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Abstract. Mechanical components of in-service machines are frequently subjected to 
multiaxial cyclic loading, which can result in failure due to the fatigue damage. In 
general, the multiaxial fatigue life can be predicted based on the stress/strain states 
variation and using a damage criterion. In this paper, fatigue damage given by a 
proportional tension-torsion loading cycle is predicted based on proposed 
methodology. Fatigue damage prediction is made using Findley’s criterion on the 
Mohr’s circles of the stress states. The results showed a good capability of the Findley 
criterion to predict both the critical plane and durability on the analyzed material. 
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1. INTRODUCTION 

Fatigue phenomenon is the progressive and localized structural damage 
which occurs when a material is subject to cyclic loading. The process starts with 
dislocation movements which form persistent slip bands leading to initiation of 
cracks that propagates until final failure. Also, this process is carried out over time 
and defines the durability of a material, respectively component. Depending on the 
durability domain in which the material is loaded, the life time prediction is 
quantified by the number of cycles to initiate a crack at a critical point (low-cycle 
fatigue), or the number of cycles recorded until the final failure, given by the 
initiation and propagation of a crack from a critical point (high-cycle fatigue or 
very high cycle fatigue). Basically, the fatigue life prediction of a material 
represents the damage degree at the end of a loading cycle, which is then 
cumulated by repeating the loading cycle until the actual failure. Therefore, a major 
problem in fatigue life prediction is the estimation of the damage caused by a 
loading cycle. In general, the loading cycle is defined as all the values recorded by 
the load (forces, moments, pressures, temperatures, etc.), starting from a mean 

                                                           
Mechanics and Strength of Materials, Politehnica University Timisoara 
 

Ro. J. Techn. Sci. − Appl. Mechanics, Vol. 64, N° 1, P. 71−86, Bucharest, 2020  



 Anghel Cernescu, Ion Dumitru, Lorand Kun 2 72 

value, recording a maximum, then a minimum and returning to the mean value. 
The applied cyclic loading determines a stress respectively strain state in material 
point defined as a multiaxial state. Thus, the stress/strain components vary over 
time, with the cyclic load variation. At the same time, the multiaxial stress/strain 
state becomes much more complicated when its components vary in an 
independent manner or at different frequencies [1‒3]. The mode of time variation 
of the stress/strain state components introduces effects that complicate the 
prediction of fatigue damage.  

Multiaxial loadings are called proportional if the principal directions and the 
corresponding principal stresses/strains do not change their orientation during a 
loading cycle. Instead, the multiaxial loadings are called non-proportional if the 
principal directions and the corresponding principal stresses/strains change their 
orientation over a loading cycle. Such loadings are very common in the operation 
of mechanical components, can be complex as a variation over time and it is 
difficult to quantify their effect on the fatigue life.  

Different approaches based on the stress or strain state in the critical point 
have been developed for fatigue damage prediction at multiaxial loadings. These 
are based on the following theories: a) maximum principal stress or strain theory 
[4, 5]; b) maximum shear stress or strain theory [6‒8]; c) octahedral shear stress or 
strain theory [9, 10]. The applicability of one or the other of these theories is 
especially challenging due to the mechanical behaviour and the different failure 
modes of materials (tensile or shear failure mode) [11‒12] and which is often not 
easy to know. 

In this paper an estimation analysis of fatigue damage produced within a 
multiaxial loading cycle is performed. The paper contains a stress state analysis in 
a point on the surface of a multiaxially loaded specimen at tension-torsion, 
presented in section 2. Then, a fatigue damage prediction given by a proportional 
tension-torsion loading cycle is presented in section 3. The fatigue damage 
prediction follows a proposed methodology involving Mohr’s circle and a damage 
criterion.  

2. STRESS STATE AT MULTIAXIAL LOADING OF TENSION-TORSION 

One of the most common multiaxial fatigue loading is the cyclic tension with 
torsion. In Fig. 1 is indicated a tubular specimen with thin walls loaded in tension 
by the forces P  and torsion through the torque tM . The two loads have sinusoidal 
variation laws. The following stresses act on the orthogonal faces of an 
infinitesimal element: 

( ) ( ), sinxx xx at tσ ⋅= σ ω , (1) 
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( ) ( ), sinxy xy a xyt t⋅σ = σ ω + δ , (2) 

 
where ,xx aσ  is the amplitude of normal stress, ,xy aσ  is the amplitude of shear 
stress, 2 / T=2 vω = π π  is the angular velocity depending on the loading frequency. 

