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Abstract. The problem addressed in this paper concerns a planar 3-DOF manipulator 
operating in horizontal plane, that must move from an initial position characterized by 
angles θ 1(0), θ 2(0) and θ 3(0) to a required final position characterized by angles θ 1(TF), 
θ 2(TF) and θ 3(TF). The manipulator can follow any trajectory from the initial to the 
final position, the goal being to reduce as much as possible the overall mechanical work 
of this manipulation task in horizontal plane. The approach here is not an optimal 
theory one, so that to find the global minimum of the overall mechanical work function. 
Our proposal is just a simple engineering method to reduce the overall mechanical 
work, trying several possibilities of simple methods of trajectory generation: (1) variations of 
θi parameters corresponding to constant accelerations a +

i from t0 = 0 to t1/2 = TF /2, 
followed by constant decelerations a −

i =−a +
i from t1/2 = TF /2 to TF ; (2) variations/ 

evolutions of θi parameters having the form of cosine functions; (3) evolutions of θi 
parameters corresponding to straight line variations, but using smooth departures at t0 
and smooth arrivals at TF , with limitations concerning the departure accelerations and 
arrival decelerations; (4) considering the evolutions of angles θ 1(t), θ 2(t) and θ 3(t) 
between the initial time t0 = 0 and the final time TF , as linear segments between t0 = 0 
and t1/2 = TF /2 on one hand, and as other linear segments between t1/2 = TF /2 and TF on 
the other hand. In this fourth case of trajectory, smooth departures, arrivals and 
transitions from one straight linear segment to another were also considered, thus 
limiting the maximum torques in the actuators. The results are interesting from an 
engineering point of view: a non-optimal minimization of the overall mechanical work 
is analyzed. From the point of view of protecting the actuators and thus increasing their 
lifetime, a second important criterion was also taken into account: the maximum 
torques were compared for the four possibilities of trajectories considered here. Further 
work will find the optimal solution of this manipulation problem, which will better 
evaluate the performance of the method proposed in this paper for mechanical work and 
maximum torque reduction. 
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1. PROBLEM 

Since the dynamics of planar 3-DOF manipulators represents a common 
problem, a classical introduction comprising the state-of-art will not be detailed 
here. The problem will be directly presented, focusing on the issue of simple 
methods for identifying those trajectories that reduce the overall mechanical work 
of a multibody system evolving from an initial to a final desired posture. 

The idea of this work started from a previous paper [1], where the end-
effector of a planar 3-DOF manipulator was following a desired trajectory, with an 
imposed orientation of the end-effector. More precisely, a serial planar manipulator 
with three degrees of freedom (DOF) was simulated to perform the following task: 
the tip C of the end-effector followed a given curve, while the orientation of the 
end-effector (third element) was kept perpendicular to the followed curve. Two 
case studies were simulated [1]: (a) the tip C followed the straight line from point 
(0.25 m; 0) located on x axis, to point (0; 0.25 m) located on y axis; (b) the tip C 
of the end-effector followed a quarter of circle of radius 0.25m and having its 
center in (–0.10 m; 0). 

Figure 1 shows the planar 3-DOF manipulator used in this paper, the same as 
the one used in [1,  2] in what concerns its model, while the inertial and geometric 
parameters are slightly different. 

 
Fig. 1 – Model of the planar 3-DOF manipulator [1]. 

The planar 3-DOF manipulator is composed of three serial arms, each of 
mass mi and length li (i  = 1, 2, 3). The first element/arm is articulated to the fixed 
frame in joint O, which is also the origin of the inertial reference frame (O, x, y). 
The external torque Γ1 is applied to this solid 1, in joint O. The second arm is 
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articulated to the first element in joint A, where the external torque Γ2 is applied, 
acting on this second arm. Finally, the end-effector of the manipulator (third 
element) is articulated to the second element/arm in joint B, being actuated by the 
external torque Γ3 applied in point B. The three elements are considered as 
homogenous bars, having their mass center Gi (i = 1, 2, 3) located in the middle of 
the bar element. 

For this planar 3-DOF manipulator, inverse dynamics is performed here for 
the following manipulation task in the horizontal plane: the end-effector tip C must 
move from an initial posture (at initial time t0  = 0) of the manipulator given by: 
θ1(t0) = –1.047197 rad = –60°,  θ2(t0) = 1.745329 rad = 100° and θ3(t0) = –0.349066  
rad = –20°, to the required final posture given by: θ1(TF) = 1.308997 rad = 75°, 
θ2(TF) = 1.047197 rad = 60° and θ3(TF) = 0.349066 rad = 20°. It was denoted by θ1 
the angle between x and OA, by θ2 the angle between OA and AB and by θ3 the 
angle between AB and BC. The maneuver time is TF = 20 seconds. 

