 3. The free energy density in K is postulated to be dependent on the
elastic strain, Ce, where Ce = (Fe)T Fe. The free energy density function is depen-
dent on the damaged configuration, through the second order plastic deformation

((Fp)−1,
(p)
A K ), tensorial damage variable H and its gradient ∇K H, namely

ψ = ψK (Ce− I,(Fp)−1,
(p)
A K ,H,∇K H),

where
(p)
A K = Fp∇K (Fp)−1.

(29)

The third-order field
(p)
A K defines the so-called Bilby’s type plastic connection with

respect to plastically deformed configuration, K .

As the tensorial damage variable and its gradient have been introduced among
the independent variables in the expression of the free energy density, the power con-
jugate variables with their rates ought to be introduced in the expression postulated
for the virtual internal power.

The imbalance free energy principle formalized by (19) has to be considered by
taking into account the free energy expression (29) and the internal power relative to
the configuration K .

AXIOM 4. The internal power expended during the elasto-plastic damaged ma-
terial is characterized by

(Pint)K =
1
2

πππ

ρ̃
· d

dt
Ce +

1
ρ̃

µµµK · ((Fe)−1(∇χL[Fe,Fe])−∇K Lp)+

1
ρ̃

ϒϒϒ
p
K ·L

p +
1
ρ̃

µµµ
p
K ·∇K Lp +

1
ρ̃

ϒϒϒ
h · d

dt
H+

1
ρ̃

µµµ
h
K ·∇K

d
dt

H.

(30)

Here πππ represents the Piola-Kirchhoff stress tensor with respect to the plastically
deformed configuration,

ϒϒϒ
p
K and ϒϒϒ

d
K are micro stresses related to the plastic and damage mechanisms,

µµµ
p
K ,µµµh

K are micro stress momenta which are conjugated with the gradients of
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the rate of plastic distortion Lp and of
d
dt

H, respectively.

We recall here the relationship between the Piola-Kirchoff stress tensor πππ in the
configuration K and the Cauchy stress T defined by

πππ = det (Fe)(Fe)−1T(Fe)−T ,

where ρ det (Fe) = ρ̃,
(31)

ρ and ρ̃ denote the mass densities in the actual and plastically deformed configura-
tions, respectively.

In order to calculate the time derivative of the free energy function (29) the rate
of the appropriate fields which enter its expression have to be calculated in terms of
Lp and ∇K L, as follows.

• The time derivative of the inverted plastic distortion tensor is given by

d
dt
(Fp)−1 =−(Fp)−1Lp (32)

• The rate of Cauchy-Green elastic tensor is expressed in terms of L and Lp as
follows

d
dt
(Ce) = 2(Fe)T{L}sFe−2{CeLp}s. (33)

• The rate of gradient with respect to plastically deformed configuration of the
damage tensor H can be expressed as

d
dt
(∇K H) = ∇K (

d
dt

H)− (∇K H)Lp. (34)

• The rate of
(p)
A K leads to

d
dt
(
(p)
A K ) =−∇K Lp +Lp

(p)
A K −

(p)
A K [I,Lp]−

(p)
A K Lp. (35)

by taking the time derivative of the tensorial field introduced by (29).

Finally we get the formula which express the variation in time of the free energy
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during the considered elasto-plastic process

ϕ̇K = ∂Ce−Iϕ ·
d
dt

Ce−∂(Fp)−1ϕ ·
(
(Fp)−1Lp)+

+∂ (p)
A K

ϕ · (−∇K Lp)+∂ (p)
A K

ϕ · {Lp
(p)
A K −

(p)
A K [I,Lp]−

(p)
A K Lp}+

+∂Hϕ · d
dt

H+∂∇K Hϕ ·
(
∇K (

d
dt

H)− (∇K H)Lp)
(36)

The free energy imbalance (19) can be written as

(
1

2ρ̃
πππ−∂(Ce−I)ψ) · d

dt
(Ce)+

1
ρ̃

µµµK · ((Fe)−1(∇χL[Fe,Fe])+

+
( 1

ρ̃
(µµµ p

K −µµµK

)
−∂ (p)

A K

ϕ) · (∇K Lp)+
1
ρ̃

ϒϒϒ
p
K ·L

p+

+∂ (p)
A K

ϕ · {Lp
(p)
A K −

(p)
A K [I,Lp]−

(p)
A K Lp}+∂∇K Hϕ · ((∇K H)Lp)+

+(
1
ρ̃

ϒϒϒ
h−∂Hϕ) · d

dt
H+

( 1
ρ̃

µµµ
h
K −∂∇K Hϕ

)
·∇K

d
dt

H≥ 0.