The stresses that act on a plane whose normal is inclined with angle Φ  with 
respect to x  - axis are: 

( ) ( ) ( ) ( ) ( )
,

1 1 cos 2Φ sin sin 2Φ sin
2

n
xy

xx a

t
t t

σ
= ⎡ + ⎤ ω + β ω + δ⎣ ⎦σ

, (3) 

( ) ( ) ( ) ( ) ( )
,

1 sin 2Φ sin cos 2Φ sin
2

n
xy

xx a

t
t t

τ
= − ω + β ω + δ

σ
, (4) 

where , ,/xy a xx aβ σ σ=  is the ratio of the amplitudes of normal and shear stresses, 

xyδ  is the phase shift of the shear stress. 
 

 
Fig. 1 – Stress state in a point of surface specimen loaded in tension-torsion. 
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Equations (3) and (4) allow an analysis of the stress states based on two 
variables, the time moment in the loading cycle ( )tω  and the rotation angle ( )2Φ  
respectively, considering two arbitrary parameters: the β  ratio and phase shift, xyδ . 

Figure 2a shows the Cartesian representations of the normal and shear 
stresses whose laws of variation are described in equations (1) and (2), for a phase 
shift of / 6xyδ = π . Also, the same loading cycle in coordinates ( ) ( )xx xyt tσ − σ  is 
shown in Fig. 2b. 
 

  
                                        a)                                                                            b) 
Fig. 2 – The tension-torsion loading cycle with a phase shift of / 6xyδ = π : a) cartesian coordinates 

representation; b) ( ) ( )xx xyt tσ − σ  coordinates representation. 

The principal stresses are extreme normal stresses acting on the planes with 
no shear stress. The directions of these stresses are called principal axes. In the 
same measure, the shear stress registers extreme values in certain planes. 

Two cases of determining the maximum principal normal and shear stresses 
are given in this paper: 

Case I. This case involves determining the time in the loading cycle when the 
normal stress reaches an extreme value in an arbitrary plane rotated by the angle 
2Φ . This time moment is given by the following relation: 

 

( ) ( ) ( ) ( )
( ) ( )

1 cos 2Φ 2 sin 2Φ cos 2Φ
tan

2 sin 2Φ sin xy
t

+ + β
ω =

β δ
. (5) 

 
The maximum principal stress is: 
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( )

( ) ( ) ( )
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 (6) 

 
Also, the time in the loading cycle when the shear stress reaches an extreme 

value in an arbitrary plane rotated by the angle 2Φ  is: 
 

( )
( ) ( ) ( )

( ) ( )
sin 2Φ 2 cos 2Φ cos

tan ,
2 cos 2Φ sin

xy

xy
t

− + β δ
ω =

β δ
 (7) 

 
and the maximum shear stress is: 
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( ) ( ) ( )
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 (8) 

 
Case II. This case involves determining the position of the plane for which 

the normal stress reaches an extreme value at an arbitrary time, (ωt): 
 

( )
( ) ( ) ( ) ( )

( )
2 sin cos cos sin

tan 2Φ
sin

xy xyt t

t

⎡ ⎤β ω δ + ω δ⎣ ⎦=
ω

. (9) 

 
The maximum principal stress for this case is: 
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( ) ( )

( ) ( ) ( ) ( ) ( ){ }

1

,
1

2 22 2
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t t

t t t

σ ω ω
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Also, the position of the plane for which the shear stress reaches an extreme 
value at an arbitrary time, ( )tω  is: 

 

( ) ( )
( ) ( ) ( ) ( )

sin
tan 2Φ

2 sin cos cos sinxy xy

t

t t

ω
= −

⎡ ⎤β ω δ + ω δ⎣ ⎦
, (11) 

and the maximum shear stress is: 
 

( )

( ) ( ) ( ) ( ) ( ){ }
,

1
2 22 21 sin 4 sin cos cos sin .
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xx a

xy xy

t

t t t
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=

σ
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 (12) 

 

Based on the above relationships, the variations of the maximum and 
minimum principal normal stresses, ( )1 ,/ xx atσ σ  and ( )2 ,/ xx atσ σ , respectively 

maximum and minimum principal shear stresses, ( )1 ,/ xx atτ σ  and ( )2 ,/ xx atτ σ , 

during a loading cycle with ( ) [ ]0,2tω ∈ π , for 1β =  and different phase shifts, 

xyδ , were determined and plotted in Figs. 3a–d, respectively Figs. 4a–d. 
The analysis of these hodographs of the variation of the principal stresses 

highlights the difference between a proportional and nonproportional multiaxial 
loading. During a loading cycle, in Figs. 3a and 4a the variation of the principal 
stresses is kept on the same principal direction. This variation is characteristic of 
proportional loadings with phase shift, 0xyδ = . Instead, with the appearance of a 
phase shift between the applied loadings, the maximum and minimum principal 
stresses change their mode of variation during a loading cycle. The same happens 
with the positions of the principal directions that change within the same loading 
cycle. Such cases are characteristic of nonproportional multiaxial loadings, 0xyδ ≠  
(Figs. 3b–d and 4b–d). 
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                              a)                                                                                     b) 

 

  
                              c)                                                                                     d) 

 

Fig. 3 – Hodograph of the principal normal stresses. 
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                               a)                                                                                    b) 
 

  
                                     c)                                                                            d) 

Fig. 4 – Hodograph of the principal shear stresses. 