So, the goal is to perform this manipulation task from the initial to the final 
position/posture, with the initial and final positions/postures characterized by null 
velocities. The manipulator can follow any trajectory from the initial to the final 
posture. The requirement is to perform this manipulation task in the horizontal 
plane with as less overall mechanical work consumption as possible, keeping also 
an eye on the maximum torques values. Obviously, this mechanical work reduction 
issue can be formulated as a classical nonlinear optimal/minimization problem, its 
numerical solution being more or less easy to find. In fact, Dumitriu et al. [3] studied 
such an optimal trajectory problem for a scalar 2-DOF manipulator, using a reliable 
hybrid method consisting of an improved dynamic programming method combined 
with a shooting method based on Pontryagin Maximum Principle formulation [3]. 

Evolved search methods such as the Genetic Algorithm (GA) can be also 
successfully used for the motion planning of robot manipulators [4,  5]. More 
precisely, the GA objective function minimizes both traveling time and space, 
while not exceeding a maximum pre-defined torque and while ensuring obstacle 
avoidance, for a 3-link (redundant) robot arm. Eventually, the GA minimization 
can be followed by a nonlinear minimization using gradient descent methods (thus 
obtaining a powerful hybrid method), in order to rapidly “descend” towards the 
optimal solution. 

So, these optimization methods are available to find the optimal trajectories, 
minimizing for example the overall mechanical work. But the solution is not always 
trivial and feasible in real-time, since the numerical solving of such nonlinear 
minimization problems can raise convergence difficulties, even using powerful 
hybrid methods. 

The question is why using such problematic optimizations methods, if instead 
one can find solutions quite close to the optimal one (from the point of view of the 
considered objective function), using simple “engineering” trajectories. 

Thus, the approach proposed in this paper is not an optimal theory one: as a 
more simplistic alternative to finding the optimal solution, our proposal is to 
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perform just a reduction (not minimization) of the overall mechanical work 
function by comparing four simple engineering methods to generate trajectories: 

(1) trajectory corresponding to the variation/evolution of each θi (i  = 1, 2, 3) 
by means of a constant acceleration a+

i between t0  =  0 and t1/2 =  TF /2, followed by 
a constant deceleration a−

i = −a+
i from t1/2 =  TF /2 to TF ; 

(2) trajectory corresponding to the variation of each θi (i  = 1, 2, 3) under the 
form of cosine functions; 

(3) trajectory generated under the form of parameters θi (i = 1, 2, 3) evolutions 
corresponding to straight line variations, but using a smooth departure at t0 and a 
smooth arrival at TF , with limitations concerning the departure acceleration and 
arrival deceleration; 

(4) trajectory obtained by considering the evolutions of angles θ1(t), θ2(t) and 
θ3(t) between the initial time t0 =  0 and the final time TF , as linear segments 
between t0 = 0 and t1/2 = TF /2 on one hand, and other linear segments between  
t1/2 = TF /2 and TF on the other hand. More precisely, we consider that each θi (i = 1, 2, 3) 
evolves from θi (t0) to θi (TF) by means of two simple linear segments, one segment 
from t0 to TF /2 and another segment from TF /2 to TF . In this fourth case of 
trajectory choice, smooth departures, arrivals and transitions from one straight 
line/segment to another were considered as well. 

As mentioned, the global minimum of the overall mechanical work among all 
possible trajectories will not be provided by one of these four simple engineering 
possibilities of trajectories, but this study will draw conclusions on how to obtain 
trajectories quite close to the optimal trajectory. 

2. DIRECT AND INVERSE DYNAMICS OF THE PLANAR  
3-DOF MANIPULATOR 

The direct geometric model and its inverse, the direct and inverse kinematics, 
as well as the direct and inverse dynamic equations written in Lagrange for-
mulation, can be found in [1,  2], posing no particular problems. Similar Lagrange 
equations of motion for planar manipulators have been used since many years by 
numerous authors, let us cite here only [6,  7]. 