(37)

The elastic type constitutive equation can be provided as a direct consequence of
the free energy imbalance, if Lp = 0 and no variation of damage occurs during the
considered process, i.e Ḣ = 0. Using also (33) as well as the fact that L and ∇χL can
be arbitrary given, the elastic response is derived. Coming back to the free energy
inequality (37) the reduced dissipation inequality follows.

THEOREM 2. The following thermodynamic restrictions are provided from the
free energy imbalance:

I. The free energy density is potential the stress

πππ = 2ρ̃∂(Ce−I)ψ,
1
ρ̃

µµµK = 0, (38)

where πππ denotes the symmetric Piola-Kirchhoff and µµµK represents the macro mo-
mentum, both of then being related to the plastically deformed configuration.

II. The residual dissipation inequality becomes
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(
1
ρ̃

µµµ
p
K −∂ (p)

A K

ϕ) · (∇K Lp)+
1
ρ̃

ϒϒϒ
p
K ·L

p+

+∂ (p)
A K

ϕ · {Lp
(p)
A K −

(p)
A K [I,Lp]−

(p)
A K Lp}+∂∇K Hϕ · ((∇K H)Lp)+

+(
1
ρ̃

ϒϒϒ
h−∂Hϕ) · d

dt
H+

( 1
ρ̃

µµµ
h
K −∂∇K Hϕ

)
·∇K

d
dt

H≥ 0.

(39)

4. EVOLUTION OF PLASTIC DEFORMATION AND DAMAGE

The models considered here are dissipative and the elastic type constitutive equa-
tions were derived as direct consequences of the free energy imbalance. We introduce
now assumptions concerning the irreversible behaviour of elasto-plastic materials
coupled with damage, which are compatible with the reduced dissipative inequali-
ties.

The expressions of viscoplastic constitutive equations are suggested by the re-
duced dissipation inequalities (27) for the model with tensorial damage Fd and (39),
respectively, for the model based on H, damage tensorial measure.

4.1. Evolution of damage tensorial variable Fd

Assumption M3. The evolution equations for plastic part of deformation, damage
and internal variables are postulated to be given by

λd ld = Cd T̄
ρ p − (Fd)T

∂Fd ϕ
(iv), where ld = (Fd)−1Ḟd ,

λp Lp = Ĉ
T̄
ρ p +Fp−T

∂(Fp)−1ϕ
(iv),

λa α̇αα =−∂αααϕ(iv).

(40)

The evolution equation for the damage variable Fd involves the Cauchy -Green ten-
sors Ĉ = (Fd)−T C(Fd)−1 and Cd = (Fd)T Fd , as well as the stress tensor T̄ which is
expressed in terms of the appropriate deformation tensor via the elastic type consti-
tutive equation (26).
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Assumption M4. The evolution equations (40) are compatible with the reduced
dissipative inequality, namely the constitutive functions λd , λp and λa are given to
satisfy the inequality

λdLd ·Ld +λpLp ·Lp +λa α̇αα · α̇αα ≥ 0. (41)

4.2. Evolution of damage tensorial variable H

Let us introduce the energetic type constitutive equations for the micro momenta
related to the plastic and damage mechanisms, in order to eliminate the gradient of the
rate of plastic distortion and rate of the damage, respectively, following Gudmudson
[16], namely

1
ρ̃

µµµ
p
K = ∂ (p)

A K

ϕ,

1
ρ̃

µµµ
h
K = ∂∇K Hϕ

(42)

Consequently, as a direct consequence of (42) the reduced dissipation inequality
(39) becomes

1
ρ̃

ϒϒϒ
p
K ·L

p +(
1
ρ̃

ϒϒϒ
h
K −∂Hϕ) · d

dt
H+

+∂ (p)
A K

ϕ · {Lp
(p)
A K −

(p)
A K [I,Lp]−

(p)
A K Lp}+∂∇K Hϕ · ((∇K H)Lp)≥ 0.

(43)

We remark that the terms contained in the dissipation inequality (43) are linear
with respect to the rate of damage variable and rate of plastic distorsion.

Remark. By introducing the operators r � and �, which associates to the third
order tensors A ,B the second order tensor, denoted Ar �B, A �B, and A � lB,
respectively, the linear dependence on Lp can be explicitly put into evidence in the
inequality (43).