3. FATIGUE DAMAGE PREDICTION IN PROPORTIONAL  
TENSION-TORSION FATIGUE TESTS 

Proportional tension-torsion fatigue tests with stress ratio 0.1R = , were 
conducted on steel tubular specimens with sizes given in Fig. 5. The tested material 
is a high strength steel whose mechanical properties are given in Table 1. Both 
axial tension and torsion loadings have followed sinusoidal laws of variations 
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during a loading cycle. Also, being a proportional multiaxial loading, the phase 
shift 0xyδ = . The results of the fatigue tests are given in Table 2. 

This paper presents a program for estimating the multiaxial fatigue damage 
produced by a loading cycle. The program is applied for the third test in Table 2, 
but it is obvious that it can be repeated for all tests. 
 

 
Fig. 5 ‒ Tubular specimen tested for multiaxial fatigue. 

Table 1 

The mechanical properties of the tested material 

Material Young’s modulus E 
[MPa] 

Yield strength  
σy [MPa] 

Ultimate strength 
σr [MPa] 

High strength steel 205 000 960 1 050 
 

Table 2 

The multiaxial fatigue tests 

No. test Maximum Tensile 
Force [N] 

Maximum Torque  
[Nmm] 

Cycles to failure 

1 5 353.6 8 500 2 133 
2 5 038.7 8 000 5 320 
3 4 723.7 7 500              62 674 
4               4 408.85 7 000            100 000 
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First, the maximum and minimum values of the stresses in a cross section 
will be calculated. Thus: 

,
4723.7 547 MPa
8.635

max
x max

F
A

σ = = = , (13) 

,
,

7500 341.7 MPa
21.95

t max
xy max

p

M
W

τ = = = , (14) 

where A  is the cross-section area and pW  is the strength modulus. 
The same calculations are made for the minimum values. 

,
472.37 54.7 MPa
8.635

min
x min

F
A

σ = = = , (15) 

,
,

750 34.17 MPa
21.95

t min
xy min

p

M
W

τ = = = . (16) 

In the second step, the principal stresses and the angle of the principal 
directions are determined. These will be calculated both for the maximum values of 
the normal stress, xσ , and shear stress, xyτ , respectively for the minimum values. 
Also, knowing that the maximum values of the normal and shear stresses are 
recorded at the moment of / 2π , respectively the minimum values are recorded at 
3 / 2π , the principal stresses and the angle of the principal directions are 
determined using the equations (9) and (10), respectively (11) and (12). All these 
values are given in Table 3. 

Table 3 

The principal stresses and direction 

 Principal 
Normal 

Stress, 1σ  
[MPa] 

Principal 
Normal 

Stress, 2σ  
[MPa] 

Principal 
Shear Stress, 

1τ  [MPa] 

Principal 
Shear Stress, 

2τ  [MPa] 

Angle of 
principal 
direction, 
2Φ  [°] 

Max. 711.17 –164.17 437.67 –437.67 51.32 
Min. 71.11 –16.41 43.76 –43.76 51.32 

 
The stress state corresponding to the analyzed load case is represented in the 

form of Mohr circles corresponding to its maximum and minimum moments, Fig.6.  
Thus, it is considered a plane element on the outer surface of the sample 

which on the horizontal edges is characterized by the stresses xσ  and xyτ  (point 
A  for the maximum moment and A′  for the minimum moment in Mohr’s circle), 
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and on the vertical edges only the shear stress xyτ  acts (point B  for the maximum 
moment, respectively B′  for the minimum moment). Since the angle between the 
edges is / 2π , the angle between A  and B  in the Mohr circle is π  (always the 
angle of rotation of the element in the Mohr circle is represented as 2Φ ). 

Now, there can be estimated the fatigue damage given by the analyzed stress 
state. This requires the adoption of a damage criterion, and one of the criteria often 
used in multiaxial fatigue damage prediction is the Findley criterion, [13]. This 
criterion assumes that a fatigue crack initiation and growth is dependent on both 
alternating shear stress, / 2Δτ  and normal stress, nσ , acting on a plane known as 
“critical plane”. 
 