Thus, the direct dynamical model is written in Lagrange formulation, as follows 
[1,  2]: 

 = +Aθ Γ b  (1) 

where 
T

1 2 3 = θ θ θ θ  is the 3×1 vector of the second time derivatives of the 

joint angles/coordinates and 
T

1 2 3 = Γ Γ Γ Γ  is the external torques vector. The 

elements Aij of the 3×3 symmetric matrix A depend on angles θi (i  = 1, 2, 3) as 
follows [1]: 
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The components of the 3×1 vector b depend on angles θi (i  = 1, 2, 3) and 
their derivatives iθ  [1]: 

{
}

3 32
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m lmb m l l l

l

 = + θ θ θ + θ + θ + θ θ + θ θ + θ + θ + 
 

+ θ θ θ + θ + θ
 

{ }2 23 32
2 3 1 2 2 1 1 2 3 1 2 3 3 1 2 3(sin ) [sin( )] (sin ) (2 2 )2 2

m lmb m l l l l = − + θ θ + − θ +θ θ + θ θ θ + θ +θ 
 

, 

 { }2 23 3
3 1 2 3 1 2 3 1 2[sin( )] (sin )( )2

m l
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The inverse dynamics equations come naturally from the direct dynamics 
equations (1) in Lagrange formulation [1]: 

 = −Γ Aθ b . (4) 

So, these inverse dynamics explicit equations provide the external torques inducing 
the desired motion, described by the evolution of angles θi (i = 1, 2, 3). The computation 
of the external torques using (4) is trivial. 

In practice, the evolution of angles θi (i = 1, 2, 3) are known. Their derivatives iθ  

and iθ  are easily computed using the finite differences technique: 
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 1( ) ( )
( ) ∆

i k i k
i k

t t
t t

+θ − θ
θ =    for i =1,2,3   and   ∀ k = 0,…, N −1 (5) 

then 

 1( ) ( )( ) ∆
i k i k

i k
t tt t
+θ − θ

θ =    for i =1,2,3   and   ∀ k = 0,…, N −2 (6) 

where 1∆ k kt t t+= −  stands for the incremental time step and where the inter-

mediate time is 0 0( )k F
kt t T tN= + − , with t0 = 0  the initial time and with TF the 

final time. 
This double finite differences computation is precisely enough for our case 

study. 
All in-house inverse dynamics simulations presented in this paper have been 

validated by an appropriate SIMULINK/SimMechanics model, which provided 
identic results [1,  2] with the in-house code based on equations (2–6). Moreover, 
the motion of the planar 3-DOF manipulator has been accurately controlled using a 
PID controller. The PID controller parameters have been tuned and optimized 
using an appropriate Genetic Algorithm [2]. SimMechanics has been successfully 
used by other authors [8] to simulate the motion of robot manipulators, e.g., using a 
PD control and online gravity compensation. 

3. CASE STUDY: REDUCTION OF MECHANICAL WORK  
FOR THE MANIPULATION TASK IN HORIZONTAL PLANE 

The considered planar 3-DOF manipulator shown in Figure 1 has the fol-
lowing inertial and geometric characteristics: masses m1 = m2 = 0.1 kg = 100 g and 
m3 =  0.05 kg = 50 g, respectively arm lengths l1 = 0.08 m = 8 cm, l2 = 0.07 m = 7 cm 
and l3 = 0.03 m = 3 cm. 

As already mentioned, the manipulation task of this planar 3-DOF 
manipulator is to move in the horizontal plane from an initial posture (at t0 = 0) 
given by: θ1(t0) = –1.047197 rad = –60°, θ2(t0) = 1.745329 rad = 100° and θ3(t0) =  
–0.349066 rad = –20°, to the required final posture given by: θ1(TF) = 1.308997 rad = 
75°, θ2(TF) = 1.047197 rad = 60° and θ3(TF) = 0.349066 rad = 20°. Null initial and 
final velocities are considered. The manipulation task is performed in 20 seconds, 
considering thus: t0 = 0, TF = 20 s. 

The four aforementioned simple engineering trajectory generation possibilities 
are applied: 
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3.1. a+_a− trajectory generation method 

The trajectory corresponds to the variation/evolution of each θi (i  = 1, 2, 3) 
by means of a constant acceleration a+

i between t0 = 0 and t1/2 = TF /2, followed by a 
constant deceleration a−

i =−a+
i from t1/2 = TF /2 to TF. More precisely, the 

acceleration and deceleration for each θi are given by the following expressions, 
already used in previous study [9] concerning the “smooth” guidance of a linear 
electrical actuator with ball screw drive: 

 
[ ] [ ]

2 2

2 ( ) (0) 2 ( ) (0)
,     

( 0) (1 )( 0)
i F i i F i

i i
F F

T T
a a

p T p T
+ −θ − θ θ − θ
= = −

− − −
    for i = 1, 2, 3 (7) 

with 1/ 2 0 ( 2) 0 1
0 0 2

F

F F

t Tp T T
− −

= = =
− −

. 