The following operators are defined for all second order tensors L

(A r�B) ·L = A ·LB = Ai jkLinBn jk,

(A �B) ·L = A [I,L] ·B = AiskLsnBink,

(A �l B) ·L = A L ·B = Ai jkLknBi jn,

(44)

being attached to any pairs of third order tensors (A , B.) Proposition 3. Under the
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hypothesis that the specific micro momenta are defined in terms of the free energy
function, the reduced dissipation inequality can be finally written as

1
ρ̃

ϒϒϒ
p
K ·L

p +(
1
ρ̃

ϒϒϒ
h−∂Hϕ) · d

dt
H+

+{∂ (p)
A K

ϕ r�
(p)
A K −

(p)
A K �∂ (p)

A K

ϕ−
(p)
A K �l ∂ (p)

A K

ϕ} ·Lp+

+((∇K H)�l ∂∇K H ϕ) ·Lp ≥ 0.

(45)

AXIOM 5. The time derivative of the plastic distorsion and damage tensorial
variable, Fp and H, are postulated to be given by the following viscoplastic type
evolution equations

ξ1 Lp =
1
ρ̃

ϒϒϒ
p
K +∂ (p)

A K

ϕ r�
(p)
A K −

(p)
A K �∂ (p)

A K

ϕ−

−
(p)
A K �l ∂ (p)

A K

ϕ +(∇K H)�l ∂∇K Hϕ,

ξ2 Ḣ =
1
ρ̃

ϒϒϒ
h
K −∂Hϕ

(46)

where Lp = Ḟp(Fp)−1, with the constitutive functions ξk, for k = 1, 2, restricted by
the condition

ξ1 Lp ·Lp +ξ2 Ḣ · Ḣ≥ 0 . (47)

We mention here that the micro forces, namely micro stresses ϒϒϒ
p
K and ϒϒϒ

d
K together

with the corresponding micro momenta µµµ
p
K and µµµd

K , satisfy their own micro bal-
ance equations, see for instance [5] and [6]. If the micro momenta are replaced by
the energetic type constitutive equations (42) the micro balance equations allow us
to determine the constitutive equations for micro stresses. Consequently the well
defined evolution equations can be derived, see for instance [12].
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5. CONCLUSIONS

Within the framework of continuum mechanics the complete set of constitutive
and evolution equations have been formulated in order to describe the behaviour of
elasto-plastic materials with damaged structure.

The constitutive and evolution equations have been derived to be compatible with
certain dissipation principle, formulated here as the free energy imbalance.

Two type of finite deformation models have been formulated for elasto-plastic
damaged body. In order to formulate the boundary value problems say for equi-
librium, the balance equation has to be added. In the considered here models, the
balance equations for macro forces are reduced to DivT+b = 0, were b denotes the
body force and T is Cauchy stress tensor, as the macro momentum is vanishing in the
second model, see formula (38).

Finally we pointed out some remarks concerning the formulated problems. In
order to solve appropriate boundary problem the damage variable has to be chosen,
say Fd , and the free energy function has to be given, say by (20). For shake of
simplicity the presence of internal variables ααα is neglected.

We emphasized that the plastic distortion and damage variable, say Fp and Fd ,
are defined by differential type evolution equations. The initial value have to be given
in order to have formally a well defined evolution system.

The Cauchy stress T, the deformation gradient F, the plastic distortion Fp and
damage variable Fd are the unknowns of the problem. All these fields are considered
to be functions of the material point of the body, i.e. X ∈B, at any time t.

By solving the boundary value problem, see for instance the papers by Cleja-
Ţigoiu and Paşcan [11], and Cleja-Ţigoiu et al. [12], we make distinctions between
the nature of the unknowns. The Cauchy stress T, the deformation gradient F, are the
basic unknowns of the problem to be solved at any time t, while the plastic distortion
Fp and damage variable Fd are supposed to be given, as parameter functions.

We proceed as follows:

• The Cauchy stress T has to satisfy the equilibrium equation DivT = 0, written
here in the absence of the body forces;

• The Cauchy stress is considered to be function derived from the free energy
function through the formula (26)1 at any time t, as function of the current
values of F;

• In order to put into evidence the presence of F and Fp and Fd , as like-parameter
functions, the tensor field F̂ has to be eliminated for instance, via the formula
F̂ = F(Fp)−1, at any time t.
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• The elastic type non-linear problem has to be solved at time t + δ t, when the
values of the all unknowns are given at the previous moment of time t. Here
is the argument for solving incremental equilibrium equations, at which the
evolution equations have to be added.

• By using the update algorithms associate with the evolution equations for Fd

and Fp the parameters functions were determined.
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[4] CLEJA-ŢIGOIU, S., SOÓS, E., Elastoplastic models with relaxed configurations and internal
state variables, Appl. Mech. Rev., 43, 7, pp. 131–151, 1990.
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