 
Fig. 6 – The Mohr circles for the maximum and minimum stress states. 
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The Findley criterion is expressed as: 

2 n effk fΔτ
+ ⋅ σ =  (17) 

where k  is a Findley constant, that can be estimated based on the following’s 
relationships: 

( )1 1

1
2

k =
λ λ −

, (18) 

1
1

2 r

−

σ
λ =

σ
, (19) 

where 1−σ  is the fatigue strength at fully reversed cycles which for steels can be 
estimated as 0.5 rσ .  

These stresses must be determined according to the angle of rotation of an 
element, and for this the Mohr circles in Fig. 6 are used. Thus, a stress state is 
plotted for a rotated element with an arbitrary angle 2α  with respect to the 
maximum stress state ( )AB – Fig. 6. This is represented by the diametrical segment 
CC′ . In the similar way is proceeded on the circle corresponding to the minimum 
moment. 

The normal stress, nσ  is defined as: 

( ) ( ) ( ) ( )
( )

1 1

1 2 1 2max max max max cos 2Φ 2 .
2 2

n OO O Pσ = + =

σ + σ σ − σ
= + − α

 (20) 

The shear stress corresponding to the maximum moment in the loading cycle 
is defined from the triangle 1O CP  as: 

( ) ( ) ( )
( )1 2max max

max
sin 2Φ 2

2xyCP
σ − σ

= τ = − α . (21) 

Correspondingly, for the minimum moment the shear stress is: 

( ) ( ) ( )
( )1 2min min

min
sin 2Φ 2

2xy
σ − σ

τ = − α . (22) 

The shear stress range in a plane rotated by the angle α  is given by the 
following relationship: 
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( ) ( )
( )

( ) ( )
( )

1 2max max

min min1 2

Δ sin 2Φ 2
2

sin 2Φ 2 .
2

σ − σ
τ = − α −

σ − σ
− − α

 (23) 

Considering the values given in table 3, for relations (20) and (23), it results: 

( )273.5 437.5 cos 51.32 2nσ = + ⋅ ° − α , (24) 

( )394 sin 51.32 2Δτ = ⋅ ° − α . (25) 

Figure 7 shows the variation of the Findley parameter as a function of the 
rotation angle of the normal to the plane passing through the element whose stress 
state has been calculated. 
 

 
Fig. 7 ‒ The Findley’s parameter variation. 

For finite fatigue life, the Findley’s parameter is often compared with a shear 
fatigue curve equation as follows: 

( )*
2

b
n f fk NΔτ

+ ⋅ σ = τ , (26) 

* 2 '1f fkτ = + ⋅ τ . (27) 

where '
fτ  is the shear fatigue strength coefficient, b  is the slope of the shear 

fatigue curve. 
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In the absence of an experimental torsional fatigue curve, it can be 
approximated based on the ultimate strength of the material and considering the 
factors that influence the fatigue strength, [14]. Thus, for the tested material the 
following coefficients from the shear fatigue curve equation were estimated: 

' 1 487.74 MPafτ = , 
0.139b = − . 

 

Also, the fatigue damage produced by a loading cycle is given by the 
following relation: 

1
cycle

f
D

N
= . (28) 

Based on the above relations, figure 8 shows the variation of the fatigue damage 
produced by a loading cycle depending on the rotation angle of a plane element. 

The estimated maximum fatigue damage for the third test corresponds to a 
fatigue life of 53 778 cycles and occurs for two rotation angles. The rotation angle 
was measured on Mohr’s circle starting from point A, which represents the plane 
normal on the loading axis of the specimen. The second peak of damage occurs at 
an angle of 51.66° indicating a second critical plane. The analysis of the failure 
samples highlights the fact that the fracture was initiated in the transverse plane, 
Fig. 9. This coincides with the first critical plane indicated by Findley’s criterion.  

Also, both the estimation of the critical plane and the resulting durability 
based on Findley’s parameter are supported by experimental evidence, which 
demonstrates the suitability of this criterion for fatigue damage prediction of the 
analyzed material. 
 

 
Fig. 8 ‒ Fatigue damage variation depending on the rotation angle of an element. 



15 Multiaxial fatigue damage prediction in a proportional loading cycle  85 

  
Fig. 9 ‒ Specimen failed by proportional tension-torsion fatigue test. 

4. CONCLUSION 

A fatigue damage analysis given by a multiaxial proportional tension-torsion 
cycle is presented in this paper, following a proposed methodology. This 
methodology is based on the expression of the cyclic stress state through Mohr’s 
circles and the application of a damage criterion, respectively. The fatigue damage 
variation depending on the rotation angle of the element indicates a sharp peak 
around the critical plane. This represents a damage concentration on the critical 
plane emphasizing the initiation of the crack in one of these two critical planes. 
The fatigue crack initiation in the transverse critical plane, normal on the loading 
axis, could be influence by the quality of the surface (e.g. roughness). 
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