Figure 2 shows the evolutions of the joint angles θi (i  = 1, 2, 3) for this 
simple technique (denoted briefly by “a+_a−”) of constant acceleration with a+

i 
until t1/2 = TF /2, followed by constant deceleration with a−

i , while Fig.  3 shows the 
linear angular velocities i iω = θ  corresponding to the θi evolutions from Fig. 2.  

The corresponding angular accelerations are: 

1 1
(0... 2) 0.0235 ( 2... )F F Fa T a T T+ −

θ θ= =− , 
2 2
(0... 2) 0.0069 ( 2... )F F Fa T a T T+ −

θ θ= − = −  

and 
3
(0... 2) 0.0069Fa T+

θ = =  
3
(0... 2)Fa T−

θ= − . 
Figure 4 presents the three external torques Γ1, Γ2 and Γ3, computed by the 

inverse dynamics approach detailed in previous section, producing the joint angles 
evolutions from Fig.  2, obtained using a+_a− technique. 

 
Fig. 2 – Evolutions of the joint coordinates θ1, θ2 and θ3,  

obtained using the a +_a − technique. 
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Fig. 3 – Linear angular velocities i iω = θ  for the θi angles evolutions from Fig.  2. 

 
Fig. 4 – Evolutions of the external torques Γ1, Γ2 and Γ3 responsible for the θi (i  = 1, 2, 3)  

evolutions from Fig.  2, i.e., for trajectory obtained using the a +_a − technique. 

The mechanical works corresponding to the planar 3-DOF manipulator task 
described by Figs. 2–4 is indicated in Table 1, as follows: W1 = 9.74⋅10-5 Nm 
(mechanical work of Γ1), W2 = 1.27⋅10-5 Nm (mechanical work of Γ2) and  
W3 = 1.34⋅10-6 Nm (mechanical work of Γ3). The overall mechanical work is  
W = W1+W2+W3 = 1.11⋅10-4 Nm. 

3.2. cos_var trajectory generation method 

The trajectory corresponds to the variation of each θi (i  = 1, 2, 3) under the 
form of cosine functions, as follows: 

 
[ ]( ) (0) π( ) (0) 1 cos2 ( 0)

i F i
i i

F

T tt T
θ − θ   θ = θ + −  −  

    for i  = 1, 2, 3. (8) 
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This second technique concerning θi variations is denoted here by “cos_var”. 
It can be easily checked that for t0 = 0 expression (7) provides the identity 

(0) (0)i iθ = θ , while for t = TF it results the identity ( ) ( )i F i FT Tθ = θ , finally for t = 

t1/2 = TF /2 expression (7) computes (0) ( )( 2) 2
i i F

i F
TT θ + θ

θ = . 

Figure 5 shows the cosinusoidal evolutions of the three joint angles θi (i  = 
1, 2, 3) for this second trajectory generation technique called cos_var. Figure 6 
shows the angular velocities i iω = θ  corresponding to the θi angles evolutions from 
Fig.  5, while Fig.  7 presents the three external torques Γ1, Γ2 and Γ3, computed by 
our inverse dynamics approach, inducing the joint angles evolutions from Fig. 5, 
obtained using cos_var technique. The mechanical works and the maximum 
torques are centralized in Table 1. 

 
Fig. 5 – Cosinusoidal evolutions of the joint angles θ1, θ2 and θ3 (using cos_var technique). 

 
Fig. 6 – Angular velocities i iω = θ  for the θi angles evolutions from Fig.  5. 
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Fig.  7 – Evolution of the external torques Γ1, Γ2 and Γ3 responsible  

for the cos_var cosinusoidal θi evolutions from Fig.  5. 

3.3. Linear trajectory generation method 

The trajectory is generated under the form of parameters θi (i  = 1, 2, 3) 
showing straight line variations, i.e., linear segments. This third simple trajectory 
generation method is denoted briefly by “linear”. A smooth departure at t0 is 
considered, with a constant limited acceleration, while at TF the θi variation shows 
a smooth deceleration. 

Figure 8 shows the linear evolutions of the three joint angles θi (i  = 1, 2, 3) 
for this third simple technique (the smooth “departures” at t0 and “arrivals” at TF 
are also visible on Fig.  8), while Fig.  9 shows the angular velocities i iω = θ  
corresponding to the linear θi angles evolutions from Fig.  8. 

 
Fig. 8 – Evolution of the joint angles θ1, θ2 and θ3 for the linear case,  

where they vary linearly from θi (t0 = 0) to θi (Tf  = 20 s). 
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Fig. 9 – Angular velocities i iω = θ  for the linear θi angles  

evolutions from Fig.  8. 

Figure 10 shows the three external torques Γ1, Γ2 and Γ3, computed by the 
proposed inverse dynamics approach, producing the joint angles evolutions from 
Fig.  8, obtained using this linear technique. For a better visualization of the 
“regular” external torques, Fig.  11 presents a zoomed detail of Fig.  10. So far, as 
shown in Table 1, the linear evolutions of the θi (i  = 1, 2, 3) angles correspond to 
the smallest overall mechanical work, compared with a+_a− and cos_var 
techniques. 

Finally, Fig.  12 shows the corresponding manipulator motion. 

 
Fig. 10 – Evolution of the external torques Γ1, Γ2 and Γ3 corresponding  

to the linear angles variation from Fig.  8. 
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Fig. 11 – Zoomed detail of Fig.10, showing the external torques Γ1, Γ2 and Γ3  

corresponding to the linear angles variation from Fig.  8. 

 
Fig. 12 – Planar 3-DOF manipulator motion for the linear evolution of θi from Fig.  8. 

3.4. Bilinear trajectory generation method 

For this bilinear case, the trajectory is obtained by considering the evolutions 
of angles θ1(t), θ2(t) and θ3(t) between the initial time t0 = 0 and the final time TF , as 
linear segments between t0 = 0 and t1/2 = TF /2 on one hand, and other linear 
segments between t1/2 = TF /2 and TF on the other hand. More precisely, we consider 
that each θi (i  = 1, 2, 3) evolves from θi(t0) to θi(TF) by means of two simple linear 
segments, one segment from t0 to TF /2 and another segment from TF /2 to TF . This 
fourth trajectory generation simple method will be denoted shortly as bilinear 
technique. In this fourth case of bilinear trajectory choice, were considered as well 
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smooth departures, arrivals and transitions from one straight line/segment to 
another one. 

In our Matlab/Simulink code, for this bilinear technique we have implemented a 
random allocation of the intermediate values θ1(TF /2), θ2(TF /2) and θ3(TF /2), more 
precisely: 

 [ ](0) rand ( ) (0)2
F

i i i i F i
T T θ = θ + ⋅ θ − θ 

 
    for (i  = 1, 2, 3). (9) 

where randi is a randomly generated number between 0 and 1. 
So far, this random allocation of θ1(TF /2), θ2(TF /2) and θ3(TF /2) values has 

been implemented as a single/manual search in the framework of this bilinear 
technique. But an automatic Matlab code can be easily programmed, testing rapidly 
hundreds of such single searches based on random allocation of θi(TF /2). Such an 
automatic Matlab code would represent a more or less evolved search method. 
Further studies will also compare this automatic search method with methods like 
Genetic Algorithm, which can be used to deal with planar redundant manipulators 
obstacle avoidance and overall joint displacements minimization [4,  5], with the 
end-effector achieving a number of prescribed configurations. 

We have performed around 20 manual searches consisting of random 
allocations of θ1(TF /2), θ2(TF /2) and θ3(TF /2) values. Figure 13 shows one of 
these bilinear evolutions of the three joint angles θi (i  = 1, 2, 3), more precisely the 
one corresponding to the smallest overall mechanical work (indicated in Table 1). 
One can remark that in what concerns θ1, which is the joint angle evolution 
influencing the most the overall mechanical work, its evolution is almost linear. On 
Fig.  13 are also visible the smooth “departures”, “arrivals” and “transitions” from 
one straight line/segment to another one. 

 
Fig. 13 – Evolution of the joint angles θ1, θ2 and θ3 for the “best” bilinear case,  

corresponding to θ1(TF /2) = 5.19°, θ2(TF /2) = 94.35° and θ3(TF /2) = −19.36°. 

Figure 14 shows the angular velocities i iω = θ  corresponding to the linear θi 
angles evolutions from Fig. 13. 
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Fig. 14 – Angular velocities i iω = θ  for the linear θi angles evolutions from Fig.  13. 

Figure15 shows the three external torques Γ1, Γ2 and Γ3, computed by the 
inverse dynamics approach, producing the joint angles evolutions from Fig.  13, 
obtained using bilinear technique. Figure 16 presents a zoomed detail of Fig. 15. 

 
Fig. 15 – Evolution of the external torques Γ1, Γ2 and Γ3 corresponding  

to the bilinear variation of joint angles θi from Fig.  13. 

 
Fig. 16 – Zoomed detail of Fig.15, showing the external torques Γ1, Γ2  

and Γ3 corresponding to the bilinear angles variation from Fig.  13. 
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3.5. Comparison in terms of mechanical works and maximum torques  
between the 4 simple trajectory generation methods 

Table 1 presents the mechanical works and maximum torque values for the 
four simple methods of trajectory generation proposed above: a+_a−, cos_var, 
linear and bilinear, respectively. Let us recall that the case study here concerns a 
manipulation task in the horizontal plane, where the planar 3-DOF manipulator 
moves, in 20 sec, from an initial posture (at t0 = 0) given by: θ1(t0) = –1.047197  
rad = –60°, θ2(t0) = 1.745329 rad = 100° and θ3(t0) = –0.349066 rad = –20°, to the 
final posture given by: θ1(TF) = 1.308997 rad = 75°,  θ2(TF) = 1.047197 rad = 60° 
and θ3(TF) = 0.349066 rad = 20°. Null initial and final velocities are considered. 

Table 1 
Tests performed in order to reduce the overall mechanical work during the manipulation task,  

using the four simple engineering methods of trajectory generation 

technique ID W1(Γ1) W2(Γ2) W3(Γ3) W(sum) max(Γ1) max(Γ2) max(Γ3) 
a+_a− 9.74⋅10-5 1.27⋅10-5 1.34⋅10-6 1.11⋅10-4 5.67⋅10-5 4.56⋅10-5 4.74⋅10-6 
cos_var 6.22⋅10-5 1.07⋅10-5 1.13⋅10-6 7.41⋅10-4 5.98⋅10-5 2.32⋅10-5 2.32⋅10-6 
linear 3.47⋅10-5 8.14⋅10-6 8.50⋅10-7 4.37⋅10-5 3.94⋅10-4 1.30⋅10-4 1.23⋅10-5 
bilinear 3.49⋅10-5 9.10⋅10-6 8.77⋅10-7 4.49⋅10-5 3.70⋅10-4 1.14⋅10-4 1.34⋅10-5 

The information compared between the four trajectory generation methods 
concerns the mechanical works W1, W2 and W3 produced by Γ1, Γ2 and Γ3 and their 
sum W = W1+W2+W3 , as well as the maximum torque values of the three actuators. 
The mechanical works and the maximum torque values are expressed in Nm. 

In what concerns the smaller overall mechanical work, the best trajectory 
seems to be the one obtained by the linear variation of θi angles (obtained using the 
linear technique), followed very closely by the trajectory obtained using the 
bilinear technique. Further results will show if the bilinear technique is able to 
provide a trajectory involving less overall mechanical work than the linear technique 
trajectory. So far, it seems that the bilinear technique trajectory is penalized by the 
torques needed for the smooth “transition” between the two linear segments in the 
evolution of each θi . 

As for the maximum torque values, it seems that the a+_a− technique, followed 
closely by cos_var technique, corresponds to the smaller maximum torque values, 
being thus the most appropriate for protecting the rotary actuators and thus 
increasing their lifetime. 

4. CONCLUSION AND FUTURE WORK 

For the manipulation task from an initial posture to a desired final posture of 
a planar 3-DOF manipulator in the horizontal plane, this paper proposes simplistic 
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techniques to find solutions/trajectories reducing the overall mechanical work. The 
protection of the rotary actuators by reducing the maximum torque values is a 
second criterion considered here. The more appropriate trajectory is searched 
among the joints angles evolutions obtained using four different simple engineering 
techniques, denoted briefly by: a+_a−, cos_var, linear and bilinear, respectively. 
The simulations performed so far show that a smaller overall mechanical work 
corresponds to the trajectories obtained by the linear technique (linear evolutions 
of the three θi angles), while the trajectories obtained using the a+_a− and cos_var 
techniques correspond to smaller maximum torque values. Further work will find 
also the optimal trajectory for this manipulation task and will complete the 
comparison in terms of mechanical works and maximum torque values. Let us 
recall that the simplicity is the main advantage of the techniques tested in this paper 
for manipulation task trajectory generation. 
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